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Abstract

Let A ≡ {A(t), t ≥ 0} be an order statistics point process, with E(A(t)) =

m(t) being the mean value function of A(t), t ≥ 0. It is known that m(t)

determines the distribution of the process A. In this work, we give some

characterizations of m(t), by using certain relations between the conditional

moments of the last jump time or current life of A at time t. It is interesting

that some results are parallel to those characterizations of Poisson process as

a renewal process. Finally, we present some extensions of the results about

record values given in Abu-Youssef (2003).
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1 Introduction

Let {A(t), t ≥ 0} with A(0) = 0, A(t) < ∞, ∀t ≥ 0, be a point pro-

cess with right continuous sample paths having successive unit steps at times

S1, S2,.... The process {A(t), t ≥ 0} is said to have the order statistics prop-

erty or called an order statistics point process if for every t > 0 and integer

n ≥ 1, whenever P (A(t) = n) > 0, given A(t) = n, the successive jump times

(S1, ..., Sn) are distributed as the order statistics of n independent and iden-

tically distributed (i.i.d.) random variables with distribution function Ft(·)

supported on [0, t]. It is well known that nonhomogeneous Poisson processes

have the order statistics property. Nonhomogeneous Poisson processes are

widely used models for the occurrence of events in time, for example, the

failure times in software reliability (see Joe (1989), Kuo and Yang (1996)

and Huang et al. (2003)). Order statistics property provides a nice way to

simulate nonhomogeneous Poisson processes. This and some other useful ap-

plications motivate many authors to investigate the intrinsic properties within

the class of order statistics point processes.

Properties and characterizations of order statistics point processes have

been studied by Nawrotzki (1962), Westcott (1973), Crump (1975), Kallen-

berg (1976), Feigin (1979), Puri (1982), Huang and Su (1999) and Shaked

et al. (2004) and many others. In particular, Crump (1975) proves that the

order statistics point processes are Markovian and for every t > 0, the as-

sociated distribution function Ft(·) is continuous, Ft(x) = E(A(x))/E(A(t)),

∀0 ≤ x ≤ t, if E(A(t)) < ∞. On the other hand, Puri (1982) shows that

the class of order statistics point processes with E(A(t)) < ∞, ∀t > 0, is

characterized by mixed Poisson processes (up to a time-scale transformation)

if limt→∞E(A(t)) = ∞, or mixed sample processes if limt→∞E(A(t)) < ∞.

As mentioned in Nagaraja (1988), Deheuvels (1984), Gupta (1984) and
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Huang and Su (1999), it is known that record values and order statistics of a

sequence of i.i.d. random variables are closely related. Let {Wi, i ≥ 1} be a

sequence of i.i.d. random variables having continuous distribution function H

with H(0) = 0. Define the sequence of record times {L(n), n ≥ 1} by L(1) = 1

and L(n) = min{j|Wj > WL(n−1)}, n ≥ 2. Let Yn = WL(n), n ≥ 1, then

{Yn, n ≥ 1} is called the sequence of record values corresponding to {Wi, i ≥

1}. Denote N(t) as the number of Yn ≤ t, t ≥ 0. Shorrock (1972a,b) prove

that the point process {N(t), t ≥ 0} is a nonhomogeneous Poisson process

with mean value function E(N(t)) = − ln(1−H(t)). On the other hand, for

every m ≥ 1, let X1,m ≤ X2,m ≤ ... ≤ Xm,m be the order statistics from a

random sample X1, X2, ..., Xm having distribution function F with F (0) = 0.

