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Abstract

Let X and Y be two independent non-degenerate random variables. Also let
(U, V ) be a bijective map of (X, Y ). It is desired to use certain regression
assumptions between U and V to characterize the distributions of X and
Y , and consequently, the distribution of (U, V ). In most of the previous
investigations, U and V turn out to be independent too.

Recently, for X, Y valued in (0, 1), Seshadri and Weso lowski (2003) charac-
terize X and Y to be beta distributed based on two constancy of regression
assumptions between U and V , where (U, V ) is a particular bijective map of
(X, Y ).

In this work, first we will generalize the results in Seshadri and Weso lowski
(2003). It will be proved that for the bijective map given in Seshadri and
Weso lowski (2003), X and Y are beta distributed under some more general
regression assumptions. Next we illustrate that for some other special bijec-
tive maps (U, V ), under certain regression assumptions between U and V , X

and Y can also be characterized to be beta distributed, yet U and V may
not be independent.
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1 Introduction

Let X and Y be two independent gamma random variables with the same
scale parameter, i.e. X is Γ(p, r) distributed and Y is Γ(q, r) distributed, for
some constants p, q, r > 0. Let

(S, T ) =

(

X

X + Y
,X + Y

)
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be a bijective map of (X,Y ). Then it is known that S and T are mutually
independent and have Be(p, q) and Γ(p + q, r) distributions, respectively.
Denote this as (S, T ) ∼ Be(p, q)⊗Γ(p+q, r). Here Γ(α, β), α, β > 0, denotes
the gamma distribution with the probability density function (p.d.f.)

f(x) =
xα−1e−x/β

Γ(α)βα
, x > 0,

and Be(p, q), p, q > 0, denotes the beta distribution with the p.d.f.

f(x) =
Γ(p + q)

Γ(p)Γ(q)
xp−1(1 − x)q−1, 0 < x < 1.

In fact, independence of S and T is a property only enjoyed by the
gamma distribution. More precisely, Lukacs (1955) proved that if X and Y
are independent non-degenerate positive random variables and S and T are
mutually independent, then X and Y have gamma distributions with the
same scale parameter. Since then many papers considered different exten-
sions. Among others, Huang and Su (1997), and Chou and Huang (2003)
obtained similar characterization, under the weaker conditions

E(Ss+1|T ) = aE(Ss|T ) and E(Sr+s+1|T ) = bE(Sr+s|T ),

with r = 1 and 2, respectively, s being some fixed integer, and a and b being
some constants. Under the so-called dual regression schemes, that is instead
of independence of X and Y , independence of S and T together with the
regression conditions for X and Y :

E(Y s+1|X) = aE(Y s|X) and E(Y s+2|X) = bE(Y s+1|X), (1.1)

for some fixed integer s, where a and b are constants, were assumed, Chou
and Huang (2003) proved X and Y are gamma distributed with the same
scale parameter. A technique of change of measure for the traditional
Laplace transform methods used by Huang and Chou (2004) to extend the
above results to that s needs only to be a fixed real number.

Now let X and Y be two independent non-degenerate random variables.
Besides the gamma law, there are many characterizations of X and Y , by
using the independence, or some weaker regression assumptions, of a bijective
map of X and Y . The following are some famous examples.

Matsumoto and Yor (2001) considered the bijective map

(M,N) =

(

1

X
−

1

X + Y
,

1

X + Y

)

,
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and proved that if X and Y are generalized inverse Gaussian (GIG) and
Gamma distributed, respectively, then M and N are also independent and
are Gamma and GIG distributed, respectively. The converse of the above
result was studied by Letac and Weso lowski (2000), Seshadri and Weso lowski
(2001), and Weso lowski (2002). Instead of the independent conditions, by
giving two weaker conditions for M , N as in (1.1), Chou and Huang (2004)
obtained similar characterizations.

Let X and Y be two independent non-degenerate random variables val-
ued in (0, 1). For the following bijective map

(U, V ) = (
1 − Y

1 − XY
, 1 − XY ), (1.2)

Seshadri and Weso lowski (2003) used constancy of regressions

E(U i|V ) = a and E(U j |V ) = b,

where (i, j) = (1, 2) or (1,−1), and a and b are constants, to characterize X
and Y , and consequently, U and V , to be beta distributed.

