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Following the paper by Genton and Loperfido [Generalized skew-elliptical distributions and their quadratic
forms, Ann. Inst. Statist. Math. 57 (2005), pp. 389–401], we say that Z has a generalized skew-normal
distribution, if its probability density function (p.d.f.) is given by f (z) = 2φp(z; ξ, �)π(z − ξ), z ∈ R

p,
where φp(·; ξ, �) is the p-dimensional normal p.d.f. with location vector ξ and scale matrix �, ξ ∈ R

p,
� > 0, and π is a skewing function from R

p to R, that is 0 ≤ π(z) ≤ 1 and π(−z) = 1 − π(z), ∀z ∈ R
p.

First the distribution of linear transformations of Z are studied, and some moments of Z and its quadratic
forms are derived. Next we obtain the joint moment-generating functions (m.g.f.’s) of linear and quadratic
forms of Z and then investigate conditions for their independence. Finally explicit forms for the above
distributions, m.g.f.’s and moments are derived when π(z) = κ(α′z), where α ∈ R

p and κ is the normal,
Laplace, logistic or uniform distribution function.

Keywords: elliptical distribution; independence; moment-generating function; multivariate skew-normal
distribution; quadratic form

AMS 2000 Subject Classifications: Primary: 60E05; Secondary: 62H10

1. Introduction

There is a growing literature on classes of multivariate distributions which are more flexible than
the normal ones. Azzalini and Dalla-Valle [1] introduced the skew-normal distribution which
includes the normal distribution and has some properties like the normal and yet is skew. Its
probability density function (p.d.f.) is

2φp(z; ξ, �)�(α′(z − ξ)), z ∈ R
p, (1)

where φp(·; ξ, �) is the p.d.f. of Np(ξ, �) distribution (the p-dimensional normal p.d.f. with
location vector ξ and scale matrix �), ξ, α ∈ R

p, � > 0, and � is the cumulative distribution
function (c.d.f.) of the univariate standard normal distribution. This class of distributions is useful
in studying robustness and for modelling skewness. For their statistical properties and applications,
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2 W.-J. Huang et al.

we refer to Azzalini and Capitanio [2], Genton et al. [3], Loperfido [4], Gupta and Huang [5],
Gupta and Kollo [6], and Lachos et al. [7] among others.

Generalizations of the skew-normal distribution with p.d.f. (1) have been proposed by many
authors including Arnold and Beaver [8], Liseo and Loperfido [9], González-Farías et al. [10],
Gupta and Chen [11], and Genton and Loperfido [12]. For useful reviews of developments in
this field, see Genton [13], Azzalini [14] and Arellano-Valle and Azzalini [15]. Recently, Wang
et al. [16] considered that X has p.d.f. (1) with ξ = 0 and � being the identity matrix Ip, and
then introduced the distribution of Y = a + B′X, where a ∈ R

q and B is a p × q matrix, as an
extension of the skew-normal distribution with p.d.f. (1). Indeed, if B has a full column rank, then
the p.d.f. of Y exists and still has the form (1).

Following Genton and Loperfido [12] a p-dimensional random vector Z is said to have a
generalized skew-normal distribution, denoted by GSNp(ξ, �, π), if its p.d.f. is

2φp(z; ξ, �)π(z − ξ), z ∈ R
p, (2)

where π is a skewing function from R
p to R. That is 0 ≤ π(z) ≤ 1 and π(−z) = 1 − π(z),

∀z ∈ R
p. It is worth noting that, for any bounded odd function ϕ such that |ϕ(x)| ≤ l, x ∈ R, where

l > 0 is fixed, ϕ(α′z)/(2l) + 1/2 can be taken to be a skewing function. Clearly, for π(z) = 1/2,
Z simply has a Np(ξ, �) distribution. The skewing function π is flexible enough for the class of
GSN distributions to include many known skew distributions. The case π(z) = G(PK(z)), where
G is the c.d.f. of a continuous random variable that is symmetric about 0 and PK(z) is an odd
polynomial of order K defined on R

p, has been introduced by Ma and Genton [17]. The special case
by taking G being absolutely continuous and PK(z) = α′z was studied by Gupta and Chang [18]
and Huang and Chen [19]. Gupta et al. [20] considered the case π(z) = �((1 + z′�z)−1/2α′z),
where � is a non-negative diagonal matrix. Note that Azzalini and Capitanio [21] defined the
class of distributions having p.d.f.

