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Abstract Given two independent non-degenerate positive random variables X and
Y , Lukacs (Ann Math Stat 26:319–324, 1955) proved that X/(X + Y ) and X + Y are
independent if and only if X and Y are gamma distributed with the same scale param-
eter. In this work, under the assumption X/U and U are independent, and X/U has
a Be(p, q) distribution, we characterize the distribution of (U, X) by the condition
E(h(U − X)|X) = b, where h is allowed to be a linear combination of exponen-
tial functions. Since the assumption for X and U above is equivalent to X |U being
Be(p, 1) scaled by U , hence our results can be viewed as identification of a power
distribution mixture.
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1 Introduction

It is known that if X and Y are independent gamma random variables (rvs) with the
same scale parameter, i.e. X has a �(p, r) distribution, Y has a �(q, r) distribution,
for some constants p, q, r > 0, then the two rvs
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X + Y and
X

X + Y

are mutually independent and have �(p + q, r) and Be(p, q) distributions, respec-
tively. Here the notation �(p, r), p, r > 0, and Be(p, q), p, q > 0, denote the
gamma distribution and beta distribution having the probability density functions (pdf)

f1(x) = x p−1e−x/r

�(p)r p
, x > 0,

and

f2(x) = �(p + q)

�(p)�(q)
x p−1(1 − x)q−1, 0 < x < 1,

respectively, where �(·) is the gamma function defined by

�(t) =
∞∫

0

xt−1e−x dx, t > 0.

Lukacs (1955) showed that the above property can be used to characterize the
gamma distributions in the following sense. If X and Y are independent non-degen-
erate positive rvs and X + Y and X/(X + Y ) are mutually independent, then X and
Y must have gamma distributions with the same scale parameter, but possibly with
different values of the shape parameter.

By setting U = X + Y and W = X/(X + Y ) in Lukacs type characterization,
we obtain another form of characterization using the independence of U and W , and
independence of U W and U (1− W ). Note that X = U W , both X and U have gamma
distributions, and W has beta distribution in this case.

Under the condition X and Y are independent, Bolger and Harkness (1965), Hall
and Simons (1969), Wesolowski (1989, 1990), Li et al. (1994), Huang and Su (1997),
Bobecka and Wesolowski (2002), Chou and Huang (2003), Huang and Chou (2004)
and many others characterized the distribution of X and Y by weakening the indepen-
dence of X + Y and X/(X + Y ) to the so-called constant regression.

Instead of weakening the independence condition of X/(X +Y ) and X +Y , weak-
ening the independence of X and Y , and replacing the independence of X/(X + Y )

and X + Y by the stronger assumption: X/U and U are independent and X/U is
Be(p, q) distributed, Gupta and Wesolowski (1997, 2001), Huang and Wong (1998),
Huang and Liu (2006), and Huang and Chang (2007) characterized the distribution
of U by using E(h(U, X)|X) = b, where h(U, X) is some function of (U, X) and
b is a constant. In particular, Huang and Chang (2007) proved if q = 1, and for
some integer n ≥ 1, E(

∑n
i=1 ai (U − X)i |X) = b, where a1, . . . , an, b, are real

constants such that a2
1 + · · · + a2

n �= 0 and b �= 0, or for some real number n > 0,
E((U − X)n|X) = b, where b > 0 is a constant, then the distribution of (U, X) can
be determined. Recently, other related works of Lukacs characterization were done by
Bobecka and Wesolowski (2008) and Meszaros (2010).
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Identification of power distribution mixtures

In this work, under the assumption X/U and U are independent and X/U is
Be(p, 1) distributed, we characterize the distribution of (U, X) by E(h(U −X)|X) =
b, where h is a linear combinations of exponential functions. Since the assumption for
X and U above is equivalent to X |U being Be(p, 1) scaled by U , hence our results
can be viewed as identification of a power distribution mixture.

