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1. Introduction

In this work we will investigate the problem of inverses of thinned
renewal processes. Let N ≡ {N(t), t ≥ 0} be a point process, and denote
by Np ≡ {Np(t), t ≥ 0} the point process obtained by retaining (in the
same location) every point of N with a constant probability p and deleting
it with probability 1 − p, independent of all other points and independent
of the point process N . Np is called the p-thinning of N , and N is called
the p-inverse of Np. As mentioned in Yannaros (1988a), the p-inverse of
any thinned point process is unique in distributional meaning, and it is also
called the original process.

Now let N be a renewal process, and {χi, i ≥ 1}, independent of N ,
be a sequence of binary variables which form a stationary Markov chain
with marginal distribution

P (χi = 1) = p = 1− P (χi = 0), 0 < p ≤ 1,

and transition probabilities

P (χi+1 = 1|χi = 1) = α1 = 1− P (χi+1 = 0|χi = 1),

P (χi+1 = 1|χi = 0) = α0 = 1− P (χi+1 = 0|χi = 0),

where 0 ≤ α0, α1 ≤ 1, i ≥ 1. The stationarity of the chain imposes that
α0, α1 and p satisfy the following constraint

p = α1p+ α0(1− p) . (1)

Then a thinned point process A ≡ {A(t), t ≥ 0} can be obtained by
retaining the i-th point of N if χi = 1 and deleting it if χi = 0. A is called
the Markov chain thinning of N . Generating this way, it can be proved
easily that A is a delayed renewal process. Conversely, we are interested in
knowing that given a stationary Markov chain {χi, i ≥ 1} and a delayed
renewal process A, under what conditions there exists an ordinary renewal
process N , say the M -inverse of A, such that A can be obtained through
the Markov chain thinning of N .

When the sequence {χi, i ≥ 1} are independent and identically dis-
tributed (i.i.d.), namely α0 = α1 = p, the Markov chain thinning becomes
p-thinning, and the above inverse problem has been studied by many au-
thors. Yannaros (1988a) proved that the p-inverse of a thinned renewal
process is unique and is also a renewal process. Next in (1988b), Yannaros
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characterized when an ordinary gamma renewal process has a p-inverse. He
also gave necessary and sufficient conditions for a delayed gamma renewal
process can be obtained through p-thinning. Later, in (1991), Yannaros
extended the above model to the thinned random walks, and gave the limit
behaviour of p-thinned random walks, as p → 0. Yannaros (1994) investi-
gated the class of renewal processes with Weibull lifetime distribution from
the point of view of the general theory of point processes. On the other
hand, Isham (1980), Chandramohan et al. (1985) discussed Markov chain
thinning in various problems. That is the motivation in this note we will
study properties of thinning and Markov chain thinning of renewal pro-
cesses. Also we will investigate whether some special renewal processes can
be obtained through Markov chain thinning.

In Section 2, we present some properties of completely monotone func-
tions and Laplace transforms. In Section 3, we give some simple properties
related to the Markov chain thinning. In Sections 4 and 5, when A is a
delayed renewal process, we give conditions such that the M -inverse exists,
with interarrival times being gamma-c or negative binomial distributed, re-
spectively. Here a random variable X is said to be Γc(a, λ) distributed, if it
has the Laplace transform (1 + λsc)−a, for some 0 < c ≤ 1, λ > 0, a > 0,
for every s ≥ 0, and the delayed gamma-c renewal process can be defined
similarly. Gamma-c distribution was studied by Huang and Chen (1989)
and (1991). Let Z be a nonnegative random variable having the distribu-
tion function H so that H has support in [0,∞), namely H(0−) = 0. The
Laplace transform of Z or H is the function ĥ on [0,∞) given by

ĥ(s) = E(e−sZ) =
∫ ∞

0

e−sxdH(x) .

In Section 6, we give an example of delayed renewal process which does
not belong to any of the two classes discussed in Sections 4 and 5, and a
stationary Markov chain such that the M -inverse exists. Finally, in Sec-
tion 7, we discuss some unsolved problems of inverses of thinned renewal
processes.

WhenN is a delayed renewal process, let {Xi, i ≥ 1} be the sequence of
interarrival times with G being the distribution function of X1 and F being
the distribution function of {Xi, i ≥ 2}, where F (0) = G(0) = 0. Also let
ĝ(s) and f̂(s) denote the Laplace transforms of G and F , respectively.
Given the stationary Markov chain {χi, i ≥ 1}, it can be derived easily
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(see, e.g., Isham (1980)) that

ξ̂(s) =
pĝ(s) + (α0 − p)f̂(s)ĝ(s)

1− (1− α0)f̂(s)
, (2)

η̂(s) =
α1f̂(s) + (α0 − α1)f̂2(s)

1− (1− α0)f̂(s)
, (3)

where ξ̂(s) = E(e−sY1), η̂(s) = E(e−sY2) and {Yi, i ≥ 1} is the sequence of
interarrival times of the thinned point process A which is a delayed renewal
process also. Note that the delayed renewal process N is stationary if and
only if

G(x) =

∫ x

0
(1− F (y))dy
E(X2)

, x ≥ 0, (4)

or equivalently

ĝ(s) =
1

E(X2)s
(1− f̂(s)), s > 0 . (5)

2. Preliminaries

First a function ψ on (0,∞) is called completely monotone if it possesses
derivatives ψ(n) of all orders and

(−1)nψ(n)(s) ≥ 0, (6)

for each n ≥ 0 and each s in (0,∞) .The following is a useful characteriza-
tion of Laplace transforms of measures on (0,∞) due to Chung (1974).

