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Abstract

Following Gupta and Wesolowski [1997. Uniform mixtures via posterior means. Ann. Inst. Statist. Math. 49, 171–180], in this
work, under the condition X/U and U are independent, X/U has a Be(p, q) distribution, and given X the conditional expectation
of a certain function of (U, X) is constant, we characterize the distribution of (U, X). This problem is related to Lukacs type
characterization, where both X and Y have to be gamma distributed with the same scale parameter, if both X and Y, and X/(X + Y )

and X + Y are independent. Among others, we prove if q = 1, and for some integer n�1, E(
∑n

i=1ai(U − X)i |X) = b, where
a1, . . . , an, b, are real constants such that a2

1 +· · ·+ a2
n �= 0 and b �= 0, or for some real number n > 0, E((U −X)n|X)= b, where

b > 0 is a constant, then the distribution of (U, X) can be determined.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is known that if X and Y are independent gamma random variables with the same scale parameter, i.e. X has a
�(p, r) distribution, Y has a �(q, r) distribution, for some constants p, q, r > 0, then the two random variables

X + Y and
X

X + Y

are mutually independent and have �(p + q, r) and Be(p, q) distributions, respectively. Here the notation �(p, r),
p, r > 0, and Be(p, q), p, q > 0, denotes the gamma distribution and beta distribution having the probability density
functions (p.d.f.)

f1(x) = xp−1e−x/r

�(p)rp
, x > 0, (1)
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and

f2(x) = �(p + q)

�(p)�(q)
xp−1(1 − x)q−1 = 1

B(p, q)
xp−1(1 − x)q−1, 0 < x < 1, (2)

respectively, where �(·) is the gamma function defined by

�(t) =
∫ ∞

0
xt−1e−x dx, t > 0,

and B(·, ·) is the beta function defined by

B(p, q) = �(p)�(q)

�(p + q)
, p, q > 0.

Lukacs (1955) showed that the above property can be used to characterize the gamma distributions in the following
sense. If X and Y are independent non-degenerate positive random variables and X + Y and X/(X + Y ) are mutually
independent, then X and Y must have gamma distributions with the same scale parameter, but possibly with different
values of the shape parameter.

By setting U =X +Y and W =X/(X +Y ) in Lukacs type characterization, we get another form of characterization
using the independence of U and W , and independence of UW and U(1 − W). Note that X = UW , X, U have gamma
distributions, and W has beta distribution in this case.

As usual denote identically distributed by “
d= ”. Some related characterizations of the gamma distribution were done

by Huang and Chen (1989) using

M∑
i=1

Yi
d=

K∑
i=1

UiYi ,

where K > M , Ui, i = 1, . . . , K , are independent and identically distributed (i.i.d.) from the common distribution
Be(r, 1), r = M/(K − M), and Yi, i = 1, . . . , K , are i.i.d. non-negative random variables. Furthermore, Huang and

Chen (1991) proved that under the condition Z
d= U1X, the distribution of Z can uniquely determine the distribution of

X. Other related works were done by Yeo and Milne (1991), Alzaid and Al-Osh (1991), Pakes (1992a, b, 1994, 1997),
and Pakes and Khattree (1992).

Let X, U and W be random variables where W is independent of U and has support on [0, 1]. As mentioned by Alzaid
and Al-Osh (1991), the formula that X = UW is of paramount importance in many fields. For example, in economic
modeling, U may represent the actual income of an individual and X stands for his reported income.

In addition to the results mentioned above, there are many further investigations. Given two independent and non-
degenerate positive random variables X and Y, Bolger and Harkness (1965), Hall and Simons (1969), Wesolowski
(1989, 1990) and Li et al. (1994), Huang and Su (1997), Bobecka and Wesolowski (2002), Chou and Huang (2003),
Huang and Chou (2004) and many others weaken the independent condition to constant regression. A good survey on
some aspects of regression characterizations can be found in Rao and Shanbhag (1994, Chapter 9).

Instead of weakening the independence condition of X/(X+Y ) and X+Y to constant regressions, conditions which
are weaker than the independence of X and Y, and replacing the independence condition of X/(X + Y ) and X + Y by
the stronger assumption: X/U and U are independent and X/U is U(0, 1) distributed, Gupta and Wesolowski (1997)
characterized the distribution of U by using the so-called uniform mixtures via posterior means.