2 Preliminaries

Let (X, Y ) have the pdf

fX, Y (x, y) =
k∑

i=1

ci
x p−1e−x/ri

�(p)r p
i

yq−1e−y/ri

�(q)rq
i

, x, y > 0, (1)

where k ≥ 1, p, q > 0, r1, . . . , rk > 0, c1, . . . , ck > 0,
∑k

i=1 ci = 1. The dis-
tribution of (X, Y ) is the mixture of k distributions F1(x, y), . . . , Fk(x, y), where
Fi (x, y), i = 1, . . . , k, is the joint distribution function (df) of two independent rvs
with �(p, ri ), and �(q, ri ) distributions, respectively. Obviously when (X, Y ) has
the pdf given in (1), then both the marginal distributions of X and Y are also mixed
gamma distributions. Let U = X + Y , and W = X/(X + Y ). Then it is easy to see
that the pdf of (U, W ) is

fU, W (u, w) =
(

k∑
i=1

ci
u p+q−1e−u/ri

�(p + q)r p+q
i

)
�(p + q)

�(p)�(q)
w p−1(1 − w)q−1,

0 < u < ∞, 0 < w < 1.

Hence for the mixed case, U and W are still independent, the distribution of U is the
mixture of k distributions �(p + q, r1), . . . , �(p + q, rk), and W has a Be(p, q)

distribution. This is an example for X/(X + Y ) and X + Y being independent, and
X/(X + Y ) has a beta distribution, yet X and Y are not independent and neither of the
marginal distribution of X and Y is gamma.

Conversely let X and U be two rvs. Assume X/U and U are independent, and
X/U is Be(p, q) distributed. Then (X, U ) has the pdf

fX, U (x, u) = �(p + q)

�(p)�(q)
x p−1u1−p−q(u − x)q−1 fU (u), 0 < x < u < T ≤ ∞,

(2)

where fU (u), 0 < u < T , is the pdf of U , T = inf{u : FU (u) = 1}, and FU (u),
u ∈ R, is the df of U . From (2), the marginal pdf of X , and the conditional pdf of U
given X can be determined while knowing fU . That is

fX (x) = �(p + q)

�(p)�(q)
x p−1

T∫

x

u1−p−q(u − x)q−1 fU (u)du, 0 < x < T,
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and

fU |X (u|x) = u1−p−q(u − x)q−1 fU (u)∫ T
x u1−p−q(u − x)q−1 fU (u)du

, 0 < x < u < T . (3)

For example,

(i) if U has a �(p + 1, r) distribution, then X has a �(p, r) distribution;
(ii) if

fU (u) =
k∑

i=1

mi∑
j=1

ci j
u p+ j−1e−u/ri

�(p + j)r p+ j
i

, 0 < u < ∞,

where
∑k

i=1
∑mi

j=1 ci j = 1, such that fU (u) ≥ 0, 0 < u < ∞, then

fX (x) =
k∑

i=1

mi∑
j=1

ci j
x p+ j−2e−x/ri

�(p + j − 1)r p+ j−1
i

, 0 < x < ∞.

The above two distributions of U play important roles in the next section.

3 Main results

Throughout this section, assume X/U and U are independent and X/U is Be(p, 1)

distributed, p > 0. As pointed out in Sect. 2, once the distribution of U is determined,
then the distribution of X is determined too. So we only present the solution of U in
each of the following theorem. Theorem 1 below can be proved along the lines of the
more general Theorem 2. For the sake of completeness, we state without proving the
theorem.

Theorem 1 Assume

E(eα(U−X)|X) = b (4)

holds for real constants α �= 0 and b > 0. Assume additionally that fU (u) is contin-
uous with support [0, T ], where 0 < T ≤ ∞. Then T = ∞, α(b − 1) > 0 and U is
�(p + 1, (b − 1)/(αb)) distributed.

In order to prove Theorem 2, we need the following Lemma, which gives necessary
and sufficient conditions for some linear combinations of gamma distributed pdfs to
be a pdf.