Theorem 1. A function ψ on (0,∞) is the Laplace transform of a distri-
bution function B, namely

ψ(s) =
∫ ∞

0

e−sxdB(x),

if and only if it is completely monotone in (0,∞) with ψ(0+) = 1.

In the following we give two criteria of completely monotone functions
which can be found in books such as Feller (1971).
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Criterion 1. If ψ and φ are completely monotone so is their product ψφ.

Criterion 2. If ψ is completely monotone and φ a positive function with
a completely monotone derivative then ψ(φ) is completely monotone.

The next result was proved by Kolsrud (1986), which gives a simple
consequence of Bernstein functions. Here a function φ on (0,∞) is said to
be a Bernstein function if it has a completely monotone derivative, i.e. if
(−1)nφ(n)(s) ≤ 0, ∀s > 0, for n = 1, 2, · · ·.

Lemma 1. If φ is a Bernstein function with φ(0+) = 1, then for any α in
(0, 1], 0 < p < 1, the function (p + (1 − p)φα)−1 is the Laplace transform
of a probability measure.

As mentioned in Section 1, let N be a renewal process with interarrival
distribution function F , then Np is also a renewal process with interarrival
distribution function G. Let f̂ and ĝ be the Laplace transforms of F and
G, respectively. Yannaros (1988c) gave the relation of f̂ and ĝ, and proved
the following lemma.

Lemma 2. The function f̂ = ĝ/(p+ (1− p)ĝ) is completely monotone for
every p ∈ (0, 1], if and only if ĝ = 1/(1+φ), where φ is a Bernstein function
with φ(0+) = 0.

In Lemma 2, if ĝ = 1/(1 + φ), then f̂ = 1/(1 + pφ), which gives a
description of the class of completely monotone functions.

3. Some basic properties for thinning via a Markov chain

In this section we give some elementary theorems. First we characterize
the class of ordinary renewal processes.

Theorem 2. Assume N is an ordinary renewal process which is thinned
by a stationary Markov chain {χi, i ≥ 1} as defined in Section 1. Then
the thinned point process A is an ordinary renewal process if and only if
{χi, i ≥ 1} is an independent sequence.

Proof. From (2) and (3) we find that A is an ordinary renewal process if
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and only if

α1f̂(s) + (α0 − α1)f̂2(s) = pf̂(s) + (α0 − p)f̂2(s), s > 0, (7)

or

(p− α1)f̂(s)(f̂(s)− 1) = 0, s > 0 . (8)

As 0 < f̂(s) < 1, s > 0, (8) is equivalent to α1 = p.
On the other hand, the assumption that {χi, i ≥ 1} is a stationary

Markov chain gives p = α1p+α0(1− p). This together with α1 = p implies
p = 1 or α0 = p. Obviously, either α0 = α1 = p or p = 1, implies {χi, i ≥ 1}
is an independent sequence.

Conversely, it is easy to see that if {χi, i ≥ 1} forms an independent
sequence then A is an ordinary renewal process. This completes the proof.

The “if” part of the following corollary is well known, the “only if”
part can be proved by using Theorem 2 and the fact that Poisson process
is also an ordinary renewal process.

Corollary 1. Let N be a Poisson process and {χi, i ≥ 1} be a sta-
tionary Markov chain. Then A is Poisson if and only if {χi, i ≥ 1} is an
independent sequence.

The next theorem is about stationary renewal process.

Theorem 3. Let N be a delayed renewal process, {χi, i ≥ 1} be a
stationary Markov chain. Then A is a stationary renewal process if and
only if N is a stationary renewal process.

Proof. If N is stationary, then ĝ(s) = (E(X2)s)−1(1− f̂(s)). Substituting
this into (2), yields

ξ̂(s) =
(p+ (α0 − p)f̂(s))(1− f̂(s))

E(X2)s(1− (1− α0)f̂(s))
. (9)

The stationarity of {χi, i ≥ 1} in turn implies p = α1p + α0(1 − p), or
α0 − p = (α0 −α1)p. Hence (9) can be rewritten as, by replacing α0 − p by
(α0 − α1)p,

ξ̂(s) =
p

E(X2)s
(1− α1f̂(s) + (α0 − α1)f̂2(s)

1− (1− α0)f̂(s)
) (10)
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=
p

E(X2)s
(1− η̂(s)) .