Then {Mm(t), t ≥ 0}, where Mm(t) is the number of Xk,m ≤ t, 1 ≤ k ≤ m, is

called the sample process generated by m and F . Note that the mean value

function E(Mm(t)) = mF (t). It is worth to mention that when record values

and order statistics are viewed as point processes, the two processes both share

the order statistics property. Huang and Su (1999) give properties for an order

statistics point process {A(t), t ≥ 0} and establish some characterizations of

E(A(t)), by using certain conditional moments of the spacings of the jump

times. They also show that for every t > 0 and integer n ≥ 1, whenever

P (t−δ < Sn+1 ≤ t+δ) > 0,∀δ > 0, the conditional distribution of (S1, ..., Sn)

given A(t) = n is the same as that given Sn+1 = t. This explains why record

values and order statistics have many similar characterization results by using

conditional moments. Also the characterizations of E(A(t)) in Huang and Su

(1999) can deduce the corresponding characterization results of record values

and order statistics as special cases.

In this work, for an order statistics point process {A(t), t ≥ 0}, we give

some characterizations of the mean value function E(A(t)), by using certain
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relations between the conditional moments of the jump times or current lives

of {A(t), t ≥ 0}. In Sections 2 and 3, some theorems are motivated by char-

acterizations of the homogeneous Poisson process as a renewal process, and

some characterization results are extensions of results in Huang and Su (1999).

Also these characterization results can reduce to the corresponding charac-

terizations of distributions via record values and order statistics, respectively.

Recently, Abu-Youssef (2003) establishes the characterizations through condi-

tional moments of record values. The corresponding characterization results

for order statistics point processes are given in Section 4.

2 Characterizations by using conditional mo-

ments of jump times of the process

First, we give the following lemma, which can be found in Boyce and

DiPrima (1997), and will be used to prove the main results of this section.

Lemma 1. Consider the Euler equation:

t2y′′(t) + αty′(t) + βy(t) = 0, (1)

in any interval not containing the origin, where α and β are some fixed real

numbers. Then

y(t) =

 c1|t|
(1−α)+

√
(1−α)2−4β
2 + c2|t|

(1−α)−
√

(1−α)2−4β
2 , if (1− α)2 > 4β,

(c3 + c4 log |t|)|t|
(1−α)

2 , if (1− α)2 = 4β,

is the general solution of (1), where c1, c2, c3, c4 are arbitrary constants.

Throughout this section, let {B(t), t ≥ 0} be a renewal process and

{Ti, i ≥ 1} be the sequence of arrival times of {B(t), t ≥ 0}. Li et al. (1994)
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and Huang and Su (1997) characterize {B(t), t ≥ 0} to be a Poisson process

by assuming that, for certain pairs of (r, s),

E(T r
i |B(t) = n) = atr and E(T s

i |B(t) = n) = bts, t ≥ 0, (2)

where i, n are some fixed integers, 1 ≤ i ≤ n, a and b are independent of t.

Huang and Su (1997) and Chou and Huang (2003) obtain similar characteri-

zations under the conditions that

E(T r+1
i |B(t) = n) = atE(T r

i |B(t) = n), t > 0, (3)

and

E(T r+s+1
i |B(t) = n) = btE(T r+s

i |B(t) = n), t > 0, (4)

where s ∈ {1, 2}, r ∈ (−∞,∞), i and n are some fixed integers, 1 ≤ i ≤ n,

and a, b are independent of t.

It turns out that there are similar characterization results within the

class of order statistics point processes. In this section, let {A(t), t ≥ 0}

be an order statistics point process with E(A(t)) = m(t) < ∞, t ≥ 0, and

{Si, i ≥ 1} be the successive jump times of {A(t), t ≥ 0}. As mentioned in

Section 1, it is known that the order statistics property implies that for every

t > 0, and integer n ≥ 1, whenever P (A(t) = n) > 0, given A(t) = n, the

conditional distribution function of the last jump time Sn is

P (Sn ≤ s|A(t) = n) = (m(s)/m(t))n, 0 ≤ s ≤ t.

Huang and Su (1999) prove that, given a nondecreasing function G, if

E(G(Sn)|A(t) = n) = cG(t), 0 < t < η, (5)

holds for a positive integer n, c > 0, and 0 < η ≤ ∞, then m(·) can be

determined. Actually from the proof it can be found that the assumption G
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being nondecreasing is not needed. Next by using a condition similar to (3)

with i = n, m(·) can be characterized within the class of order statistics point

processes. We state and prove the result in the following theorem.