Inspired by Gupta and Wesolowski (1997), under the condition X/U and U are independent and X/U is Be(p, 1)

distributed, where p > 0 is a constant, Huang and Wong (1998) characterized the distribution of U by using one of the
following conditions:

1. E(U |X) = aX + b;
2. E(U2|X) = X2 + 2bX + 2b2;
3. E((U − X)2|X) = b;
4. Var(U |X) = b;
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where a and b are some constants. Furthermore, in Gupta and Wesolowski (2001), by allowing X/U to have a general
Be(p, q) distribution, they proved the distribution of U can be determined by giving E(U |X) = aX + b, where a and
b are constants. Note that U may not be gamma distributed in these cases.

In this work, under the condition X/U and U are independent and X/U has a Be(p, q) distribution, by giving
E(h(U, X)|X) = b, where h is some function of (U, X) and b is a constant, we characterize the distribution of (U, X).

2. Preliminaries

Firstly, we introduce some more notation which will be used in this work. Denote by

(i) BI(p, q, r) the first kind beta distribution defined by the p.d.f.

f (x) = �(p + q)

�(p)�(q)

xp−1(r − x)q−1

rp+q−1 , 0 < x < r , (3)

where p, q, r are positive constants.
(ii) BII(p, q, r) the second kind beta distribution defined by the p.d.f.

f (x) = �(p + q)

�(p)�(q)

rqxp−1

(r + x)p+q
, 0 < x < ∞, (4)

where p, q, r are positive constants.

Note that if the random variable W is Be(p, q) distributed, then for every r > 0, S1 = rW is BI(p, q, r) distributed,
and S2 = rW/(1 − W) is BII(p, q, r) distributed.

Let �p and �q be independent with �(p, 1) and �(q, 1) distributions, respectively, and R, positive and non-degenerate,
be independent of (�p, �q). Next, let (X, Y ) = (�p, �q)R. Then W = X/(X + Y ) = �p/(�p + �q) is independent of
U =X +Y = (�p + �q)R. This is an example for X/(X +Y ) and X +Y being independent, and X/(X +Y ) has a beta
distribution, yet X and Y are not independent and neither of the marginal distribution of X and Y is gamma. In particular,
when R takes the positive value ri with probability ci, i = 1, . . . , k, where k�2, and

∑k
i=1ci = 1, then (X, Y ) and

(U, W) have the p.d.f.’s

fX,Y (x, y) =
k∑

i=1

ci

xp−1e−x/ri

�(p)r
p
i

yq−1e−y/ri

�(q)r
q
i

, x, y > 0, (5)

and

fU,W =
(

k∑
i=1

ci

up+q−1e−u/ri

�(p + q)r
p+q
i

)
�(p + q)

�(p)�(q)
wp−1(1 − w)q−1, u > 0, 0 < w < 1, (6)

respectively.That is the distribution of (X, Y ) is the mixture of k distributionsF1(x, y), . . . , Fk(x, y), whereFi(x, y), i=
1, . . . , k, is the joint distribution function of two independent random variables with �(p, ri) and �(q, ri) distributions,
respectively, the distribution of U is the mixture of k distributions �(p + q, r1), . . . , �(p + q, rk).

Conversely, let X and U be two random variables. Assume X/U and U are independent, X/U has a Be(p, q)

distribution. Then (X, U) has the p.d.f.

fX,U (x, u) = �(p + q)

�(p)�(q)
xp−1u1−p−q(u − x)q−1fU(u), 0 < x < u < T �∞, (7)

where fU(u), 0 < u < T , is the p.d.f. of U, T = inf{u : FU(u) = 1}, and FU(u), u ∈ R, is the distribution function
of U. From (7), the marginal p.d.f. of X, and the conditional p.d.f. of U given X can be determined while knowing fU .
That is

fX(x) = �(p + q)

�(p)�(q)
xp−1

∫ T

x

u1−p−q(u − x)q−1fU(u) du, 0 < x < T (8)
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and

fU |X(u|x) = u1−p−qfU (u)∫ T

x
u1−p−q(u − x)q−1fU(u) du

, 0 < x < u < T . (9)

