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Abstract

Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics from independent and identically dis-
tributed random variables {Xi, 1 ≤ i ≤ n} with a common absolutely continuous distribution
function. We investigate characterizations of distributions by using equality and linearity
of E(X2

(1) − (ηX(2) +θ)X(1)|X(2)) and E(X2
(n) − (ηX(n−1) + θ)X(n)|X(n−1)), respectively,

where η and θ are constants. It turns out a large class of distributions can be characterized.
In particular, many important distributions, such as normal, gamma, exponential, inverse
gamma, student t, and uniform distributions can be characterized correspondingly. Simi-
lar characterizations by using analogous regressional properties within the class of sample
processes can also be obtained.
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1 Introduction

Throughout this work, for a fixed n ≥ 1, let {Xi, 1 ≤ i ≤ n} be a sequence of independent and
identically distributed (i.i.d.) random variables with a common absolutely continuous distribu-
tion function F and probability density function (p.d.f.) f . Also assume that F has support
(a, b), where −∞ ≤ a < b ≤ ∞. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics based

∗Corresponding author. E-mail: huangwj@nuk.edu.tw; Tel: 886-7-5919169; Fax: 886-7-5919360. Support for

this research was provided in part by the National Council of the Republic of China, Grant No. NSC 98-2118-M-

390-001-MY2.
†E-mail: sunanchen@gmail.com; Tel: 886-6-2757575 ext 53623; Fax: 886-6-2342469. Support for this research

was provided in part by the National Council of the Republic of China, Grant No. NSC 98-2118-M-006-010

1



on {Xi, 1 ≤ i ≤ n}. The properties and characterizations related to order statistics have been
widely studied and some excellent reviews can be found in books such as Arnold et al. (1992)
and David and Nagaraja (2003).

Recently, characterizations of F , especially the family of student t distribution, based on
some simple properties of certain regression functions associated with the order statistics have
been investigated by many authors. Here for v > 0, the p.d.f. of the tv distribution is

fv(u) =
Γ((v + 1)/2)√

πvΓ(v/2)
1

(1 + u2/v)(v+1)/2
, −∞ < u < ∞. (1)

Nevzorov et al. (2003) showed that, for n = 3, the regression relation

E((X(1) + X(3))/2|X(2) = x) = x, a < x < b, (2)

characterizes the t2 distribution. Other interesting results can be found in Balakrishnan and
Akhundov (2003), Akhundov et al. (2004), Nevzorova et al. (2007), and Akhundov and Nevzorov
(2010), etc. Among them, Akhundov and Nevzorov (2010) rewrote (2) as

E(X(2) −X(1)|X(2) = x) = E(X(3) −X(2)|X(2) = x), a < x < b, (3)

then used the regression relation

E((X(2) −X(1))
2|X(2) = x) = E((X(3) −X(2))

2|X(2) = x), a < x < b, (4)

to characterize the t3 distribution.
To begin with note that the conditional p.d.f.’s of X(1) given X(2) = x, and X(n) given

X(n−1) = x are

fX(1)|X(2)=x(u) =
f(u)
F (x)

, a < u < x < b, (5)

and
fX(n)|X(n−1)=x(u) =

f(u)
1− F (x)

, a < x < u < b, (6)

respectively, which nevertheless are independent of n. The facts that these two conditional
distributions are the same for all n make the extensions of Akhundov and Nevzorov (2010)
naturally to the general case with sample size n.

Motivated by the above observations, in this work, first in Section 2 we characterize F by
using a more general regression assumption

E(X2
(1) − (ηX(2) + θ)X(1)|X(2) = x) (7)

= E(X2
(n) − (ηX(n−1) + θ)X(n)|X(n−1) = x), a < x < b,

where n ≥ 2, and η, θ are constants, or equivalently,

E((
η

2
X(2) −X(1) +

θ

2
)2|X(2) = x) (8)

= E((X(n) −
η

2
X(n−1) −

θ

2
)2|X(n−1) = x), a < x < b.
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Note that when n = 3, η = 2, and θ = 0, (8) reduces to (4). We show that for a fixed n,
under different η and θ, not only t distribution, many common distributions such as normal,
gamma, exponential, inverse gamma and uniform distributions, which are all important in both
theoretical and applied work in statistics, can be characterized respectively.