Lemma 1 (i) Let p > 0, 0 < r < s and c1 + c2 = 1. Then

f3(u) = c1
u p−1e−u/r

�(p)r p
+ c2

u p−1e−u/s

�(p)s p
, 0 < u < ∞, (5)
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is a pdf if and only if

0 ≤ c2 ≤ s p

s p − r p
. (6)

(ii) Let p > q > 0, r ≥ s > 0 and c1 + c2 = 1. Then

f4(u) = c1
u p−1e−u/r

�(p)r p
+ c2

uq−1e−u/s

�(q)sq
, 0 < u < ∞,

is a pdf if and only if 0 ≤ c2 ≤ 1.

Proof (i) First we show the sufficiency. That
∫ ∞

0 f3(u)du = 1 is obvious. We now
prove f3(u) ≥ 0, 0 < u < ∞. From (6), we obtain

c2

s p
≥ c2 − 1

r p
.

Consequently,

c2

s p
≥ (c2 − 1)e−(1/r−1/s)u

r p
, 0 < u < ∞, (7)

which is equivalent to

(1 − c2)
u p−1e−u/r

�(p)r p
+ c2

u p−1e−u/s

�(p)s p
≥ 0, 0 < u < ∞,

as desired.
Next we show the necessity. Being a pdf, f3(u) ≥ 0, 0 < u < ∞, hence (7) holds.

If c2 < 0, then (7) in turn implies

(1 − c2)e−(1/r−1/s)u

r p
> − c2

s p
≥ 0, 0 < u < ∞. (8)

As s > r and 1 − c2 > 0, the left side of (8) tends to 0 as u → ∞. The contradiction
implies c2 ≥ 0. On the other hand, assume c2 can be greater than s p/(s p − r p).
It turns out that there exists some h > 0, such that (5) can be a pdf when c2 =
(s p + h)/(s p − r p). Substituting this c2 into (7), yields

r ps p + r ph ≥ (r ps p + s ph)e−(1/r−1/s)u, 0 < u < ∞. (9)

As u → 0, the right side of (9) tends to r ps p + s ph, which is greater than the left side
of (9). The contradiction implies c2 ≤ s p/(s p − r p). This completes the proof of (i).

(ii) The sufficiency is obvious, we only need to prove the necessity. Being a pdf,
f4(u) ≥ 0, 0 < u < ∞, hence

(1 − c2)�(q)squ p−qe−(1/r−1/s)u + c2�(p)r p ≥ 0, 0 < u < ∞. (10)
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As p > q, r ≥ s, if c2 > 1, the left side of (10) tends to −∞ as u → ∞; if c2 < 0,
the left side of (10) tends to c2�(p)r p < 0 as u → 0. Consequently, 0 ≤ c2 ≤ 1. This
completes the proof of (ii). �	

An extension of Theorem 1 is to characterize the distribution of U by using

E(a1eα1(U−X) + a2eα2(U−X)|X) = b, (11)

where a1, a2, α1, α2 and b are real constants. Note that if a1 > 0, α1 �= 0, a2 = 0
and b > 0, then (11) reduces to (4) with the constant b in (4) being replaced by b/a1.
Therefore, in the following Theorem 2, the previous case will not be considered.

Theorem 2 Assume (11) holds for α1α2a1a2 �= 0 and b ≥ 0. Assume additionally
that fU (u) is continuous with support [0, T ], where 0 < T ≤ ∞. Then only the
following cases are possible:

(i) b = 0.

Then T = ∞ and U is �(p + 1, (a1 + a2)/(α1a2 + α2a1)) distributed, where
a1a2 < 0, (α1 − α2)(a1 + a2)a2 > 0 and (α1a2 + α2a1)(a1 + a2) > 0;

(ii) b > 0 and a1 + a2 = b.

Then T = ∞ and U is �(p + 1, (α1a1 + α2a2)/(α1α2(a1 + a2))) distributed,

where (α1a1 + α2a2)α1α2 > 0;
(iii) b > 0 and a1 + a2 �= b.