When the p.d.f. of (X, Y ) is as given in (5), (X, U) has some constant regression properties as the case when X and
Y are independent gamma distributed with the same scale parameter. Our first result Theorem 1 is by using

E

(
n∑

i=1

ai(U − X)i |X
)

= b (10)

to determine the distribution of U under the assumption X/U and U are independent, and X/U is Be(p, 1) distributed.
On the other hand, assume X and Y are independent and X has a �(p, r) distribution, Y has a �(q, r) distribution.

Then it can be shown that the first two conditional moments of U given X have the following forms:

E(U |X) = X + qr , (11)

E(U2|X) = X2 + 2qrX + q(1 + q)r2. (12)

Note that (11) can be rewritten as E(U − X|X) = b. Among others, in this work, we will also use a more general form
than (11), that is for some real n > 0

E((U − X)n|X) = b, (13)

or (12), to determine the distribution of (U, X), under the assumption X/U and U are independent and X/U isBe(p, q)

distributed.

3. Main results

Throughout this section, assume X/U and U are independent and X/U is Be(p, q) distributed.

Theorem 1. Assume q = 1, (10) holds for some integer n�1, and constants b, a1, . . . , an, where a2
1 + · · · + a2

n �= 0,
and b �= 0. Assume additionally that fU(u) is continuous with the support [0, T ], where 0 < T �∞. If the equation

bxn +
n∑

i=1

ai(−1)i−1i!xn−i = 0 (14)

has negative roots −1/r1, . . . ,−1/rk , with multiplicities m1, . . . , mk , respectively, where m1, . . . , mk �1, then

fU(u) =
k∑

i=1

mi∑
j=1

cij

up+j−1e−u/ri

�(p + j)r
p+j
i

, u > 0, (15)

and

fX(x) =
k∑

i=1

mi∑
j=1

cij

xp+j−2e−x/ri

�(p + j − 1)r
p+j−1
i

, x > 0, (16)

where
∑k

i=1
∑mi

j=1 cij = 1, such that fU(u) > 0, ∀u > 0.

Proof. Observe that it follows immediately with X/U being Be(p, 1) distributed, support(X) = [0, T ] ⊂ [0, ∞) (if
T = ∞ then we write [0, T ) instead of [0, T ]). Since X�U , a.s., if T < ∞ then U = T if X = T . It follows that
0 = E(

∑n
i=1 ai(U − T )i |X = T ) �= b as b �= 0 by assumption. The contradiction implies T = ∞.
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By letting g(u) = u−pfU(u), u > 0, (9) and (10) imply (note that q = 1 here)

b

∫ ∞

x

g(u) du −
n∑

i=1

ai

∫ ∞

x

(u − x)ig(u) du = 0, x > 0. (17)

Taking derivatives on both sides of (17) with respect to x (n + 1) times, we obtain

bg(n)(x) +
n∑

i=1

ai(−1)i−1i!g(n−i)(x) = 0, x > 0, (18)

where g(0)(x) = g(x). Solving the above differential equation, yields

g(x) = s1e
t1x + s2e

t2x + · · · + sne
tnx, x > 0, (19)

where s1, . . . , sn are constants, and t1, . . . , tn are the roots of Eq. (14).
Now without loss of generality, we assume all the roots of (14) have no multiplicities. The p.d.f. fU(u) = upg(u) is

a linear combination of exponential functions, we have limu→∞ fU(u) = 0, otherwise fU cannot be a p.d.f. Hence the
coefficient si which corresponds to positive ti must be zero. Consequently

fU(u) = s′
1u

pe−u/r1 + s′
2u

pe−u/r2 + · · · + s′
ku

pe−u/rk , (20)

where −1/r1, . . . ,−1/rk are the distinct negative roots of (14), and s′
i is the constant in (19) which corresponds to the

root −1/ri of (14), i = 1, . . . , k. We thus obtain (15) where ci = s′
i�(p + 1)(ri)

p+1, i = 1, . . . , k, and
∑k

i=1 ci = 1.
From (8) with T = ∞, we obtain X has the p.d.f. as given in (16). This completes the proof of this theorem. �

Remark 1. It can be checked easily that (10) indeed holds true for fU as given in (15). On the other hand in order that
the function fU as defined in (15) is a p.d.f., it is allowed that some of {cij } can be negative. We give an example for
the case k = 1 and m1 = m2 = 1 in the following. This example also demonstrates that solutions (15) are not unique.