Next in Section 3, by using either the left or the right side of (7) is a linear function of x,
similar characterizations can be obtained.

Finally, a point process version of our results will be given in the end.

2 Main results

From now on, assume the p.d.f. f is differentiable on (a, b). Our main results are based on
the following simple yet useful lemma, which gives the solutions of a special first-order linear
differential equation.

Lemma 1. Consider the equation:

(p1x
2 + p2x + p3)f ′(x) = (q1x + q2)f(x), a < x < b, (9)

where p1, p2, p3, q1 and q2 are real constants, and p2
1 + p2

2 + p2
3 6= 0. Then the general solutions

of (9) are given by

(i) p1 = 0, p2 = 0, p3 6= 0 and

f(x) = c1 exp
{

q1

2p3
x2 +

q2

p3
x

}
; (10)

(ii) p1 = 0, p2 6= 0 and

f(x) = c2 |p2x + p3|
p2q2−p3q1

p2
2 exp

{
q1

p2
x

}
; (11)

(iii) p1 6= 0, 4p1p3 > p2
2 and

f(x) = c3

∣∣p1x
2 + p2x + p3

∣∣ q1
2p1 exp

{
2p1q2 − p2q1

p1

√
4p1p3 − p2

2

arctan
2p1x + p2√
4p1p3 − p2

2

}
; (12)

(iv) p1 6= 0, 4p1p3 < p2
2 and

f(x) = c4

∣∣p1x
2 + p2x + p3

∣∣ q1
2p1

∣∣∣∣∣2p1x + p2 −
√

p2
2 − 4p1p3

2p1x + p2 +
√

p2
2 − 4p1p3

∣∣∣∣∣
(2p1q2−p2q1)/(2p1

√
p2
2−4p1p3)

; (13)

(v) p1 6= 0, 4p1p3 = p2
2 and

f(x) = c5

∣∣p1x
2 + p2x + p3

∣∣ q1
2p1 exp

{
p2q1 − 2p1q2

p1(2p1x + p2)

}
, (14)
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where c1, · · · , c5 are positive constants such that
∫ b
a f(x)dx = 1.

It is easy to see that (10) contains the p.d.f.’s of exponential and normal distributions, (11)
contains the p.d.f.’s of gamma distribution, and (14) contains the p.d.f.’s of inverse gamma
distribution. The above five cases are not exclusive. For example, when 2p1q2 = p2q1, (12)-(14)
reduce to the same form

f(x) = c
∣∣p1x

2 + p2x + p3

∣∣ q1
2p1 , a < x < b, (15)

where c > 0 is a constant, which includes the p.d.f.’s of the tv distribution, v > 0. Also when
q1 = q2 = 0, (10)-(14) reduce to f(x) = 1/(b − a), a < x < b, the p.d.f. of the uniform
distribution if both a and b are finite. Note that when a, b or both a and b are finite, the
solutions of the p.d.f. f also include some truncated distributions. For example, the p.d.f.’s of
doubly truncated normal distribution belongs to (10).

We now present our main results. Let E(X1) = µ1 < ∞, E(X2
1 ) = µ2 < ∞. As X1 is

nondegenerate, µ2 − µ2
1 = Var(X1) > 0. Assume for some fixed n ≥ 2, and constants η and θ,

E(X2
(1) − (ηX(2) + θ)X(1)|X(2) = x) (16)

= E(X2
(n) − (ηX(n−1) + θ)X(n)|X(n−1) = x), a < x < b.

In view of (5) and (6), (16) implies

1
F (x)

(∫ x

a
u2f(u)du− (ηx + θ)

∫ x

a
uf(u)du

)
(17)

=
1

1− F (x)

(∫ b

x
u2f(u)du− (ηx + θ)

∫ b

x
uf(u)du

)
, a < x < b.