2φp(z; ξ, �)G(w(z − ξ)), z ∈ R
p, (3)

where w is an odd continuous function from R
p to R, and then Wang et al. [22] showed that this

class of distributions is the same as those having a p.d.f. of the form (2). It can be seen that G(w(z))
is a skewing function and conversely each skewing function π(z) can be represented as H(w(z)),
where H is a strictly increasing c.d.f. of a continuous random variable which is symmetric about 0
and w(z) = H−1(π(z)). For simplicity, in this study, we present results by using GSN distributions
with a p.d.f. of the form (2).

Through an appropriate choice of the skewing function π in Equation (2), GSN distributions
can systematically capture skewness and even multimodality. Note that, from Wang et al. [22],
there is a stochastic representation of Z suitable for simulation, that is

Z =
{

ξ + U if V < π(U),

ξ − U otherwise,

where U is Np(0, �) distributed, V is uniformly distributed over [0, 1], and U and V are indepen-
dent. Additional properties of GSN distributions, which coincide or are close to the properties of
the normal ones, have been discussed in Loperfido [23], Genton and Loperfido [12], Chang and
Genton [24], and Lysenko et al. [25], etc.

The remainder of the article is structured as follows. In Section 2, the linear transformation of Z
is investigated. Section 3 deals with some moments of Z and its quadratic forms. In Sections 4–6,
we derive joint moment-generating functions (m.g.f.’s) of linear and quadratic forms of Z and
then give conditions for independence of a linear form and a quadratic form, two quadratic forms,
and two linear forms of Z, respectively. In Section 7, explicit forms for the above distributions,
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Statistics 3

moments and m.g.f’s are derived when π(z) = κ(α′z), where α ∈ R
p and κ is the normal, Laplace,

logistic or uniform distribution function.

2. Linear transformations

In this section, let Z have a GSNp(ξ, �, π) distribution, A be a p × q matrix with rank q, and b
be a q × 1 vector, 1 ≤ q ≤ p. We first show that the class of GSN distributions is closed under
linear transformation, which is basic for developing other results and important for a family of
distributions to have good properties when used to fit the data and make inferences. It is worth
remarking that the marginal distribution of the first q coordinates of Z can be obtained from the
following theorem by taking A′ = [Iq O] and b = 0.

Theorem 2.1 A′Z + b has a GSNq(A′ξ + b, A′�A, π∗) distribution with

π∗(z) = EU1(π(U1 + �A(A′�A)−1z)), (4)

where U1 is Np(0, � − �A(A′�A)−1A′�) distributed.

Proof For simplicity, we only prove the case for ξ = b = 0. The proof for the general situation
is similar. First consider p = q. Obviously, A is non-singular. Hence, it is clear that A′Z has a
GSNp(0, A′�A, π∗) distribution with π∗(z) = π((A′)−1z).

Next, consider q < p. Let B be a p × (p − q) matrix such that D = [A B] is a non-singular.
Partition D−1 as

D−1 =
[

A(−1)

B(−1)

]
,

where A(−1) and B(−1) are q × p and (p − q) × p matrices, respectively. Now we have the p.d.f.
of D′Z as follows

fD′Z(z) = 2φp(z; 0, D′�D)π((D′)−1z) = fA′Z,B′Z(z1, z2)

= 2 exp{−(1/2)(z′
1�

−1
11 z1 + (z2 − �21�

−1
11 z1)