Let p > 0, 0 < r2 < r1 and c1 + c2 = 1. Then it can be shown easily that

fU(u) = c1
up−1e−u/r1

�(p)r
p
1

+ c2
up−1e−u/r2

�(p)r
p
2

, u > 0 (21)

is a p.d.f. if and only if 0�c1 �r
p
1 /(r

p
1 − r

p
2 ). This leads to c2 < 0 when 1 < c1 < r

p
1 /(r

p
1 − r

p
2 ).

In the next three theorems q can be any positive constant.

Theorem 2. Assume for some real number n > 0,

E((U − X)n|X) = b, (22)

where b > 0 is a constant. Then (X, U)
d=(V1, V1 + V2), where V1 and V2 are independent, and V1 and V2 are

�(p, (b�(q)/�(q + n))1/n) and �(q, (b�(q)/�(q + n))1/n) distributed, respectively.

Proof. Again T = ∞ can be obtained. For t �0, (22) yields E(Xt(U − X)n|X) = bXt , i.e.

E(Ut+nWt(1 − W)n|X) = bUtWt , (23)

where W = X/U is independent of U and is Be(p, q) distributed by assumption. So if M(t) = E(Ut), t �0, denotes
the moment function of U, then taking the expectations of both sides of (23) and using independence of U and W gives

E(Wt(1 − W)n)M(t + n) = bE(Wt)M(t). (24)

Evaluating the moments of W yields

B(p + t, q + n)M(t + n) = bB(p + t, q)M(t). (25)

This is valid at least for 0� t �n and hence, by iteration, for all t �0.
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Let t = 0 in (25) and divide into the general equation to obtain

B(p + t, q + n)

B(p, q + n)

B(p, q)

B(p + t, q)

M(t + n)

M(n)
= M(t). (26)

Expressing the beta functions in terms of gamma functions, canceling and rearranging terms, we find that

B(p + q + t, n)

B(p + q, n)

M(t + n)

M(n)
= M(t). (27)

This is equivalent to the relation V Ûn
d= U , where V is Be(p + q, n) distributed, and Ûn denotes the order-n length-

biased version U, i.e. its distribution function is
∫ x

0 un dFU(u)/M(n), x > 0, and V and Ûn are independent. But this

in-law identity has the known solution U
d= �(p + q, c), for any constant c > 0, see Pakes (1997, Theorem 4.1). From

this and by letting t = 0 in (25), we obtain

M(n) = E(Un) = bB(p, q)

B(p, q + n)
= cn�(p + q + n)

�(p + q)
. (28)

This in turn implies c = (b�(q)/�(q + n))1/n. Now that we know U has a gamma law, the joint distribution assertion
follows by (7) or by evaluation of

E(XsUt ) = E(WsUs+t ) = E

((
V1

V1 + V2

)s

(V1 + V2)
s+t

)
= E(V s

1 (V1 + V2)
t ), s, t �0, (29)

where V1 and V2 are defined in the statement of this theorem. �

Remark 2. Let q = 1 and n be a positive integer in Theorem 2. Then (22) corresponds to an = 1 and a1 = · · · =
an−1 = 0 in (10), and (18) becomes bg(n)(x) = (−1)nn!g(x), x > 0. Solving the differential equation, we have g(x) =
c1e

r1x , x > 0, where c1 is a constant, and r1 = −(n!/b)1/n is the only negative root of the equation bxn = (−1)n n!.
Therefore U is �(p + 1, (b/n!)1/n) distributed and X is �(p, (b/n!)1/n) distributed, which coincides with the result in
Theorem 1.

We now present a lemma, which will be useful to prove Theorems 3 and 4.