Let the equation

(b − a1 − a2)x2 + ((α1 + α2)b − α2a1 − α1a2)x + α1α2b = 0

have real roots −1/r and −1/s, where −1/r ≤ −1/s. Then T = ∞ and

(1) if −1/r < 0 and 1/s > 0, then U is �(p + 1, r) distributed;
(2) if −1/r < −1/s < 0, then

fU (u) = c1
u pe−u/r

�(p + 1)r p+1 + c2
u pe−u/s

�(p + 1)s p+1 , 0 < u < ∞,

where 0 ≤ c2 ≤ s p/(s p − r p) and c1 + c2 = 1;
(3) if −1/r = −1/s < 0, then

fU (u) = c1
u pe−u/r

�(p + 1)r p+1 + c2
u p+1e−u/r

�(p + 2)r p+2 , 0 < u < ∞,

where c1, c2 ≥ 0 and c1 + c2 = 1.

Proof Observe that it follows immediately for X/U being Be(p, 1) distributed, sup-
port (X) = [0, T ] ⊂ [0, ∞) (if T = ∞, then we write [0, T ) instead of [0, T ]), and
inf{u : FU (u) = 1} = T . Note also that since X ≤ U , a.s., if T < ∞, it follows that

E(a1eα1(U−T ) + a2eα2(U−T )|X = T ) = a1 + a2. (12)

123



Identification of power distribution mixtures

By letting g(u) = u−p fU (u), u > 0, (3) and (11) imply

T∫

x

a1e
α1(u−x)g(u)du +

T∫

x

a2e
α2(u−x)g(u)du = b

T∫

x

g(u)du, 0 < x < T .

(13)

(i) b = 0. From (13), it yields a1a2 < 0. Taking the derivatives of both sides of
(13) with respect to x , we obtain

(α1 − α2)a2

T∫

x

eα2(u−x)g(u)du = (a1 + a2)g(x), 0 < x < T . (14)

Obviously, (α1 −α2)(a1 +a2)a2 > 0. Suppose T < ∞. From (11) and (12) we obtain
the contradiction a1 + a2 = b = 0. Hence T = ∞. Again taking the derivatives of
both sides of (14) with respect to x , we obtain

(a1 + a2)g
′(x) + (α1a2 + α2a1)g(x) = 0, 0 < x < ∞. (15)

Obviously, α1a2 + α2a1 �= 0 follows. Now solving (15) yields

g(x) = ke−(α1a2+α2a1)x/(a1+a2), 0 < x < ∞,

where k > 0 is a constant, and then

fU (u) = ku pe−(α1a2+α2a1)u/(a1+a2), 0 < u < ∞.

Consequently, the assertion (i) can be obtained immediately.
(ii) b > 0 and a1 + a2 = b. After taking the derivatives of both sides of (13) with

respect to x twice, we obtain

α1α2 (a1 + a2)

T∫

x

g(u)du = (α1a1 + α2a2) g(x), 0 < x < T . (16)

It yields that (α1a1 + α2a2)α1α2 > 0. Again taking the derivatives of both sides of
(16) with respect to x , it arrives at

(α1a1 + α2a2)g
′(x) + α1α2(a1 + a2)g(x) = 0, 0 < x < T,

which yields the solution

g(x) = ke−α1α2(a1+a2)x/(α1a1+α2a2), 0 < x < T, (17)
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where k > 0 is a constant. Substituting (17) into (16) for T < ∞, we have

k(α1a1 + α2a2)e
−α1α2(a1+a2)T/(α1a1+α2a2) = 0, 0 < x < T,

and, consequently, k = 0. Hence T cannot be finite. Therefore, (17) in turn implies

fU (u) = ku pe−α1α2(a1+a2)u/(α1a1+α2a2), 0 < u < ∞.

This proves the assertion (ii).
(iii) b > 0 and a1 + a2 �= b. Suppose T < ∞. Again from (11) and (12), we

obtain the contradiction a1 + a2 = b. Hence T = ∞. After taking the derivatives
of both sides of (13) with respect to x three times, we obtain the second order linear
homogeneous differential equation

(b−a1−a2)g
′′(x)+(bα1+bα2−α1a2−α2a1)g

′(x)+α1α2bg(x)=0, 0< x <∞.