′�−1
22·1(z2 − �21�

−1
11 z1))}

(2π)p/2
√|�11||�22·1|

· π(A(−1)′z1 + B(−1)′z2), z = [z′
1z′

2]′ ∈ R
p,

where �11 = A′�A, �21 = B′�A and �22·1 = B′(� − �A(A′�A)−1A′�)B. Then the marginal
p.d.f. of A′Z can be derived as

fA′Z(z1) =
∫

Rp−q

fA′Z,B′Z(z1, z2) dz2

= 2
1

(2π)p/2
√|�11||�22·1| exp

{
−1

2
z′

1�
−1
11 z1

}

·
∫

Rp−q

exp

{
−1

2
v′�−1

22·1v
}

π(B(−1)′v + (A(−1)′ + B(−1)′�21�
−1
11 )z1) dv

= 2φq(z1; 0, �11)EV [π(B(−1)′V + (A(−1)′ + B(−1)′�21�
−1
11 )z1)], z1 ∈ R

q, (5)

where V is Np−q(0, �22·1) distributed. Due to the fact DD−1 = AA(−1) + BB(−1) = Ip, it yields
that

B(−1)′�22·1B(−1) = � − �A(A′�A)−1A′�,

A(−1)′ + B(−1)′�21�
−1
11 = �A(A′�A)−1.
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4 W.-J. Huang et al.

Hence Equation (5) can be rewritten as

fA′Z(z1) = 2φq(z1; 0, A′�A)EU1(π(U1 + �A(A′�A)−1z1)), z1 ∈ R
q,

where U1 = B(−1)′V is Np(0, � − �A(A′�A)−1A′�) distributed. Finally, it is easy to check that
EU1(π(U1 + �A(A′�A)−1z1)) is a skewing function, and the proof is completed. �

The following corollary gives conditions such that linear functions of Z are still normally
distributed. The proof can be obtained immediately by showing that π∗(z) = 1

2 , z ∈ R
q, where

π∗ is given in Equation (4), hence is omitted.

Corollary 2.1 Assume π(z) = κ(α′z). If α′�A = 0, then A′Z has a Nq(A′ξ, A′�A) distribution.

3. Moments

The first four moments of the skew-normal distribution with p.d.f. (1) and the first two moments of
its quadratic forms were derived by Genton et al. [3]. They showed that the moments of the sample
auto-covariance function and of the sample variogram estimator do not depend on the skewness
parameter α, and gave some applications to time series and spatial statistics. Kim and Mallick [26]
and Kim [27] subsequently extended these results to scale mixtures of the skew-normal distribution
with p.d.f. (1). In this section, let Z have a GSNp(ξ, �, π) distribution,

q = 2
∂EU(π(U + �t))

∂t

∣∣∣∣
t=0

and Q = 2
∂3EU(π(U + �t))

∂t ∂t′ ∂t

∣∣∣∣
t=0

, (6)

where U is Np(0, �) distributed. Now, we will obtain some parallel results for the GSN distribution.
To this end, we need some of the operations involved in matrix algebra. That ⊗, tr and vec are
the Kronecker product, trace and vectorizing operator, respectively. Kmn stands for the mn × mn
commutation matrix consisting of n × m blocks, where the jith element in the ijth block equals 1
and all the other elements are zeros, i = 1, . . . , m, j = 1, . . . , n. For properties of these operators,
the commutation matrix and the related matrix algebra, and details about calculations of the partial
derivatives, the reader is referred to Schott [28] or Gupta and Nagar [29]. We also need a lemma
by Genton and Loperfido [12].

Lemma 3.1 Let τ be any even function from R
p to R. Assume ξ = 0. Then the distribution of

τ(Z) does not depend on π .

The following theorem provides expressions for the first four moments of Z in terms of ξ, �,
q and Q, which can be proved along the lines of Genton et al. [3].