Theorem 1. Let m(·) be positive, twice differentiable in (0, η) and m′(·) be

positive on (0, η), where 0 < η ≤ ∞. Assume for some fixed integer n ≥ 1,

k ∈ (−∞,∞), r > 0, whenever P (A(t) = n) > 0,

E(Sk+r
n |A(t) = n) = btrE(Sk

n|A(t) = n), 0 < t < η, (6)

where b is independent of t. Then

(i) k/(k + r) < b < 1 if k ≥ 0, and 0 < b < 1 if k < 0 ;

(ii) m(t) = λt
1
n

( br
1−b

−k), 0 < t < η, where λ > 0 is a constant.

In particular, if b = (n + k)/(n + k + r), then m(t) = λt, 0 < t < η.

Proof. First from (6), we obtain∫ t

0

sk+r (m(s))n−1 m′(s)ds = btr
∫ t

0

sk (m(s))n−1 m′(s)ds, 0 < t < η.

Taking the derivatives of both sides with respect to t yields∫ t

0

sk (m(s))n−1 m′(s)ds =
(1− b)

br
tk+1 (m(t))n−1 m′(t), 0 < t < η. (7)

As the left-hand side of (7) is positive for 0 < t < η, (1 − b)/(br) must be

positive, and 0 < b < 1 follows, since r > 0. Now taking the derivatives of

both sides of (7) with respect to t, we obtain

nt2m(t)m′′(t) + n(n− 1)t2(m′(t))2

+(1 + k − br

1− b
)ntm(t)m′(t) = 0, 0 < t < η. (8)

Let u(t) = (m(t))n, then (8) becomes

t2u′′(t) +

(
1 + k − br

1− b

)
tu′(t) = 0, 0 < t < η. (9)
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We now show that br/ (1− b) 6= k. Assume br/ (1− b) = k. By Lemma 1,

the general solution of (9) is

u(t) = c1 + c2 log t, 0 < t < η, (10)

where c1 and c2 are constants. Consequently,

m(t) = (u(t))1/n = (c1 + c2 log t)1/n, 0 < t < η,

which contradicts to the fact that m(t) is a monotone positive function. Hence

br/ (1− b) 6= k, and Lemma 1 implies the general solution of (9) is

u(t) = c3t
br

1−b
−k + c4, 0 < t < η, (11)

where c3 and c4 are constants. As m(t) is positive and m(0+) = 0, it turns out

c3 > 0, c4 = 0 and br/ (1− b) > k. From this and recalling that 0 < b < 1,

we obtain that k/(k + r) < b < 1 if k ≥ 0, and 0 < b < 1 if k < 0. Finally

the assertion (ii) follows by letting λ = c
1/n
3 .

It is known that when {A(t), t ≥ 0} is a Poisson process, one can deduce

that

E(S2
n|A(t) = n) = ((n + 1)2 /(n (n + 2)))E2(Sn|A(t) = n), t > 0. (12)

Inspired by this, in the next theorem, we characterize m(·) within the class

of order statistics point processes by a condition similar to (12).

Theorem 2. Let m(·) be positive and twice differentiable in (0, η), where

0 < η ≤ ∞. Assume that for some fixed integer n ≥ 1, whenever P (A(t) =

n) > 0,

E(S2
n|A(t) = n) = bE2(Sn|A(t) = n), 0 < t < η, (13)
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where b is independent of t. Then

(i) b > 1 ;

(ii) m(t) = λt
1
n

(√
b

b−1
−1

)
, 0 < t < η, where λ > 0 is a constant.

In particular, if b = (n + 1)2 /(n (n + 2)), then m(t) = λt, 0 < t < η.

Proof. Again the assertion (i) can be obtained immediately from (13). Next

(13) can be rewritten as

mn(t)

∫ t

0

s2 (m(s))n−1 m′(s)ds = bn

(∫ t

0

s (m(s))n−1 m′(s)ds

)2

, 0 < t < η.