The remainder of the proof of assertion (iii) is straightforward hence is omitted. �	

A natural extension is to use

E(a1eα1(U−X) + a2eα2(U−X) + a3eα3(U−X)|X) = b, (18)

where a1, a2, a3, α1, α2, α3 and b are real constants, to determine the distribution
of U .

Theorem 3 Assume (18) holds for α1α2α3a1a2a3 �= 0 and b ≥ 0. Assume addition-
ally that fU (u) is continuous with support [0, T ], where 0 < T ≤ ∞. Then only the
following cases are possible:

(i) b = 0.

Let the equation

(a1 + a2 + a3)x2 + (α1a2 + α2a1 + α1a3 + α3a1 + α2a3 + α3a2)x

+α1α2a3 + α1α3a2 + α2α3a1 = 0

have real roots −1/r1 and −1/s1, where −1/r1 ≤ −1/s1. Then T = ∞ and

(1-1) if −1/r1 < 0 and 1/s1 > 0,then U is �(p + 1, r1) distributed;
(1-2) if −1/r1 < −1/s1 < 0, then

fU (u) = c1
u pe−u/r1

�(p + 1)r p+1
1

+ c2
u pe−u/s1

�(p + 1)s p+1
1

, 0 < u < ∞,

where 0 ≤ c2 ≤ s p
1 /(s p

1 − r p
1 ) and c1 + c2 = 1;
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(1-3) if −1/r1 = −1/s1 < 0, then

fU (u) = c1
u pe−u/r1

�(p + 1)r p+1
1

+ c2
u p+1e−u/r1

�(p + 2)r p+2
1

, 0 < u < ∞,

where c1, c2 ≥ 0 and c1 + c2 = 1.

(ii) b > 0 and a1 + a2 + a3 = b.

For α1a1 + α2a2 + α3a3 �= 0, let the equation

(α1a1 + α2a2 + α3a3)x2 + (α1α2a1 + α1α2a2 + α1α3a1 + α1α3a3

+α2α3a2 + α2α3a3)x + α1α2α3(a1 + a2 + a3) = 0

have real roots −1/r2 and −1/s2, where −1/r2 ≤ −1/s2. Then T = ∞ and

(2-1) if −1/r2 < 0 and 1/s2 > 0, then U is �(p + 1, r2) distributed;
(2-2) if −1/r2 < −1/s2 < 0, then

fU (u) = c1
u pe−u/r2

�(p + 1)r p+1
2

+ c2
u pe−u/s2

�(p + 1)s p+1
2

, 0 < u < ∞,

where 0 ≤ c2 ≤ s p
2 /(s p

2 − r p
2 ) and c1 + c2 = 1;

(2-3) if −1/r2 = −1/s2 < 0, then

fU (u) = c1
u pe−u/r2

�(p + 1)r p+1
2

+ c2
u p+1e−u/r2

�(p + 2)r p+2
2

, 0 < u < ∞,

where c1, c2 ≥ 0 and c1 + c2 = 1.

For α1a1+α2a2+α3a3 = 0,U is �(p+1, β) distributed, where β = (α1α2a1+
α1α2a2 + α1α3a1 + α1α3a3 + α2α3a2 + α2α3a3)/α1α2α3(a1 + a2 + a3) > 0.

(iii) b > 0 and a1 + a2 + a3 �= b.

Let the equation

(b − a1 − a2 − a3)x3 − (α1a2 + α1a3 + α2a1 + α2a3 + α3a1 + α3a2

− (α1 + α2 + α3)b)x2 + ((α1α2 + α1α3 + α2α3)b − α1α2a3

−α1a2α3−a1α2α3)x + α1α2α3b=0

have roots −1/r3, −1/s3 and −1/t3, where −1/r3 ≤ −1/s3 ≤ −1/t3 if all are
real numbers. Then T = ∞ and

(3-1) if −1/r3 < 0 and −1/t3 ≥ −1/s3 > 0, or −1/t3 and −1/s3 are nonreal,
then U is �(p + 1, r3);