Theorem 3.1 We have

(i) E(Z) = q + ξ,
(ii) E(Z ⊗ Z′) = � + qξ′ + ξq′ + ξξ′,

(iii)

E(Z ⊗ Z′ ⊗ Z) = Q + q ⊗ � + � ⊗ q + vec(�)q′ + q ⊗ ξ′ ⊗ ξ + ξ ⊗ q′ ⊗ ξ + ξ ⊗ ξ′ ⊗ q

+ � ⊗ ξ + ξ ⊗ � + vec(�) ⊗ ξ′ + ξ ⊗ ξ′ ⊗ ξ,



201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

Statistics 5

(iv)

E(Z ⊗ Z′ ⊗ Z ⊗ Z′)

= � ⊗ � + Kpp(� ⊗ �) + vec(�)(vec(�))′ + � ⊗ ξ ⊗ ξ′ + ξ ⊗ � ⊗ ξ′

+ ξ ⊗ ξ′ ⊗ � + ξ′ ⊗ � ⊗ ξ + vec(�) ⊗ ξ′ ⊗ ξ′ + ξ ⊗ ξ ⊗ (vec(�))′ + ξ ⊗ ξ′ ⊗ ξ ⊗ ξ′

+ � ⊗ q ⊗ ξ′ + � ⊗ q′ ⊗ ξ + q ⊗ � ⊗ ξ′ + q′ ⊗ � ⊗ ξ + ξ ⊗ � ⊗ q′ + ξ′ ⊗ � ⊗ q

+ ξ ⊗ q′ ⊗ � + ξ′ ⊗ q ⊗ � + ξ ⊗ (vec(�)q′)′ + (vec(�)q′)′ ⊗ ξ + ξ′ ⊗ (vec(�)q′)

+ (vec(�)q′) ⊗ ξ′ + q ⊗ ξ′ ⊗ ξ ⊗ ξ′ + ξ ⊗ q′ ⊗ ξ ⊗ ξ′ + ξ ⊗ ξ′ ⊗ q ⊗ ξ′

+ ξ ⊗ ξ′ ⊗ ξ ⊗ q′ + Q ⊗ ξ′ + Q′ ⊗ ξ + ξ ⊗ Q′ + ξ′ ⊗ Q.

If X is a p × 1 random vector, it can be found in Li [30] that

E(X ′AX) = tr(AE(X ⊗ X ′)), (7)

E((X ′AX)(X ′BX)) = tr((A ⊗ B)E(X ⊗ X ′ ⊗ X ⊗ X ′)), (8)

where A and B are p × p symmetric matrices. Genton et al. [3] used Equations (7) and (8) to obtain
expressions of E(Z′AZ) and Cov(Z′AZ, Z′BZ) for π(z) = �(α′z). The case for π(z) = 1

2 , that is
Z is Np(ξ, �) distributed, can also be found in Schott [28, p. 395]. In order to obtain parallel results
for a general skewing function π , first we give a preliminary lemma where due to Lemma 3.1
(see e.g. [28, p. 391, p. 413, and p. 394, respectively]), assertions (ii)–(iv) are the same as those
in the normal case, and the proofs of assertions (i) and (v) are standard.

Lemma 3.2 Let A and B be p × p symmetric matrices, and a and b be p × 1 vectors. Also assume
ξ = 0. Then

(i) E(a′Z) = a′q,
(ii) E(Z′AZ) = tr(A�),

(iii) E(a′ZZ′b) = a′�b,
(iv) E(Z′AZZ′BZ) = tr(A�)tr(B�) + 2 tr(A�B�),
(v) E(Z′AZa′BZ) = 2a′B�Aq + a′Bq trA(�) + tr((A ⊗ B)(Q ⊗ a′)).

By noting that Z − ξ is GSNp(0, �, π) distributed, we have the following immediate
consequence of the above lemma.

Theorem 3.2 Let A and B be p × p symmetric matrices. Then

(i) E(Z′AZ) = tr(A�) + 2ξ′Aq + ξ′Aξ,
(ii) Cov(Z′AZ, Z′BZ) = 2 tr(A�B�) + 4ξ′A�Bξ + 4ξ′(A�B + B�A)q + 2 tr((A ⊗ B)(Q ⊗ ξ′))

+ 2 tr((B ⊗ A)(Q ⊗ ξ′)) − 4ξ′Aqξ′Bq,
(iii) Var(Z′AZ) = 2 tr((A�)2) + 4ξ′A�Aξ + 8ξ′A�Aq + 4 tr((A ⊗ A)(Q ⊗ ξ′)) − 4(ξ′Aq)2.