Lemma 1. Let F be the distribution function of a positive random variables V , and let −∞ < � < � < 1 be constants.
Suppose M(t) = E(V t ) < ∞ for some t > 0 and that

L(x) =
∫ ∞

x

u�(u − x)−� dF(u) < ∞, 0�x��, (30)

where � = inf{x : F(x) = 1}. Then∫ ∞

0
xt−�+�−1L(x) dx = B(t − � + �, 1 − �)M(t), t �0. (31)

In addition:

(i) If � = ∞ and L(x) = Ke−x/c, 0�x��, where c, K > 0, then

V
d= �(1 − �, c); (32)

and
(ii) If 0 < � < ∞ and L(x) = K(� − x)c, 0�x��, where c, K > 0, then

V
d= �Be(1 − �, � + c)

d=BI(1 − �, � + c, �). (33)
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Proof. Identity (31) follows from a routine reversal of order in the double integral in the left-hand side of (30).
Note that the beta function factor B(t − � + �, 1 − �) in (31) is finite for every t �0. For (i), (31) takes the form
B(t − � + �, 1 − �)M(t) = Kct−�+��(t − � + �), that is,

M(t) = Kct−�+� �(t + 1 − �)

�(1 − �)
. (34)

Since M(0) = 1, the right-hand side of (34) equals ct�(t + 1 − �)/�(1 − �), the moment function of �(1 − �, c), thus
proving (32). The proof of (33) is similar, hence is omitted. �

Note that Lemma 1 can also be applied to prove Theorem 2 for the case when n is a positive integer in (22).

Theorem 3. Assume

E(U2|X) = X2 + 2qrX + q(1 + q)r2 (35)

for some positive constant r. Assume additionally that fU(u) is continuous with the support [0, T ], where 0 < T �∞.

Then (X, U)
d=(V1, V1 + V2), where V1 has a �(p, r) distribution, V2 has a �(q, r) distribution and V1 and V2 are

independent.

Proof. Again we obtain T = ∞. Note that (35) also implies

E((U − X)2|X) + 2XE(U − X|X) = 2qrX + q(1 + q)r2. (36)

That X/U is Be(p, q) distributed and (36) imply∫ ∞

x

u1−p−q(u − x)q+1fU(u) du + 2x

∫ ∞

x

u1−p−q(u − x)qfU (u) du

= (2qrx + q(q + 1)r2)

∫ ∞

x

u1−p−q(u − x)q−1fU(u) du, x > 0. (37)

From (37) we have∫ ∞

x

u1−p−q(u − x)q+1fU(u) du − 2x

q + 1

d

dx

∫ ∞

x

u1−p−q(u − x)q+1fU(u) du

= 2qrx + q(q + 1)r2

q(q + 1)

d2

dx2

∫ ∞

x

u1−p−q(u − x)q+1fU(u) du, x > 0. (38)

By letting h1(x) = ∫∞
x

u1−p−q(u − x)q+1fU(u) du, x > 0, (38) implies

h1(x) − 2x
1

q + 1
h′

1(x) = (2qrx + q(q + 1)r2)
1

q(q + 1)
h′′

1(x), x > 0. (39)

Furthermore, by letting h2(x) = ex/rh1(x), x > 0, (39) becomes

2x + 2r(q + 1)

q + 1
h′

2(x) = 2rx + r2(q + 1)

q + 1
h′′

2(x), x > 0. (40)

Solving the above differential equation, we obtain

h2(x) = L1 + L2

∫ x

0
et/r (2rt + r2(q + 1))(q+1)/2 dt, x > 0, (41)

and it follows that

h1(x) = L1e
−x/r + L2e

−x/r

∫ x

0
et/r (2rt + r2(q + 1))(q+1)/2 dt, x > 0, (42)
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where L1, L2 are constants. Consequently, for every x > 0,∫ ∞

x

u1−p−q(u − x)q+1fU(u) du = L1e
−x/r + L2e

−x/r

∫ x

0
et/r (2rt + r2(q + 1))(q+1)/2 dt . (43)

Let x tend to ∞ in (43), we have L2 = 0. Hence∫ ∞

x

u1−p−q(u − x)q+1fU(u) du = L1e
−x/r , x > 0.