(3-2) if −1/r3 < −1/s3 < 0 and −1/t3 > 0, then

fU (u) = c1
u pe−u/r3

�(p + 1)r p+1
3

+ c2
u pe−u/s3

�(p + 1)s p+1
3

, 0 < u < ∞,

where 0 ≤ c2 ≤ s p
3 /(s p

3 − r p
3 ) and c1 + c2 = 1;
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(3-3) if −1/r3 = −1/s3 < 0 and −1/t3 > 0, then

fU (u) = c1
u pe−u/r3

�(p + 1)r p+1
3

+ c2
u p+1e−u/r3

�(p + 2)r p+2
3

, 0 < u < ∞,

where c1, c2 ≥ 0 and c1 + c2 = 1;
(3-4) if −1/r3 < −1/s3 < −1/t3 < 0, then

fU (u)=c1
u pe−u/r3

�(p + 1)r p+1
3

+c2
u pe−u/s3

�(p + 1)s p+1
3

+c3
u pe−u/t3

�(p + 1)t p+1
3

, 0<u <∞,

where c1 + c2 + c3 = 1, such that fU (u) > 0, 0 < u < ∞;
(3-5) if −1/r3 = −1/s3 < −1/t3 < 0, then

fU (u)=c1
u pe−u/r3

�(p + 1)r p+1
3

+c2
u p+1e−u/r3

�(p + 2)r p+2
3

+c3
u pe−u/t3

�(p + 1)t p+1
3

, 0<u <∞,

where c1 + c2 + c3 = 1, such that fU (u) > 0, 0 < u < ∞;
(3-6) if −1/r3 < −1/s3 = −1/t3 < 0, then

fU (u)=c1
u pe−u/r3

�(p + 1)r p+1
3

+c2
u pe−u/s3

�(p + 1)s p+1
3

+c3
u p+1e−u/s3

�(p + 2)s p+2
3

, 0<u <∞,

where c1 + c2 + c3 = 1, such that fU (u) > 0, 0 < u < ∞;
(3-7) if −1/r3 = −1/s3 = −1/t3 < 0, then

fU (u)=c1
u pe−u/r3

�(p + 1)r p+1
3

+c2
u p+1e−u/r3

�(p + 2)r p+2
3

+c3
u p+2e−u/r3

�(p + 3)r p+3
3

, 0<u <∞,

where c1 + c2 + c3 = 1, such that fU (u) > 0, 0 < u < ∞.

Proof Again if T < ∞, then

E(a1eα1(U−T ) + a2eα2(U−T ) + a3eα3(U−T )|X = T ) = a1 + a2 + a3. (19)

By letting g(u) = u−p fU (u), u > 0, (3) and (18) imply

a1

T∫

x

eα1(u−x)g(u)du + a2

T∫

x

eα2(u−x)g(u)du + a3

T∫

x

eα3(u−x)g(u)du

= b

T∫

x

g(u)du, 0 < x < T . (20)

(i) b = 0. Suppose T < ∞. Then (18) and (19) imply a1 + a2 + a3 = b = 0.
Taking the derivatives of both sides of (20) with respect to x twice yields

(α1 − α3)(α2 − α3)(a1 + a2)

T∫

x

eα3(u−x)g(u)du = A1g(x), 0 < x < T, (21)
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where A1 = α1a1+α2a2−α3a1−α3a2. It follows (α1−α3)(α2−α3)(a1+a2)A1 > 0.

Again taking the derivatives of both sides of (21) with respect to x yields

A1g′(x) + B1g(x) = 0, 0 < x < T, (22)

where B1 = α1α2a1 + α1α2a2 − α1α3a2 − α2α3a1. Obviously, B1 �= 0. Hence

g(x) = ke−A1x/B1 , 0 < x < T, (23)

where k > 0 is a constant. Substituting (23) into (21), we find e(α3−B1/A1)T = 0, 0 <

x < T, which contradicts the assumption T < ∞. Hence T = ∞. Now taking the
derivatives of both sides of (20) with respect to x three times yields

(a1 + a2 + a3)g
′′(x) + (α1a2 + α2a1 + α1a3 + α3a1 + α2a3 + α3a2)g

′(x)

+ (α1α2a3 + α1α3a2 + α2α3a1)g(x) = 0, 0 < x < ∞.