As ∫ b

x
uf(u)du = µ1 −

∫ x

a
uf(u)du, (18)

and ∫ b

x
u2f(u)du = µ2 −

∫ x

a
u2f(u)du, (19)

it follows that∫ x

a
u2f(u)du− (ηx + θ)

∫ x

a
uf(u)du = F (x)(µ2 − θµ1 − ηµ1x), a < x < b. (20)

Taking the second derivatives of both sides of (20) with respect to x, and after some manipula-
tions, we obtain

((η − 1)x2 + (θ − ηµ1)x + (µ2 − θµ1))f ′(x) (21)

= ((2− 3η)x + 2ηµ1 − θ)f(x), a < x < b,

a differential equation with the form of (9). Hence the solutions of (21) can be obtained by using
Lemma 1.

As applications, in the following table, we list some widely used distributions which can be
characterized by using the assumption (16).
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Table 1
Characterization of distributions by using assumption (16) for certain (η, θ, a, b).

(η, θ, a, b) Distribution f(x)

(1, µ1,−∞,∞)
Normal
N (µ1, σ

2)

1√
2πσ

exp
{
−(x− µ1)2

2σ2

}
,

where σ2 = µ2 − µ2
1.

(1,
µ2

µ1
, 0,∞)

Gamma
Gamma(α, β)

1
Γ(α)βα

xα−1 exp
{
−x

β

}
,

where α = µ2
1

µ2−µ2
1

and β = µ2−µ2
1

µ1
.

(1, 2µ1, 0,∞)
Exponential
E(λ)

λe−λx,
where λ = 1

µ1
.

(η, (2− η)µ1,−∞,∞),
where η > 1.

Student t

tv(µ1, ρ)

Γ((v + 1)/2)
ρ
√

πvΓ(v/2)

((
x− µ1

ρ

)2 1
v

+ 1

)−(v+1)/2

,

where v = 2η−1
η−1 and ρ =

√
µ2−µ2

1
2η−1 .

(
2
3
,
4
3
µ1, a, b)

Uniform
U(a, b)

1
b− a

(
µ2

µ2
1

,
µ2

µ1
, 0,∞)

Inverse Gamma
IGamma(α, β)

βα

Γ(α)
x−α−1 exp

{
−β

x

}
,

where α = 2µ2−µ2
1

µ2−µ2
1

and β = µ1µ2

µ2−µ2
1
.

Note that in the case (η, (2 − η)µ1,−∞,∞), if η = 2 or µ1 = 0, then θ(= (2 − η)µ1) = 0,
and condition (16) is equivalent to

E((
η

2
X(2) −X(1))

2|X(2) = x) = E((X(n) −
η

2
X(n−1))

2|X(n−1) = x), −∞ < x < ∞. (22)

Hence the corresponding characterization covers the result reported by Akhundov and Nevzorov
(2010). That is the t3(µ1, ρ) distribution can be determined by (22) with η = 2 and n = 3. On
the other hand, it can be seen easily that (16) may not always has a proper solution of the p.d.f.
f , the case η = θ = 0 is an obvious example.

3 Characterizations by linearity of regression

It is worth noting that (20) can be rewritten as

E(X2
(1) − (ηX(2) + θ)X(1)|X(2) = x) = −ηµ1x + (µ2 − θµ1), a < x < b.
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Inspired by this, in this section first we characterize distributions by the weaker assumption

E(X2
(1) − (ηX(2) + θ)X(1)|X(2) = x) = γx + δ, a < x < b, (23)

where η, θ, γ and δ are constants. Now (23) implies∫ x

a
u2f(u)du− (ηx + θ)

∫ x

a
uf(u)du = (γx + δ) F (x), a < x < b. (24)

Taking the second derivatives of both sides of (24) with respect to x, and after some manipula-
tions, we have

((η − 1)x2 + (θ + γ)x + δ)f ′(x) = ((2− 3η)x− (θ + 2γ))f(x), a < x < b. (25)

Again (25) has the form of (9). Hence the solutions of (25) can be obtained by Lemma 1. We
present some parallel characterization results of the previous section in the following table.

Table 2
Characterization of distributions by using assumption (23) for certain (η, θ, γ, δ, a, b).

(η, θ, γ, δ, a, b) Distribution

(1, θ,−θ, δ,−∞,∞),
where δ > 0.