4. Independence of a quadratic form and a linear form

Many statistics can be expressed as functions of linear and quadratic forms. In statistical inference,
it is important to be able to determine whether linear and quadratic forms in the normal random
vector are independently distributed. For instance, let Y1, Y2, . . . , Yn be a random sample from the
univariate normal distribution with mean μ and variance σ 2. It is known that the sample mean Ȳn
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6 W.-J. Huang et al.

and the sample variance S2
n are independent and can be expressed as a linear form and a quadratic

form of Y = (Y1, Y2, . . . , Yn)
′, respectively, that is

Ȳn = 1

n

n∑
i=1

Yi = 1

n
1′

nY ,

and

S2
n = 1

n − 1

n∑
i=1

(
Yi − Ȳ

)2 = 1

n − 1
Y ′

(
In − 1

n
1n1′

n

)
Y ,

where 1n = (1, 1, . . . , 1)′. Note that Y is Nn(μ1n, σ 2In) distributed. Similar investigations for
certain GSN random vectors were reported by Gupta and Huang [5], Huang and Chen [19], and
Wang et al. [16], etc.

In this section, let Z have a GSNp(ξ, �, π) distribution. Also let A and B be p × p symmetric
and p × q matrices, respectively. We now give without proof the joint m.g.f. of Z′AZ and B′Z,
which are useful for obtaining not only moments but also their independence.

Theorem 4.1 The joint m.g.f. of Z′AZ and B′Z is given by

M1(s, t) = 2 exp{sξ′Aξ + t′B′ξ + (1/2)(Bt + 2sAξ)′(�−1 − 2sA)−1(Bt + 2sAξ)}
|Ip − 2sA�|1/2

· EUs [π(Us + (�−1 − 2sA)−1(Bt + 2sAξ))], s ∈ S1, t ∈ R
q, (9)

where Us is Np(0, (�−1 − 2sA)−1) distributed and S1 = {x|�−1 − 2xA > 0, x ∈ R}.

When ξ = 0 and π(z) = �(α′z), the necessary and sufficient conditions A�B = O and
B′�α = 0 for the independence of Z′AZ and B′Z can be obtained by using Equation (9) and
along the lines of the proof of Theorem 3 of Gupta and Huang [5], where B is assumed to be a
vector. For the general case, using M1(s, t) = M1(s, 0)M1(0, t), s ∈ S1, t ∈ R

q, can yield the nec-
essary and sufficient condition for the independence of Z′AZ and B′Z. We present some examples
in the following.

Example 4.1 Assume ξ = 0 and π(z) = κ(h(z′�z)α′z), where α ∈ R
p, � is a non-negative diag-

onal matrix and h is any function defined on non-negative real numbers. If A�B = O, B′�α = 0
and B′�� = O, then Z′AZ and B′Z are independent.

Proof From Equation (9) and

(�−1 − 2sA)−1 = �

∞∑
j=0

(2s)j(A�)j, ||2sA�|| < 1,

where as usual || · || is the matrix norm, if A�B = O, B′�α = 0 and B′�� = O, it yields

M1(s, t) = exp{(1/2)t′B′�Bt}
|Ip − 2sA�|1/2

, s ∈ S1, t ∈ R
q,

which in turn implies Z′AZ and B′Z are independent.
Example 4.1 is an extension of Theorem 3.1 of Huang and Chen [19], where h(x) ≡ 1 and κ is

assumed to be an absolutely continuous c.d.f. such that the p.d.f. of κ is symmetric about 0. Note
that if h is a constant function, then the condition B′�� = O is unnecessary. It can also be seen
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that if h(x) = 1/
√

1 + x and κ(x) = �(x), the corresponding GSN distribution is that studied in
Gupta et al. [20].

The next example concerns the case ξ �= 0. The proof is similar to Example 4.1 hence is
omitted. �

Example 4.2 Assume ξ �= 0 and π(z) = κ(α′z), where α ∈ R
p. IfA�B = O and eitherA�α = 0

or B′�α = 0, then Z′AZ and B′Z are independent.