The remainder of the proof of assertion (i) is straightforward hence is omitted.
(ii) b > 0 and a1 + a2 + a3 = b. Taking the derivatives of both sides of (20) with

respect to x twice yields

α1α2 (a1 + a2 + a3)

T∫

x

g(u)du − (α2 − α3) (α1a3 − α3a3) e−α3x

T∫

x

eα3u g(u)du

= (α1a1 + α2a2 + α3a3) g(x), 0 < x < T, (24)

and then taking the derivatives of both sides of (24) with respect to x yields

C2

T∫

x

g(u)du = A2g′(x) + B2g(x), 0 < x < T, (25)

where A2 = α1a1 + α2a2 + α3a3, B2 = α1α2a1 + α1α2a2 + α1α3a1 + α1α3a3 +
α2α3a2 +α2α3a3 and C2 = α1α2α3(a1 +a2 +a3). Finally after taking the derivatives
of both sides of (25) with respect to x , we obtain

A2g′′(x) + B2g′(x) + C2g(x) = 0, 0 < x < T, (26)

which yields the solution

g(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1e
−B2+

√
B2

2 −4A2C2
2A2

x + k2e
−B2−

√
B2

2 −4A2C2
2A2

x
, if A2 �= 0, B2

2 − 4A2C2 > 0;
k3e

− B2
2A2

x + k4xe
− B2

2A2
x
, if A2 �= 0, B2

2 − 4A2C2 = 0;
k5e

− C2
B2

x
, if A2 = 0.

(27)
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where k1, . . . , k5 are constants. For A2 = 0, substituting g(x) as in (27) into (25)
yields k5 B2e−C2T/B2 = 0, 0 < x < T . This in turn implies that T = ∞. Similarly,
for each of the other two situations in (27), by substituting g(x) into (24), will also
lead to T = ∞. Having obtained T = ∞, the remainder of the assertions in (ii) follow
immediately.

(iii) b > 0 and a1 + a2 + a3 �= b. Again if T < ∞, then (18) and (19) lead to
a1 + a2 + a3 = b. This contradiction implies T = ∞. Taking the derivatives of both
sides of (20) with respect to x four times yields the third order linear homogeneous
differential equation

(b − a1 − a2 − a3)g
′′′(x) − (α1a2 + α1a3 + α2a1 + α2a3 + α3a1 + α3a2

− (α1 + α2 + α3)b)g′′(x) + ((α1α2 + α1α3 + α2α3)b − α1α2a3 − α1a2α3

− a1α2α3)g
′(x) + α1α2α3bg(x) = 0, 0 < x < ∞.

The remainder of the proof of assertion (iii) is straightforward hence is omitted. �	
Remark 1 It is known that every cubic equation of the form

Ax3 + Bx2 + Cx + D = 0, (28)

where A �= 0, B, C, D are real constants, has at least one real root. Denote the
discriminant of (28) by

� = 18ABC D − 4B3 D + B2C2 − 4AC3 − 27A2 D2. (29)

Then (29) can be used to distinguish the nature of the roots that (28) has three distinct
real roots if � > 0; a multiple root and all its roots are real if � = 0; one real root
and two nonreal complex conjugate roots if � < 0.

Remark 2 As in Lemma 1, it is desired to investigate necessary and sufficient condi-
tions for linear combinations of three gamma distributed pdfs which appear in Theo-
rem 3 to be a pdf. Similar to Theorem 2, in Case (iii) of Theorem 3, the coefficients
c1, c2 and c3 do not need to satisfy 0 ≤ c1, c2, c3 ≤ 1. We give example for each
situation below.