Taking the third derivatives of both sides with respect to t yields

nt2m(t)m′′(t) + n(n− 1)t2(m′(t))2

+3ntm(t)m′(t)− 1

b− 1
m2(t) = 0, 0 < t < η. (14)

Let u(t) = (m(t))n, (14) leads to

t2u′′(t) + 3tu′(t)− 1

b− 1
u(t) = 0, 0 < t < η. (15)

By Lemma 1, the general solution of (15) is

u(t) = c1t
−1+

√
b/(b−1) + c2t

−1−
√

b/(b−1), 0 < t < η, (16)

where c1 and c2 are constants. Using the assumption m(t) is positive, m(0+) =

0, and the fact
√

b/(b− 1) > 1, we obtain c1 > 0, c2 = 0. The rest of the

proof follows immediately.

Huang et al. (1993) and Li et al. (1994) characterize a renewal process

{B(t), t ≥ 0} to be a Poisson process through some conditional expectations

about current life δt = t − SB(t). More precisely, Huang et al. (1993) prove

that, given a monotone function G, under some mild conditions, as long as

E(G(δt)|B(t) = n) = E(G(X1)|B(t) = n), t ≥ 0, (17)
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holds for a single positive integer n, then {B(t), t ≥ 0} is a Poisson process.

Within the class of order statistic point processes, Huang and Su (1999) use

the assumption similar to (17) to characterize m(·). In the following, we give

two characterization results based on the conditional moments of current life

δt.

Theorem 3. Let m(·) be positive and differentiable in (0, η), where 0 < η ≤

∞. Assume that for some fixed integers n ≥ 1, k ≥ 1, whenever P (A(t) =

n) > 0,

E(δk
t |A(t) = n) = btE(δk−1

t |A(t) = n), 0 < t < η, (18)

where b is independent of t. Then

(i) 0 < b < 1;

(ii) m(t) = λt(1−b)k/(nb), 0 < t < η, where λ > 0 is a constant.

In particular, if b = k/(n + k), then m(t) = λt, 0 < t < η.

Proof. First the assertion (i) can be obtained from (18). Next the following

is a consequence of (18),∫ t

0

((1− b)t− s)(t− s)k−1 (m(s))n−1 m′(s)ds = 0, 0 < t < η. (19)

Taking the kth derivatives of both sides of (19) with respect to t yields

m′(t)

m(t)
=

(1− b) k

nb

1

t
, 0 < t < η.

Hence

m(t) = λt(1−b)k/nb, 0 < t < η,

where λ > 0 is a constant. This completes the proof of this theorem.

Huang and Su (1999) give the following result. If

E(δ2
t |A(t) = n) = at2, 0 < t < η,
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where n ≥ 1 is an integer and 0 < a < 1 is independent of t, then m(·) can

be determined. The following is an extension.

Theorem 4. Let m(·) be positive, twice differentiable in (0, η) where 0 < η ≤

∞. Assume for some fixed integers n ≥ 1, k ≥ 2, whenever P (A(t) = n) > 0,

E(δk
t |A(t) = n) = bt2E(δk−2

t |A(t) = n), 0 < t < η, (20)

where b is independent of t. Then

(i) 0 < b < 1 ;

(ii) m(t) = λt

(
−k+1/2+

√
1+4k(k−1)/b/2

)
/n

, 0 < t < η, where λ > 0 is a constant.

In particular, if b = k(k− 1)/((k +n)(k +n− 1)), then m(t) = λt, 0 < t < η.