5. Independence of two quadratic forms

Quadratic forms of normal random vectors are of great importance in many branches of statistics,
such as the least-squares methods, the analysis of variance and regression analysis. Among the
related results, Cochran’s theorem is useful in proving that certain quadratic forms of a normal
vector are independently distributed as central or non-central chi-squared distributions. In this
section, again let Z have a GSNp(ξ, �, π) distribution and A1, A2 be p × p symmetric matrices.
We first give the joint m.g.f. of two quadratic forms of Z, and then investigate their independence.

Theorem 5.1 The joint m.g.f. of Z′A1Z and Z′A2Z is given by

M2(s1, s2) = 2 exp{ξ′(s1A1 + s2A2 + 2(s1A1 + s2A2)�
−1
s1,s2

(s1A1 + s2A2))ξ}
|Ip − 2s1A1� − 2s2A2�|1/2

· EUs1,s2
[π(Us1,s2 + 2�−1

s1,s2
(s1A1 + s2A2)ξ], (s1, s2) ∈ S2, (10)

where Us1,s2 ∼ Np(0, �−1
s1,s2

), �s1,s2 = �−1 − 2s1A1 − 2s2A2 and S2 = {(x1, x2)|�−1 − 2x1A1 −
2x2A2 > 0, x1, x2 ∈ R}.

Using M2(s1, s2) = M2(0, s2)M2(s1, 0), (s1, s2) ∈ S2, the necessary and sufficient condition
for the independence of the two quadratic forms can be obtained. When ξ = 0, according to
Lemma 3.1, we have that the distributions of quadratic forms of Z do not depend on π . Then by
Theorem 3.2 of Huang and Chen [19] the following special case of Theorem 5.1 can be obtained
immediately.

Example 5.1 Assume ξ = 0. The two quadratic forms Z′A1Z and Z′A2Z are independent if and
only if A1�A2 = O.

When ξ �= 0, by using Equation (10) and

(�−1 − 2s1A1 − 2s2A2)
−1 = �

∞∑
j=0

(2s1A1� + 2s2A2�)j, ||2s1A1� + 2s2A2�|| < 1,

we have

Example 5.2 Assume ξ �= 0 and π(z) = κ(α′z), where α ∈ R
p. If A1�A2 = O and either

A1�α = 0 or A2�α = 0, then the two quadratic forms Z′A1Z and Z′A2Z are independent.

6. Independence of two linear forms

The literature on characterizing the normal law by some natural assumptions of linear forms,
including their independence, is rather extensive. Some excellent reviews can be found in Patel
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and Read [31], Kagan and Wesołowski [32], and Kotz et al. [33].Again let Z have a GSNp(ξ, �, π)

distribution. Also let B1 and B2 be p × q and p × r matrices, respectively. As before, we give the
joint m.g.f. of two linear forms of Z to explore their independence.

Theorem 6.1 The joint m.g.f. of B′
1Z and B′

2Z is given by

M3(t1, t2) = 2 exp{ 1
2 (B1t1 + B2t2)′�(B1t1 + B2t2) + (B1t1 + B2t2)′ξ}

· EU[π(U + �(B1t1 + B2t2))], t1 ∈ R
q, t2 ∈ R

r , (11)

where U is Np(0, �) distributed.

As in Sections 4 and 5, we only study the independence of two linear forms for certain GSN
distributions.

Example 6.1 Assume π(z) = κ(α′z), where α ∈ R
p, and κ(x) is absolutely continuous and sat-

isfies limx→∞ κ(x) = l, l �= 0, 1
2 . The two linear forms B′

1Z and B′
2Z are independent if and only

if B′
1�B2 = O and either B′

1�α = 0 or B′
2�α = 0.