In this paper, first we will generalize Seshadri and Weso lowski (2003) by
using the regression assumptions similar to (1.1)

E(U s+1|V ) = aE(U s|V ), (1.3)

and

E(U s+2|V ) = bE(U s+1|V ), (1.4)

for some fixed real s, where a and b are constants. In particular (i, j) = (1, 2)
and (1,−1) corresponds to s = 0 and −1, respectively. Some conditions
which are equivalent or not equivalent to the bijective map (1.2) are also
studied. Then in Section 3, we will illustrate that for some bijective maps,
under suitable regression assumptions, X and Y can be characterized to be
beta distributed, yet U and V are not independent.

2 Characterization of the Beta Distribution

In this section, first we extend the results of Seshadri and Weso lowski
(2003).
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Theorem 2.1. Let X and Y be two independent non-degenerate ran-
dom variables valued in (0, 1), and (U, V ) be defined as in (1.2). Assume
that (1.3) and (1.4) hold for some fixed real s such that E((1 − Y )s) < ∞,
where a and b are constants. Then 0 < a < b < 1, and there exists p > 0
such that (X,Y ) ∼ Be(p, q)⊗Be(p+q, r), where q = (1−a)(1−b)/(b−a) > 0
and r = a(1−b)/(b−a)−s > 0. Consequently, (U, V ) ∼ Be(r, q)⊗Be(r+q, p).

Proof. First as U is also valued in (0, 1), hence 0 < a, b < 1. On the
other hand, a < b follows from Hölder inequality. Next (1.3) and (1.4) imply

E((1 − Y )s+1|XY ) = a(1 − XY )E((1 − Y )s|XY ), (2.1)

and

E((1 − Y )s+2|XY ) = b(1 − XY )E((1 − Y )s+1|XY ), (2.2)

respectively. Substituting (2.1) into (2.2) yields

E((1 − Y )s+2|XY ) = ab(1 − XY )2E((1 − Y )s|XY ). (2.3)

From (2.1) and (2.3), for every integer k ≥ 0, we have

E((1 − Y )s+1(XY )k) = aE((1 − XY )(1 − Y )s(XY )k), (2.4)

and

E((1 − Y )s+2(XY )k) = abE((1 − XY )2(1 − Y )s(XY )k). (2.5)

Since X and Y are valued in (0, 1) with E((1−Y )s) < ∞, we have E(Xk) <
∞, and E((1 − Y )sY k) ≤ E((1 − Y )s) < ∞ for every integer k ≥ 0. Now
denote

g(k) =
E(Xk+1)

E(Xk)
and h(k) =

E[(1 − Y )sY k+1]

E[(1 − Y )sY k]
.

Then independence of X and Y , and (2.4) and (2.5) lead to

h(k) =
1 − a

1 − ag(k)
, (2.6)

and

1−2h(k)+h(k)h(k + 1)=ab−2abg(k)h(k)+abg(k)h(k)g(k+1)h(k+1), (2.7)
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respectively. Substituting h(k) and h(k + 1) into (2.7), we obtain

(a−b)g(k)g(k+1)+(1−2a+ab)g(k+1)=(1−2b+ab)g(k)+b−a. (2.8)

By denoting q = (1 − a)(1 − b)/(b − a) > 0, (2.8) can be rewritten as

g(k + 1) =
1 + (q − 1)g(k)

q + 1 − g(k)
. (2.9)

Define p by g(0) = E(X) = p/(p + q). As 0 < E(X) < 1, and q > 0, it can
be seen easily p > 0. Then (2.9) leads to

g(k) =
E(Xk+1)

E(Xk)
=

k + p

k + p + q
, (2.10)

for every integer k ≥ 0. Since X has bounded support, by the celebrated
Carleman criterion (see e.g., Chung (2001)), the distribution of X is deter-
mined by its moments. We obtain that X is Be(p, q) distributed.

Next, substituting (2.10) into (2.6), it follows that

h(k) =
E[(1 − Y )sY k+1]

E[(1 − Y )sY k]
=

k + p + q

k + p + q/(1 − a)
=

k + p + q

k + p + cq
, (2.11)

where c = (1 − a)−1 > 1. Now let FY denote the distribution function of Y .
As in Chou and Huang (2003), define a new probability measure G on (0, 1)
by

δ(1 − y)sFY (dy) = G(dy), (2.12)

where δ−1 = E((1 − Y )s) < ∞. Let Z be a valued (0, 1) random variable
with the distribution function G. Then (2.11) and (2.12) yield

E(Zk+1)

E(Zk)
=

k + p + q

k + p + cq
,

for every integer k ≥ 0. Hence Z is Be(p + q, (c − 1)q) distributed. In
view of (2.12), we obtain (c− 1)q − s > 0. Consequently, (2.14) implies Y is
Be(p+q, (c−1)q−s) = Be(p+q, r) distributed, where r = aq/(1−a)−s > 0,
as required.