N (θ, δ)

(1, θ, γ, 0, 0,∞),
where θ + γ > 0 and 2θ + 3γ > 0.

Gamma(α, β), where α = 2θ+3γ
θ+γ

and β = θ + γ.

(1, θ,−θ/2, 0, 0,∞),
where θ > 0.

E(2/θ)

(η, γ(η−2)
η , γ, δ,−∞,∞),

where η > 1 and δ > γ2(η−1)
η2 .

tv(µ, ρ), where v = 2η−1
η−1 , µ = −γ

η

and ρ = 1√
(δ−γ2(η−1)/η2)(2η−1)

.

(
2
3
,
2(a + b)

3
,−a + b

3
,−ab

3
, a, b), U(a, b)

(η, θ,−θ, 0, 0,∞),
where η > 1 and θ > 0.

IGamma(α, β), where α = 2η−1
η−1

and β = θ
η−1 .

Next, (16) also leads to∫ b

x
u2f(u)du− (ηx + θ)

∫ b

x
uf(u)du = (µ2 − θµ1 − ηµ1x)(1− F (x)), a < x < b,
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which in turn is equivalent to

E(X2
(n) − (ηX(n−1) + θ)X(n)|X(n−1) = x) = −ηµ1x + (µ2 − θµ1) , a < x < b.

Therefore, the distribution of X1 can also be characterized based on the two largest order
statistics. More precisely, assume

E(X2
(n) − (ηX(n−1) + θ)X(n)|X(n−1) = x) = γx + δ, a < x < b, (26)

where η, θ, γ and δ are constants. By using (6), (26) yields∫ b

x
u2f(u)du− (ηx + θ)

∫ b

x
uf(u)du = (γx + δ)(1− F (x)), a < x < b. (27)

Differentiating both sides of (27) with respect to x twice to arrive at

((η − 1)x2 + (θ + γ)x + δ)f ′(x) = ((2− 3η)x− (θ + 2γ))f(x), a < x < b. (28)

Again (28) has a form of (9), using Lemma 1 yields the solutions of (28) and characterization
results follows.

For applications, a table which is exactly the same as Table 2 can be obtained. Hence it is
omitted.

4 Conclusions

As there are many characterizations of distributions by the sample process generated by a
sequence of i.i.d. random variables. It is natural to ask whether our results can be extended to
that of point processes.

Let {M(t), a < t < b} denote the sample process generated by {Xi, 1 ≤ i ≤ n} with the
common distribution function F . That is M(t) is the number of X(i) ≤ t, 1 ≤ i ≤ n. For
a < t < b and 1 ≤ k ≤ n − 1, along the lines of Lemma 1 of Huang and Su (1999), where the
process is defined in [0,∞), it can be shown

fX(1),··· ,X(k)|X(k+1)=t = fX(1),··· ,X(k)|M(t)=k , (29)

and
fX(k+1),··· ,X(n)|X(k)=t = fX(k+1),··· ,X(n)|M(t)=k . (30)

By (29), (30), and our previous results, F can be characterized immediately by using one of the
following conditions:

E(X2
(1) − (ηt + θ)X(1)|M(t) = 1) (31)

= E(X2
(n) − (ηt + θ)X(n)|M(t) = n− 1), a < t < b,

E(X2
(1) − (ηt + θ)X(1)|M(t) = 1) = γt + δ, a < t < b, (32)
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or
E(X2

(n) − (ηt + θ)X(n)|M(t) = n− 1) = γt + δ, a < t < b, (33)

which corresponds to (16), (23) and (26), respectively. Consequently, each of the characterization
results in Examples 1-15 has a process version. We omit the details here.

On the other hand, it is interesting to characterize the common distribution of {Xi, 1 ≤ i ≤
n} by using the relation

E(g(X(1), · · · , X(n))|X(k) = x) = h(x), a < x < b, (34)

where g : Rn → R and h : R → R and fixed 1 ≤ k ≤ n. Yet as mentioned by Balakrishnan and
Akhundov (2003), there is no solution for this problem in general. In this work, we have offered
some functions g and h, where there are solutions. Other possible g and h, which may lead (34)
have solutions will be studied in the future.
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