Proof Using M3(t1, t2) = M3(t1, 0)M3(0, t2), t1 ∈ R
q, t2 ∈ R

r , we obtain that the necessary and
sufficient condition for the independence of B′

1Z and B′
2Z is

2EU[κ(α′U + α′�B1t1)]EU[κ(α′U + α′�B2t2)]
EU[κ(α′U + α′�B1t1 + α′�B2t2)] = exp{t′1B′

1�B2t2}, (12)

for all t1 ∈ R
q, t2 ∈ R

r . Obviously, if (a) B′
1�B2 = O and (b) either B′

1�α = 0 or B′
2�α = 0,

then B′
1Z and B′

2Z are independent.
Conversely, assume that B′

1Z and B′
2Z are independent. Suppose that (b) is not true, that is

both B′
1�α �= 0 and B′

2�α �= 0. Then we can choose fixed vectors s1 ∈ R
q, s2 ∈ R

r such that
α′�B1s1 �= 0 and α′�B2s2 �= 0. Let t1 = c1s1 and t2 = c2s2, where c1, c2 ∈ R. For i = 1, 2, if
α′�Bisi > 0, then we let ci → ∞, otherwise let ci → −∞, in each case, α′�Biti tends to ∞.
Now the limit of the left-hand side of Equation (12) is 2l and the limit of the right-hand side of
Equation (12) equals 0, or 1, or ∞. The contradiction implies (b) is true. Applying Lemma 3.2, it
can be obtained that

Cov(B′
1Z, B′

2Z) = B′
1�B2 − 4(EU(g(α′U)))2B′

1�αα′�B2,

where U is Np(0, �) distributed and g(x) is the derivative of κ(x). In view of (b) and the indepen-
dence of B′

1Z and B′
2Z implies Cov(B′

1Z, B′
2Z) = O, it turns out B′

1�B2 = O, which completes
the proof. �

The proof of the following example is similar to Example 4.1. Note that if h is a constant
function, then the condition B′

2�� = O is unnecessary.

Example 6.2 Assume π(z) = κ(h(z′�z)α′z), where α ∈ R
p, � is a non-negative diagonal matrix

and h is any function defined on non-negative real numbers. If B′
1�B2 = O, B′

2�α = 0 and
B′

2�� = O, then B′
1Z and B′

2Z are independent.
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7. Some special GSN models

From Theorems 2.1, 4.1, 5.1, and 6.1, we see that marginal distributions or each m.g.f. of linear
and quadratic forms for the GSNp(ξ, �, π) distribution has a factor of the form as follows:

EV(π(V + b)), (13)

where b ∈ R
p and V is Np(0, �) distributed. Furthermore, Equation (13) can be used to derive

q and Q given in Equation (6), which consist in the first four moments of the GSNp(ξ, �, π)

distribution and the first two moments of its quadratic forms as mentioned in Theorems 3.1–3.2.
In this section, we present explicit forms of Equation (13), q and Q for some examples of π(z).

Example 7.1 Suppose π(z) = �(α′z). From Zacks [34, pp. 53–59], we have

EV(�(α′V + α′b)) = �

(
α′b

(α′�α + 1)1/2

)
. (14)

Letting b = �t, � = � and then taking derivatives with respect to t in Equation (14) yields that

q =
√

2

π

1

(α′�α + 1)1/2
· �α,

Q = −
√

2

π

1

(α′�α + 1)3/2
· (�α) ⊗ (�α) ⊗ (�α)′.

Example 7.2 Suppose π(z) = G1(α
′z), where G1 is the c.d.f. of the Laplace distribution, namely

G1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 − 1

2
exp

{
− x

γ

}
, x ≥ 0,

1

2
exp

{
x

γ

}
, x < 0,

where γ > 0. By routine computations, we have

EV(G1(α
′V + α′b)) = 1

2
exp

{
α′�α + 2γα′b

2γ 2

}
�

(−γα′b − α′�α

γ (α′�α)1/2

)