The result now follows by (i) of Lemma 1. �

Next we use a form which is slightly different from (35) to characterize the distribution of U.

Theorem 4. Assume

E((U − X)2|X) = a(X + b)2 (44)

for some constants a, b, where a�0. Assume additionally that fU(u) is continuous with the support [0, T ], where
0 < T �∞. Then only the following cases are possible:

(i) b < 0, and then a < 1 and U is BI(p + q, (
√

4q(q + 1)/a + 1 − 1)/2 − q, −b) distributed;
(ii) b > 0, and then U is BII(p + q, (

√
4q(q + 1)/a + 1 + 3)/2 − p, b) distributed, also p > 2, and a < q(q +

1)/((p − 1)(p − 2)).

Proof. First (44) implies a > 0. The assumptions, via the Bayes theorem, imply that∫ T

x

u1−p−q(u − x)q+1fU(u) du = a(x + b)2
∫ T

x

u1−p−q(u − x)q−1fU(u) du, 0 < x < T . (45)

The second derivative of the left-hand side of (45) with respect to x is

q(q + 1)

∫ T

x

(u − x)q−1u1−p−qfU (u) du.

Hence (45) yields

d2

dx2

∫ T

x

u1−p−q(u − x)q+1fU(u) du = q(q + 1)

a
(x + b)−2

∫ T

x

u1−p−q(u − x)q+1fU(u) du, 0 < x < T .

It follows that∫ T

x

u1−p−q(u − x)q+1fU(u) du = D1|x + b|(1+s)/2 + D2|x + b|(1−s)/2, 0 < x < T , (46)

for some constants D1 and D2, where s = √
4q(q + 1)/a + 1 > 1. Before the detailed analysis of the above equation

we give some basic properties for the two constants a and b. That b=0 is impossible can be seen easily by letting x =0
in (45), which implies the contradictory result U ≡ 0.

Case (i): b < 0. In this case we have T = −b. To see this we first observe that T < ∞. Otherwise, given X = −b

in (44), it yields zero for the right-hand side. Yet from (9), the left-hand side of (44) cannot be zero. The contradiction
implies T < ∞. Now let X = T , it follows that U = T . Consequently, 0 = E((U − T )2|X = T ) = a(T + b)2. This
gives T = −b. Moreover, let x = 0, (45) becomes∫ −b

0
u2−pfU(u) du = ab2

∫ −b

0
u−pfU(u) du.

Obviously,∫ −b

0
u2−pfU(u) du < b2

∫ −b

0
u−pfU(u) du.
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Hence

ab2
∫ −b

0
u−pfU(u) du < b2

∫ −b

0
u−pfU(u) du,

and a < 1 follows.
Now (46) becomes∫ −b

x

u1−p−q(u − x)q+1fU(u) du = D1(−b − x)(1+s)/2 + D2(−b − x)(1−s)/2, 0 < x < − b. (47)

Let x = −b, we have D2 = 0 and∫ −b

x

u1−p−q(u − x)q+1fU(u) du = D1(−b − x)(1+s)/2, 0 < x < − b. (48)

Finally, U is BI(p + q, (s − 1)/2 − q, −b) distributed follows from (ii) of Lemma 1.
Case (ii): b > 0. Observe that in this case T = ∞. Since if T < ∞ it yields the following contradiction: 0 = E((U −

T )2|X = T ) = a(T + b)2 > 0. Hence (45) is equivalent to∫ ∞

x

u1−p−q(u − x)q+1fU(u) du = a(x + b)2
∫ ∞

x

u1−p−q(u − x)q−1fU(u) du, x > 0. (49)

We now make the following transformation of variables in (49):

z = bu

b + u
, u > 0 and t = bx

b + x
, x > 0.

Then

u = u(z) = bz

b − z
, 0 < z < b and x = bt

b − t
, 0 < t < b.