Proof. Again we only prove the assertion (ii). First (20) can be rewritten as∫ t

0

[
(1− b) t2 − 2st + s2

]
(t− s)k−2 (m(s))n−1 m′(s)ds = 0, 0 < t < η. (21)

After taking the kth derivatives of both sides of (21), we obtain

nt2m(t)m′′(t) + n (n− 1) t2 (m′(t))
2
+ 2kntm(t)m′(t)

− ((1− b)/b) k (k − 1) m2(t) = 0, 0 < t < η. (22)

By letting u(t) = mn(t), (22) leads to

t2u′′(t) + 2ktu′(t)− ((1− b)/b) k (k − 1) u(t) = 0, 0 < t < η. (23)

By Lemma 1, the general solution of (23) is

u(t) = c1t
−k+1/2+

√
1+4k(k−1)/b/2 + c2t

−k+1/2−
√

1+4k(k−1)/b/2, 0 < t < η, (24)

where c1 and c2 are constants. From the assumption m(t) is positive and

m(0+) = 0, and the fact
√

1 + 4k (k − 1) /b/2 > k − 1/2, we obtain c1 > 0,

c2 = 0. Let λ = c
1/n
1 > 0, then

m(t) = λt

(
−k+1/2+

√
1+4k(k−1)/b/2

)
/n

, 0 < t < η.

as required.
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For the general case, assume for some fixed integers n ≥ 1, k ≥ r ≥ 3,

whenever P (A(t) = n) > 0,

E(δk
t |A(t) = n) = btrE(δk−r

t |A(t) = n), 0 < t < η,

where b is independent of t. Then along the lines of the proofs of Theorems 3

and 4, an rth differential equation of m(t) can be obtained. Yet the differential

equation is unable to be solved.

When {A(t), t ≥ 0} is a Poisson process, it is known that

E(δ2
t |A(t) = n) = (2(n + 1)/(n + 2))E2(δt|A(t) = n), t > 0.

We have the following characterization result by using δt within the class of

order statistics point processes, the proof is omitted.

Theorem 5. Let m(·) be positive, twice differentiable in (0, η) where 0 <

η ≤ ∞. Assume for some fixed integer n ≥ 1, whenever P (A(t) = n) > 0,

E(δ2
t |A(t) = n) = bE2(δt|A(t) = n), 0 < t < η, (25)

where b is independent of t. Then

(i) 1 < b < 2 ;

(ii) m(t) = λt2(b−1)/(n(2−b)), 0 < t < η, where λ > 0 is a constant.

In particular, if b = 2(n + 1)/(n + 2), then m(t) = λt, 0 < t < η.

3 Characterizations based on relationship of

conditional moments of jump time and current

life

Given A(t) = n, by using some simple forms of conditional expectations

of Sn and δt can also characterize m(·). We present three theorems in this

section.
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Theorem 6. Let m(·) be positive, twice differentiable in (0, η), where 0 <

η ≤ ∞. Assume for some fixed integer n ≥ 1, whenever P (A(t) = n) > 0,

E(S2
n|A(t) = n) = bE(δ2

t |A(t) = n), 0 < t < η, (26)

where b is independent of t. Then

m(t) = λt(−1+
√

1+8b)/(2n), 0 < t < η,

where λ > 0 is a constant. In particular, if b = n(n + 1)/2, then m(t) =

λt, 0 < t < η.

Proof. From (26), we obtain∫ t

0

s2 (m(s))n−1 m′(s)ds = b

∫ t

0

(t− s)2 (m(s))n−1 m′(s)ds, 0 < t < η. (27)

Then, taking the derivatives twice of both sides of (27) yields

nt2m(t)m′′(t) + n (n− 1) t2 (m′(t))
2
+ 2ntm(t)m′(t)

−2b(m(t))2 = 0, 0 < t < η. (28)

Again let u(t) = (m(t))n, (28) leads to

t2u′′(t) + 2tu′(t)− 2bu(t) = 0, 0 < t < η. (29)

By Lemma 1, the general solution of (29) is

u(t) = c1t
(−1+

√
1+8b)/2 + c2t

(−1−
√

1+8b)/2, 0 < t < η,

where c1 and c2 are constants. Using the assumption that m(t) is nonnegative,

m(0+) = 0 and the fact b > 0, we obtain c1 > 0, c2 = 0. Let λ = c
1/n
1 > 0,

and the assertion (ii) follows.