When the two independent random variables X and Y both are valued
in (0, 1), except the (U, V ) defined in (1.2), we are interested in knowing
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whether there are other bijective maps of X and Y , which can also be used
to characterize both X and Y to be beta distributed. Before answering this
question, first we illustrate the connection between Lukacs type character-
ization for gamma distributions and the present characterization for beta
distributions.

Let X1, Y1, Z1 be independent gamma random variables with the same
scale parameter, say

(X1, Y1, Z1) ∼ Γ(p, t) ⊗ Γ(q, t) ⊗ Γ(r, t),

where p, q, r, t > 0. Then it is well-known that
(

X1

X1 + Y1

,
X1 + Y1

X1 + Y1 + Z1

)

∼ Be(p, q) ⊗ Be(p + q, r), (2.13)

(

Z1

Y1 + Z1

,
Y1 + Z1

X1 + Y1 + Z1

)

∼ Be(r, q) ⊗ Be(r + q, p), (2.14)

and
(

X1

X1 + Z1

,
X1 + Z1

X1 + Y1 + Z1

)

∼ Be(p, r) ⊗ Be(p + r, q). (2.15)

Let X = X1/(X1 + Y1) and Y = (X1 + Y1)/(X1 + Y1 + Z1), and substitute
X and Y into the right hand side of (1.2), it yields

(U, V ) =

(

Z1

Y1 + Z1

,
Y1 + Z1

X1 + Y1 + Z1

)

.

In view of (2.14), this explains why U and V defined in (1.2) are independent
and have Be(r, q), Be(r + q, p) distributions, respectively, when (X,Y ) ∼
Be(p, q) ⊗ Be(p + q, r).

It is expected that there is a bijective map of (X,Y ) corresponding to
(2.15). Indeed this is true. Define

(U1, V1) =

(

XY

1 − Y + XY
, 1 − Y + XY

)

(2.16)

which obviously is a bijective map of (U, V ). Again by substituting (X,Y ) =
(X1/(X1 + Y1), (X1 + Y1)/(X1 + Y1 + Z1)) into the right hand side of (2.16),
we obtain

(U1, V1) =

(

X1

X1 + Z1

,
X1 + Z1

X1 + Y1 + Z1

)

.
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Consequently, in view of (2.15), U1 and V1 defined in (2.16) are independent,
when (X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r). Hence it is not surprising that there
exists a characterization of beta distributions by using the independent as-
sumption of U1 and V1. But this is not a new result as can be seen by first
rewriting

(U1, V1) =

(

1 −
1 − Y

1 − X ′Y
, 1 − X ′Y

)

,

where X ′ = 1 − X, and noting that independence of U1 and V1 implies
(1 − Y )/(1 − X ′Y ) and 1 − X ′Y are independent, hence X ′ and Y , and
consequently X and Y are beta distributed. Yet characterization by using
constancy of regression assumptions based on U1 and V1 is another story.
We state and prove the result in the following Theorem.

Theorem 2.2. Let X and Y be two independent non-degenerate random
variables valued in (0, 1), and (U1, V1) be defined as in (2.16). Assume that

E(U s+1
1

|V1) = aE(U s
1 |V1), (2.17)

and

E(U s+2

1
|V1) = bE(U s+1

1
|V1), (2.18)

hold for some fixed real s such that E(Xs) < ∞ and E(Y s) < ∞, where a
and b are constants. Then 0 < a < b < 1, and there exists q > 0 such that
(X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r), where p = a(1 − b)/(b − a) − s > 0 and
r = (1−a)(1−b)/(b−a) > 0. Consequently, (U1, V1) ∼ Be(p, r)⊗Be(p+r, q).