+ �

(
α′b

(α′�α)1/2

)
− 1

2
exp

{
α′�α − 2γα′b

2γ 2

}
�

(
γα′b − α′�α

γ (α′�α)1/2

)
,

(15)

which is a slight generalization of Lemma 5.1 of Huang and Chen [19]. Again letting b = �t,
� = � and then taking derivatives with respect to t in Equation (15) yields

q =
{

2

γ
exp

{
α′�α

2γ 2

} [
�

(
(α′�α)1/2

γ

)
− γ

(α′�α)1/2
φ

(
(α′�α)1/2

γ

)]
+ (2/π)1/2

(α′�α)1/2

}
· �α,

Q =
{

2

γ 3
exp

{
α′�α

2γ 2

} [
�

(
− (α′�α)1/2

γ

)
+ γ 3 − γα′�α

(α′�α)3/2
φ

(
(α′�α)1/2

γ

)]
− (2/π)1/2

(α′�α)3/2

}

· (�α) ⊗ (�α) ⊗ (�α)′.
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Example 7.3 Suppose π(z) = G2(α
′z), where G2 is the c.d.f. of the logistic distribution, namely

G2(x) = 1

1 + exp{−x/δ} , −∞ < x < ∞, (16)

where δ > 0. Using the Taylor series expansion for (1 + z)−1, we obtain

EV(G2(α
′V + α′b)) =

∞∑
j=0

(−1

j

) [
exp

{
− jα′b

δ
+ j2α′�α)

2δ2

}
�

(
δα′b − jα′�α

δ(α′�α)1/2

)

+ exp

{
( j + 1)α′b

δ
+ ( j + 1)2α′�α)

2δ2

}
�

(
−δα′b + ( j + 1)α′�α

δ(α′�α)1/2

)]
.

By a similar argument as in Example 7.2, it yields that

q =
⎧⎨
⎩4

∞∑
j=1

( −1
j − 1

)
exp

{
j2α′�α

2β2

} [
j

δ
�

(
− j(α′�α)1/2

δ

)
− 1

(α′�α)1/2
φ

(
j(α′�α)1/2

δ

)]

+
√

2

π

1

(α′�α)1/2

⎫⎬
⎭ · �α,

Q =
⎧⎨
⎩ 4

∞∑
j=1

( −1
j − 1

)
exp

{
j2α′�α

2δ2

} [(
1

(α′�α)3/2
− j2

δ2(α′�α)1/2

)
φ

(
j(α′�α)1/2

δ

)

+ j3

δ3
�

(
− j(α′�α)1/2

δ

)]
−

√
2

π

1

(α′�α)3/2

}
· (�α) ⊗ (�α) ⊗ (�α)′.

Example 7.4 Suppose π(z) = G3(α
′z), where G3 is the c.d.f. of the uniform distribution, namely

G3(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, x ≥ θ ,

(θ + x)

(2θ)
, −θ ≤ x < θ ,

0, x < −θ ,

(17)

where θ > 0. It can be obtained that

EV(G3(α
′V + α′b)) = α′b + θ

2θ
�

(
α′b + θ

(α′�α)1/2

)
− α′b − θ

2θ
�

(
α′b − θ

(α′�α)1/2

)

+ (α′�α)1/2

2θ

(
φ

(
α′b + θ

(α′�α)1/2

)
− φ

(
α′b − θ

(α′�α)1/2

))
.

Again we have that

q = 1

θ

{
2�

(
θ

(α′�α)1/2

)
− 1

}
· �α,

Q = − 2

(α′�α)3/2
φ

(
θ

(α′�α)1/2

)
· (�α) ⊗ (�α) ⊗ (�α)′.
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Remark 7.1 It can be seen that for each of the above four examples Q has the following form

C · (�α) ⊗ (�α) ⊗ (�α)′,

where C is a scalar. Hence the term tr((A ⊗ B)(Q ⊗ ξ′)) in assertions of Lemma 3.2 and
Theorem 3.2 with π(z) = κ(α′z), where α ∈ R

p and κ is a c.d.f. which comes from one of the
normal, Laplace, logistic or uniform distribution, will have an elegant explicit form by showing
that

tr((A ⊗ B)((�α) ⊗ (�α) ⊗ (�α)′ ⊗ ξ′)) = α′�A�αξ′B�α.

Finally, the reason that we do not consider the case of G4(α
′z), where G4 is the c.d.f. of the

Student’s t distribution, which is also studied in Nadarajah and Kotz [35] and Arellano-Valle
et al. [36], is that the closed form of Equation (13) cannot be obtained in our situation.
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