The left-hand side and the right-hand side of (46) with T = ∞ becomes

(b − t)−(q+1)bq+5−p

∫ b

t

(z − t)q+1(b − z)p−4z1−p−qfU (u(z)) dz, 0 < t < b,

and

D1

(
b2

b − t

)(1+s)/2

+ D2

(
b2

b − t

)(1−s)/2

, 0 < t < b,

respectively. Hence∫ b

t

(z − t)q+1h3(z) dz = K1(b − t)q+(1−s)/2 + K2(b − t)q+(1+s)/2, 0 < t < b, (50)

for some constants K1 and K2, where

h3(z) = (b − z)p−4z1−p−qfU (u(z))∫ b

0 (b − v)p−4v1−p−qfU (u(v)) dv
, 0 < z < b (51)

is a p.d.f.
The left-hand side of (50) is bounded above by (b − t)q+1 ∫ b

t
h3(z) dz. Divide the resulting inequality by (b − t)q+1

to get

1�
∫ b

t

h3(z) dz = K1(b − t)−(s+1)/2 + K2(b − t)(s−1)/2, 0 < t < b.
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As t ↑ b, K2(b − t)(s−1)/2 → 0, and K1(b − t)−(s+1)/2 → ∞ if K1 > 0. Hence K1 = 0, and (50) becomes∫ b

t

(z − t)q+1h3(z) dz = K2(b − t)q+(s+1)/2, 0 < t < b. (52)

Again by (ii) of Lemma 1 we obtain

h3(z) = (s − 1)(b − z)(s−3)/2

2b(s−1)/2
, 0 < z < b.

It follows from (51) that U is BII(p + q, (s + 3)/2 − p, b) distributed as required. Being a parameter of the second
kind beta distribution, (s +3)/2−p must be positive. To this end obviously, p > 2, and a < q(q +1)/((p −1)(p −2))

follows immediately.
This completes the proof. �

Remark 3. The result of the case b > 0 in Theorem 4 can be stated in the following equivalent way: The ran-
dom variables S1 = X/(b + X) and S2 = U/(b + U) are Be(p,

√
(4q(q + 1)/a) + 1 − 1)/2 − q) and Be(p +

q, (
√

(4q(q + 1)/a) + 1 − 1)/2 − q) distributed, respectively. Then by applying the above transformation of variables
to the case X/U and U are independent and X/U has a Be(p, q) distribution, and using (44), it follows that

S1(1 − S1)

S2(1 − S2)

∣∣∣∣ S2 ∼ Be(p, q), (53)

and

E

((
S2 − S1

1 − S2

)2
∣∣∣∣∣ S2

)
= a. (54)

Hence suppose that (S1, S2) is a random vector satisfying (53) and (54) for some constant a, and assume additionally
that the p.d.f. of S2 is continuous. Then S2 has a Be(p + q, (

√
(4q(q + 1)/a) + 1 − 1)/2 − q) distribution.

The final result which first appeared in Huang and Wong (1998) is about the homoscedasticity of the conditional
distribution of U given X, i.e. Var(U |X) = b. We give a more complete proof here.

Theorem 5. Assume q = 1, and

Var(U |X) = b (55)

for some positive constant b. Assume additionally that fU(u) is continuous with the support [0, T ], where 0 < T �∞.

Then (X, U)
d=(V1, V1 + V2), where V1 has a �(p,

√
b) distribution, V2 has a �(1,

√
b) distribution and V1 and V2

are independent.

Proof. As before first we can obtain T = ∞. Now (55) yields

E(U2|X) + (E(U |X))2 = b. (56)

This together with (9) imply

∫ ∞

x

u2 u−pfU(u)∫∞
x

u−pfU(u) du
du +

(∫ ∞

x

u
u−pfU(u)∫ T

x
u−pfU(u) du

du

)2

= b, x > 0. (57)

Again let g(u) = u−pfU(u), u > 0, in (57) to obtain∫ ∞

x

u2g(u) du

∫ ∞

x

g(u) du −
(∫ ∞

x

ug(u) du

)2

= b

(∫ ∞

x

g(u) du

)2

, x > 0. (58)
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Taking the derivatives of both sides of (58) with respect to x four times, we obtain bg′′(x) − g(x) = 0. The solution of
the above differential equation is

g(x) = c1e
−x/

√
b + c2e

x/
√

b, x > 0, (59)

where c1 and c2 are constants. Hence fU(u) = c1u
pe−u/

√
b, u > 0, and the assertions follow immediately. �
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