Proof. As in Theorem 2.1, we obtain 0 < a < b < 1 immediately. Next
(2.17) and (2.18) imply that for every integer k ≥ 0,

E[((1 − X ′)Y )s+1(X ′Y )k] = aE[(1 − X ′Y )((1 − X ′)Y )s(X ′Y )k], (2.19)

and

E[((1 − X ′)Y )s+2(X ′Y )k] = bE[(1 − X ′Y )((1 − X ′)Y )s+1(X ′Y )k], (2.20)

respectively, where X ′ = 1 − X. Since X ′ and Y are valued in (0, 1) with
E((1 − X ′)s) = E(Xs) < ∞ and E(Y s) < ∞, we have E((1 −X ′)s(X ′)k) ≤
E((1 − X ′)s) < ∞, and E(Y s+k) ≤ E(Y s) < ∞, for every integer k ≥ 0.
Now denote

g(k) =
E[(1 − X ′)s(X ′)k+1]

E[(1 − X ′)s(X ′)k]
and h(k) =

E(Y s+k+1)

E(Y s+k)
. (2.21)



80 Wen-Jang Huang and Yan-Hau Chen

Following similar steps as in Theorem 2.1, (2.19) leads to

g(k) =
h(k) − a

(1 − a)h(k)
, (2.22)

and (2.20) leads to

h(k + 1) =
1 + (r − 1)h(k)

r + 1 − h(k)
, (2.23)

where r = (1 − a)(1 − b)/(b − a) > 0. Let FX′ and FY denote the distribu-
tion functions of X ′ and Y , respectively. Again define two new probability
measures G1 and G2 on (0, 1) by

δ1(1 − x)sFX′(dx) = G1(dx) and δ2y
sFY (dy) = G2(dy), (2.24)

respectively, where δ−1
1

= E((1 − X ′)s) < ∞ and δ−1
2

= E(Y s) < ∞. Let
W1 and W2 be valued (0, 1) random variables with the distribution function
G1 and G2, respectively. Then (2.24) yields

E(W k+1

1
)

E(W k
1

)
=

E[δ1(1 − X ′)s(X ′)k+1]

E[δ1(1 − X ′)s(X ′)k]
= g(k),

and

E(W k+1

2
)

E(W k
2

)
=

E[δ2Y
s+k+1]

E[δ2Y s+k]
= h(k),

for every integer k ≥ 0. Define now m by h(0) = E(W2) = m/(m + r). As
0 < E(W2) < 1, and r > 0, it can be seen easily m > 0. Again (2.23) yields

h(k) =
E(W k+1

2
)

E(W k
2

)
=

k + m

k + m + r
, (2.25)

for every integer k ≥ 0. Thus we obtain that W2 is Be(m, r) distributed,
and consequently, Y is Be(m − s, r) distributed.

Next, substituting (2.25) into (2.22), it follows that

g(k) =
E(W k+1

1
)

E(W k
1

)
=

k + m − ar/(1 − a)

k + m
< 1, (2.26)

for every integer k ≥ 0. Hence q = m − ar/(1 − a) > 0, and W1 is Be(q, n)
distributed with n = m − q = ar/(1 − a) > 0. Then (2.24) implies X ′ is



Characterizations of the beta distributions via some

regression assumptions 81

Be(q, n − s) = Be(q, p) distributed, where p = n − s > 0. Consequently, X
is Be(p, q) distributed, and Y is Be(p + q, r) distributed, as required.

Next, we consider

(U2, V2) =

(

λ −
1 − Y

1 − XY
, 1 − XY

)

,

where λ is a real constant, which is a bijective map of (X,Y ) more general
than (U1, V1). It is desired to use constancy of regression assumptions to
characterize the distribution of (X,Y ). As the three consecutive moments
E(U s

2 |V2), E(U s+1

2
|V2), and E(U s+2

2
|V2), do not have a simple relationship

when (X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r), we do not have results similar to
Theorem 2.1. Yet when s = 0, we can use the following assumptions

E(U2|V2) = λ − c, (2.27)

and

E(U2
2 |V2) = λ2 − dλ + e, (2.28)

where c, d, and e are some constants, to characterize X and Y to be beta
distributed. But again as can be seen below, this is not a new result. Sub-
stituting (U2, V2) = (λ−U, V ) into (2.27) and (2.28), where (U, V ) is defined
in (1.2), yields

E(U |V ) = c,

and

E(U2|V ) = (2c − d)λ + e = b1.

Consequently, conditions (2.27) and (2.28) are the same as the constancy
of regression conditions (1.3) and (1.4), when s = 0, a = c, and b = b1/a.
Except this trivial case, for the bijective map (U2, V2), we do not have char-
acterization results by using regression assumptions for U2 and V2.