As both proofs of the following Theorems 7 and 8 are similar to that of

Theorem 6, they are omitted.
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Theorem 7. Let m(·) be positive, twice differentiable in (0, η), where 0 < η ≤

∞. Assume for some fixed integer n ≥ 1, k ≥ 1, whenever P (A(t) = n) > 0,

E(Sk
n|A(t) = n) = btk−1E(δt|A(t) = n), 0 < t < η, (30)

where b is independent of t. Then

m(t) = λt

(
b−1+

√
(b−1)2+4bk

)
/(2n)

, 0 < t < η,

where λ > 0 is a constant. In particular, if b = n (n + 1) / (n + k), then

m(t) = λt, 0 < t < η.

Theorem 8. Let m(·) be positive, twice differentiable in (0, η), where 0 <

η ≤ ∞. Assume for some fixed integer n ≥ 1, whenever P (A(t) = n) > 0,

E(δ2
t |A(t) = n) = btE(Sn|A(t) = n), 0 < t < η, (31)

where b is independent of t. Then

m(t) = λt

(√
1+2/b−1

)
/n

, 0 < t < η,

where λ > 0 is a constant. In particular, if b = 2/(n (n + 2)), then m(t) =

λt, 0 < t < η.

4 Some characterizations related to Abu-

Youssef (2003)

Recently, a general class of distributions has been characterized through

conditional expectation of record values in Abu-Youssef (2003). As expected

there is a version for the class of order statistics point processes.
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Theorem 9. Let m(·) be positive and differentiable in (0, η) and φ(·) be

differentiable in (0, η) and φ(0+) exists, where 0 < η ≤ ∞. Thus for some

fixed integer n ≥ 1, whenever P (A(t) = n) > 0 and P (A(t) = n + 1) > 0,

E(φ(Sn+1)|A(t) = n + 1) (32)

= −c(n + 1)

m(t)
E(φ(Sn)|A(t) = n) +

c(n + 1)

m(t)
φ(t)− b, 0 < t < η,

where b, c 6= 0 are independent of t, if and only if

m(t) = c log
φ(t) + b

φ(0+) + b
, 0 < t < η. (33)

Proof. First, we have for every k ≥ 1, whenever P (A(t) = k) > 0,

E(φ(Sk)|A(t) = k) =

∫ t

0

φ(s)n

(
m(s)

m(t)

)k−1
m′(s)

m(t)
ds (34)

= φ(t)−
∫ t

0

(
m(s)

m(t)

)k

φ′(s)ds, 0 < t < η,

by using the order statistics property.

(Necessary part.) By (34), (32) is equivalent to

φ(t)−
∫ t

0

(
m(s)

m(t)

)n+1

φ′(s)ds

= −c(n + 1)

m(t)

∫ t

0

φ(s)n

(
m(s)

m(t)

)n−1
m′(s)

m(t)
ds +

c(n + 1)

m(t)
φ(t)− b, 0 < t < η.

Multiplying by mn+1(t) in both sides of the above equation, it becomes

φ(t)mn+1(t)−
∫ t

0

mn+1(s)φ′(s)ds

= −c(n + 1)

∫ t

0

φ(s)nmn−1(s)m′(s)ds + c(n + 1)φ(t)mn(t)

−bmn+1(t), 0 < t < η. (35)

After differentiating with respect to t in both sides of (35), it follows

m′(t) =
cφ′(t)

φ(t) + b
, 0 < t < η.
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This in turn implies that m(t) = log(k |φ(t) + b|c), 0 < t < η, where k > 0 is

a constant.

Now because of m(0+) = 0 we have k = |φ(0+) + b|−c
. Since m(t) is

increasing in (0, η), so does |φ(t) + b|c. Thus φ(t) + b is either positive for

every t ∈ (0, η) or negative for every t ∈ (0, η). Therefore,

m(t) = c log((φ(t) + b)/(φ(0+) + b)), 0 < t < η,

is obtained. The proof of the necessary part is completed.