(i) Let c1 = −3/5, c2 = 3/2, c3 = 1/10, p = 0, r3 = 1, s3 = 2, t3 = 3 in
assertion (3-4), then

fU (u) = −3

5
e−u + 3

2

(
1

2
e− u

2

)
+ 1

10

(
1

3
e− u

3

)
> 0, 0 < u < ∞; (30)

(ii) Let c1 = −1/20, c2 = 9/10, c3 = 3/20, p = 0, r3 = s3 = 1, t3 = 3 in
assertion (3-5), then

fU (u) = − 1

20
e−u + 9

10
ue−u + 3

20

(
1

3
e− u

3

)
> 0, 0 < u < ∞; (31)
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(iii) Let c1 = −1/20, c2 = 9/10, c3 = 3/20, p = 0, r3 = 1, s3 = t3 = 3 in
assertion (3-6), then

fU (u)=− 1

20
e−u + 9

10

(
1

3
e− u

3

)
+ 3

20

(
1

9
ue− u

3

)
> 0, 0 < u < ∞; (32)

(iv) Let c1 = 3/10, c2 = −1, c3 = 17/10, p = 0, r3 = s3 = t3 = 1 in assertion
(3-7), then

fU (u) = 3

10
e−u − ue−u + 17

10

(
1

2
u2e−u

)
> 0, 0 < u < ∞. (33)

However, we do not have a lemma which is parallel to Lemma 1 for linear combinations
of three gamma distributed pdfs to be a pdf.

Inspired by the previous theorems, it is natural to ask whether

E

(
n∑

i=1

ai e
i(U−X)|X

)
= b

can be used to determine the distributions of U . The general case is too cumbersome,
for the special case a1 = · · · = an = 1 and b > n, a characterization can be obtained.
We omit the statement of this result.

In Huang and Chang (2007), they also used the condition E((U − X)n|X) = b to
characterize the distribution of U . For our present situation, it is easy to see that the
solution of U of E(en(U−X)|X) = b, can be obtained immediately from the solution
of E(eU−X |X) = b. We omit the details here. In Theorem 2, along the lines of the
present proof, it can be shown the result still holds, if α1, α2, a1, a2 are allowed to
be complex numbers such that α1α2, a1a2, α1 +α2, a1 + a2 and α2a1 +α1a2 are real
numbers (b is still a real number). Then by letting α1 = i, α2 = −i, a1 = −i/2 and
a2 = i/2, we have the following consequence immediately.

Corollary 1 Assume

E(sin(U − X)|X) = b (34)

holds for constant b > 0. Assume additionally that fU (u) is continuous with the
support [0, T ], where 0 < T ≤ ∞. Let the equation

bx2 + x + b = 0 (35)

have roots −1/r = (−1 − √
1 − 4b2)/2b and −1/s = (−1 + √

1 − 4b2)/2b. Then
T = ∞ and there are only the following possible cases:

(i) if 0 < b < 1/2, then

fU (u) = c1
u pe−u/r

�(p + 1)r p+1 + c2
u pe−u/s

�(p + 1)s p+1 , 0 < u < ∞, (36)

where 0 ≤ c2 ≤ s p+1/(s p+1 − r p+1) and c1 + c2 = 1.
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(ii) if b = 1/2, then

fU (u) = c1
u pe−u/r

�(p + 1)r p+1 + c2
u p+1e−u/r

�(p + 2)r p+2 , 0 < u < ∞,

where c1, c2 ≥ 0 and c1 + c2 = 1.

We omit the statement of a similar characterizing result based on E(cos(U −
X)|X) = b.

4 Conclusion

In this work, we characterized the distribution of (U, X) by E(h(U − X)|X) = b,
where h is allowed to be an exponential or trigonometric function of U − X . It is
expected that there are some other functions of h(U, X) can be used to characterize
the distribution of (U, X).

For example, in Theorem 1, let α = 1, then (4) becomes E(eU−X |X) = b, or
E(eU |X) = beX . This is a special form of E(eU |X) = aeX + b. It can be shown the
distribution of (U, X) can be determined under the assumption E(eU |X) = aeX + b.
We omit the details here.
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