Now consider another bijective map

(U3, V3) =

(

Y

X + Y − XY
,X + Y − XY

)

.

Again it is easy to see that (U3, V3) can be rewritten as

(U3, V3) =

(

1 − Y ′

1 − X ′Y ′
, 1 − X ′Y ′

)

,
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where X ′ = 1−X and Y ′ = 1−Y . Hence characterization of (X,Y ) by using
independence, or weaker conditions of constancy of regression, of U3 and V3,
is equivalent to characterization of (X,Y ) by using parallel conditions for U
and V . For example, if

E(U s+1
3

|V3) = aE(U s
3 |V3),

and

E(U s+2
3

|V3) = bE(U s+1
3

|V3),

for some fixed real s, where a and b are some constants, then (X ′, Y ′) ∼
Be(p, q)⊗Be(p+ q, r). Consequently, (X,Y ) ∼ Be(q, p)⊗Be(r, p+ q), where
p, q and r are given in Theorem 2.1.

3 Characterization of the Beta Distribution Based on

non-independent U and V

In this section, we illustrate that for some bijective maps (U, V ) of (X,Y ),
under suitable regression assumptions, X and Y can be characterized to be
beta distributed, yet U and V are not independent. First we consider the
following bijective map

(U5, V5) = (
1 + ηY

1 − XY
, 1 − XY ), (3.1)

where η is a real constant. If η = −1, then (U5, V5) = (U, V ), where (U, V )
is defined in (1.2). Note that this is the only case that U5 and V5 are inde-
pendent when (X,Y ) ∼ Be(p, q)⊗Be(p+q, r). We have the following result.

Theorem 3.1. Let X and Y be two independent non-degenerate random
variables valued in (0, 1). Let (U5, V5) be defined as in (3.1). Assume that

E(U5|V5) = (1 + η)
1

V5

− cη, (3.2)

and

E(U2
5 |V5) = (1 + η)2

1

V 2
5

− 2cη(1 + η)
1

V5

+ cdη2, (3.3)

hold for some constants c, d, where d < 1, and η 6= 0. Then 0 < c < d,
and there exists p > 0 such that (X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r), where
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q = (1 − c)(1 − d)/(d − c) > 0 and r = c(1 − d)/(d − c) > 0.

Proof. Again 0 < c < d can be obtained easily. Also (3.2) and (3.3)
imply for every integer k ≥ 0,

E((1+ηY )(XY )k)=E((1+η−cη(1 − XY ))(XY )k), (3.4)

and

E((1 + ηY )2(XY )k) = E(((1 + η)2 − 2cη(1 + η)(1 − XY )

+ cdη2(1 − XY )2)(XY )k), (3.5)

respectively. Now denote

g(k) =
E(Xk+1)

E(Xk)
and h(k) =

E(Y k+1)

E(Y k)
.

Then for η 6= 0, (3.4) leads to

g(k) =
h(k) − 1 + c

ch(k)
, (3.6)

and (3.5) leads to

h(k + 1) =
1 + (r − 1)h(k)

r + 1 − h(k)
, (3.7)

which is exactly the same as (2.23) with r = c(1 − d)/(d − c) > 0 here.
Hence Y is Be(m, r) distributed, where m > 0 is defined by h(0) = E(Y ) =
m/(m + r).

Next, substituting h(k) into (3.6), it follows that

g(k) =
k + m − r(1 − c)/c

k + m
< 1. (3.8)

Hence p = m−r(1−c)/c > 0, and X is Be(p, q) distributed with q = m−p =
r(1 − c)/c > 0. Consequently, Y is Be(p + q, r) distributed, as required.

In Theorem 3.1, the joint p.d.f. of (U5, V5) is



84 Wen-Jang Huang and Yan-Hau Chen

fU5,V5
(u5, v5)

=



































Cv5(1 − v5)p−1(ηv5 − (η + 1 − u5v5))q−1(η + 1 − u5v5)r−1,

η+1−ηv5

v5
< u5 < η+1

v5
, 0 < v5 < 1, if η > 0,

−Cv5(1 − v5)p−1(ηv5 − (η + 1 − u5v5))q−1(η + 1 − u5v5)r−1,

η+1

v5
< u5 < η+1−ηv5

v5
, 0 < v5 < 1, if η < 0,

(3.9)

where C = Γ(p + q + r)η1−q−r/(Γ(p)Γ(q)Γ(r)). Obviously, from (3.1), the
marginal distribution of V5 is still beta distributed with parameters r + q
and p. Yet U5 is not beta distributed any more, if η 6= −1. As mentioned
it before, η = −1 is the only case that U5 and V5 are independent when
(X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r). This also can be seen from (3.9). When
η = −1, (3.2) and (3.1) become

E(U5|V5) = c and E(U2
5 |V5) = cd,

which corresponds to the case s = 0 in Theorem 2.1 with a = c, and b = d.