(Sufficient part.) For some fixed integer n ≥ 1, whenever P (A(t) = n) >

0, by (34), we have

E(φ(Sn)|A(t) = n) = φ(t)−
∫ t

0

(
m(s)

m(t)

)n

φ′(s)ds. (36)

Taking the derivatives of both sides of (33) with respect to t yields

φ′(t) = (φ(t) + b) m′(t)/c, 0 < t < η. (37)

Substituting (37) into (36), (32) is obtained.

Next we give a result analogous to Theorem 2.4 of Abu-Youssef (2003).

Theorem 10. Let m(·) be positive and differentiable in (0, η), and φ(·) be

differentiable in (0, η) and φ(0+) exists, where 0 < η ≤ ∞. Thus for some

fixed integer n ≥ 1, whenever P (A(t) = n) > 0 and P (A(t) = n + 1) > 0,

E(φ(Sn)|A(t) = n) (38)

= φ(t) +
bm(t)

c(n + 1)
E(e−cφ(Sn+1)|A(t) = n + 1) +

m(t)

c(n + 1)
, 0 < t < η,

where b, c 6= 0 are independent of t, if and only if

m(t) = log
ecφ(0+) + b

ecφ(t) + b
, 0 < t < η. (39)
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Proof. (Necessary part.) Again (38) can be rewritten as∫ t

0

φ(s)n

(
m(s)

m(t)

)n−1
m′(s)

m(t)
ds

= φ(t) +
bm(t)

c (n + 1)

∫ t

0

e−cφ(s)(n + 1)

(
m(s)

m(t)

)n
m′(s)

m(t)
ds

+
m(t)

c(n + 1)
, 0 < t < η.

Taking the derivatives of both sides with respect to t yields

m′(t) = −cφ′(t)ecφ(t)

ecφ(t) + b
, 0 < t < η.

This implies that m(t) = log
(
k/|ecφ(t) + b|

)
, 0 < t < η, where k > 0 is a

constant.

Because of m(0+) = 0, k = |ecφ(0+) + b| is obtained. Since m(t) is

increasing in (0, η), so does |ecφ(t) + b|. Thus ecφ(t) + b is either positive for

every t ∈ (0, η) or negative for every t ∈ (0, η). Therefore m(t) = log((ecφ(0+)+

b)/(ecφ(t) + b)), 0 < t < η as required.

(Sufficient part.) Taking the derivatives of both sides of (39) with respect

to t yields

φ′(t) = −e−cφ(t)
(
ecφ(t) + b

)
m′(t)/c, 0 < t < η. (40)

By (36) and (40), (38) is obtained. The proof is finished.

Obviously, (32) can be referred to as a recurrence relation. According to

(32), for every n ≥ 1, for a pair of integers (n, l), n > l, whenever P (A(t) =

i) > 0, i = l, ..., n,

E(φ(Sn)|A(t) = n) = (−1)n−l Γ (n + 1)

Γ (l + 1)

(
c

m(t)

)n−l

E(φ(Sl)|A(t) = l)

+ φ(t)
n−l∑
i=1

(−1)i−1 Γ (n + 1)

Γ (n− i + 1)

(
c

m(t)

)i

+ b
n−l−1∑

i=0

(−1)i−1 Γ (n + 1)

Γ (n− i + 1)

(
c

m(t)

)i

, 0 < t < η.
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The following theorem gives a characterization of the mean value function

E(A(t)), t ≥ 0, by using the conditional expectations of Sn and Sl, giving

A(t) = n and A(t) = l respectively. The proof is standard hence is omitted.

Theorem 11. Let G(·) and m(·) be positive and differentiable in (0, η),

where 0 < η ≤ ∞. Also let G(·) be non-constant and m′(·) be positive in

(0, η). Assume for some fixed integers 1 ≤ l < n, whenever P (A(t) = n) > 0

and P (A(t) = l) > 0,

E(G(Sn)|A(t) = n) = bE(G(Sl)|A(t) = l),∀0 < t < η, (41)

where b is independent of t. Then

m(t) = λ (G(t))(n−lb)/(nl(b−1)) , 0 < t < η,

where λ > 0 is a constant.
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