Next, we state without proof a result based on the following bijective
map

(U6, V6) =

(

Y

1 − XY
, 1 − XY

)

. (3.10)

Theorem 3.2. Let X and Y be two independent non-degenerate random
variables valued in (0, 1). Let (U6, V6) be defined as in (3.10). Assume that

E(U6|V6) =
1

V6

− c,

and

E(U2
6 |V6) =

1

V 2
6

− 2c
1

V6

+ cd,

hold for some constants c and d, where d < 1. Then 0 < c < d, and
there exists p > 0 such that (X,Y ) ∼ Be(p, q)⊗ Be(p + q, r), where q =
(1 − c)(1 − d)/(d − c) > 0 and r = c(1 − d)/(d − c) > 0.

Obviously, Theorem 3.2 together with (3.10) imply the marginal distri-
bution of V6 is still beta distributed with parameters r + q and p, but U6 is
not beta distributed. Also U6 and V6 are not independent.



Characterizations of the beta distributions via some

regression assumptions 85

For the above two bijective maps (U5, V5) and (U6, V6), V5 = V6 = V ,
and both the denominators of U5 and U6 are the same as that of U . The
last bijective map we consider in this work is

(U7, V7) =

(

1 − Y

XY
,XY

)

, (3.11)

which is also a modification of (U, V ), where U7 has the same numerator as
that of U , yet V7 is the same as the denominator of U , but is slightly different
from V . For this new map, we can use the general regression assumptions as
in Theorem 2.1 to characterize the joint distribution of (X,Y ). The proof is
still omitted.

Theorem 3.3. Let X and Y be two independent non-degenerate random
variables valued in (0, 1). Let (U7, V7) be defined as in (3.11). Assume that

E(U s+1

7
|V7) = c

1 − V7

V7

E(U s
7 |V7), (3.12)

and

E(U s+2
7

|V7) = d
1 − V7

V7

E(U s+1
7

|V7), (3.13)

hold for some fixed real s such that E((1 − Y )s) < ∞, where c and d are
constants. Then 0 < c < d < 1, and there exists p > 0 such that (X,Y ) ∼
Be(p, q) ⊗ Be(p + q, r), where q = (1 − c)(1 − d)/(d − c) > 0 and r =
c(1 − d)/(d − c) − s > 0.

Again in Theorem 3.3, the marginal distribution of V7 is Be(p, r + q) dis-
tributed with non-beta distributed U7. Also U7 and V7 are not independent.

4 Conclusion

From Theorem 1.2, it is known that the distribution of (X,Y ) can be
determined by the regression assumptions with the form such as (1.3) and
(1.4), based on either (U, V ) or (U1, V1). The latter is equal to (1 − U, V ).
But this is not the case for the bijective map (U7, V7). For this map, based
on (U8, V8) = (1 − U7, V7), we only can use (3.12) and (3.13) with s = 0, to
obtain (X,Y ) ∼ Be(p, q) ⊗ Be(p + q, r).

Finally, it should be mentioned here, not every bijective map of (X,Y )
can be used to characterize the distribution of (X,Y ) to be beta distributed.
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For example, consider the following bijective map

(U9, V9) =

(

1 − Y

X
,X

)

.

Then consider the regression assumptions

E(U s+1
9

|V9) = c
1

V9

E(U s
9 |V9), (4.1)

and

E(U s+2
9

|V9) = d
1

V9

E(U s+1
9

|V9), (4.2)

which hold when (X,Y ) ∼ Be(p, q)⊗Be(p+q, r). Obviously, (4.1) and (4.20)
are equivalent to

E((1 − Y )s+1) = cE((1 − Y )s),

and

E((1 − Y )s+2) = dE((1 − Y )s+1),

which are satisfied by any valued in (0, 1) random variables X and Y .
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