This proves A is a stationary renewal process and the “if ” part is obtained.
Conversely, assume A is a stationary renewal process, then

ξ̂(s) =
1

E(Y2)s
(1− η̂(s)) . (11)

In view of (2) and (3), (11) implies

pĝ(s) + (α0 − p)f̂(s)ĝ(s)

1− (1− α0)f̂(s)
=

p

E(X2)s
(1− α1f̂(s) + (α0 − α1)f̂2(s)

1− (1− α0)f̂(s)
) . (12)

Note that since {χi, i ≥ 1} is stationary,

E(Y2) =
1− α1 + α0

α0
E(X2) =

1
p
E(X2) . (13)

Again substituting α0 − p by (α0 − α1)p in the left side of (12) and after
some simplifications, gives

ĝ(s) =
1

E(X2)s
(1− f̂(s)) . (14)

Therefore N is a stationary renewal process as required. This completes
the proof of this theorem.

We also have the following immediate consequence which can be com-
pared with Corollary 1.

Corollary 2. Let N be an ordinary renewal process, {χi, i ≥ 1} be a
stationary Markov chain. Then A is a stationary renewal process if and
only if N is Poisson process.

Proof. From Theorem 3 we obtain that A is a stationary renewal pro-
cess if and only if N is a stationary renewal process. Yet the only ordinary
stationary renewal process is Poisson. This completes the proof.

4. Delayed gamma-c renewal process

It is desirable to know that given an arbitrarily delayed renewal pro-
cess A and a sequence of Markov chain {χi, i ≥ 1}, whether there exists
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an original process N , i.e., the M -inverse of A, such that A can be ob-
tained through the Markov chain thinning. When {χi, i ≥ 1} is an i.i.d.
sequence with P (χi = 1) = p, Yannaros (1988a) has shown that a renewal
process cannot be obtained through the thinning of a non-renewal process
for any p ≤ 1. That is the class of renewal processes is closed under inverse
thinning. Yannaros (1988b) also gave necessary and sufficient condition for
a delayed gamma renewal process to be a Cox process. Note that a Cox
process can be viewed as a Poisson process with a random intensity.

In the following let A be a delayed gamma-c renewal process as de-
fined in Section 1 with interarrival distribution functions H and K, which
are both gamma-c with shape parameters β and α, respectively, and for
simplicity we assume both scale parameters equal to 1 (hence ξ̂(s) =∫∞
0
e−sxdH(x) = (1 + sc)−β and η̂(s) =

∫∞
0
e−sxdK(x) = (1 + sc)−α);

and let {χi, i ≥ 1} be a stationary Markov chain as defined in Section 1.
We find conditions for the existence of an ordinary renewal process to be
the M -inverse of A. In the special case c = 1, A becomes a delayed gamma
renewal process.

Case 1. α = β.

In this case A becomes an ordinary renewal process. Hence by Theorem
2, we obtain {χi, i ≥ 1} must be an independent sequence. So this reduces
to the problem of determining the p-inverse. The case p = 1 is trivial, A is
the inverse of itself for every α > 0. For every 0 < p < 1, from (2) and (3)
with ĝ(s) = f̂(s), we obtain

f̂(s) =
ξ̂(s)

p+ (1− p)ξ̂(s)
.

Since ξ̂(s) = η̂(s) = (1 + sc)−α, it yields

f̂(s) =
1

p(1 + sc)α + (1− p)
. (15)

As f̂(0+) = 1, being a Laplace transform, f̂(s) must be completely mono-
tone. In order to determine the conditions such that f̂(s) is completely
monotone, we consider the following three situations: 0 < α ≤ 1, 1 < α ≤
1/c, and α > 1/c, where 0 < c ≤ 1.

Firstly, we study the case 0 < α ≤ 1. Let φ(s) = 1+sc, then φ(0+) = 1.
Since for 0 < c ≤ 1,

(−1)nφ(n)(s) ≤ 0, s > 0,
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φ(s) is a Bernstein function. Consequently, f̂(s) as defined in (15), is a
Laplace transform by Lemma 1.

Although for the case 1 < α ≤ 1/c, we are unable to determine whether
the function f̂(s) is a Laplace transform, we have some partial result. Let
α be an integer, and φ(s) = (1 + sc)α − 1, then φ(0+) = 0. Applying the
Binomial theorem, we have

φ(s) = (1 + sc)α − 1 =
α∑

j=0

(
α

j

)
scj − 1,

hence

φ′(s) =
α∑

j=0

(
α

j

)
cjscj−1 .

It is easy to see that φ(s) has a completely monotone derivative if cj ≤ 1
for every j = 0, 1, · · · , α. Thus φ(s) is a Berstein function if cα ≤ 1. From
Lemma 2, f̂(s) as defined in (15), is a Laplace transform.

Finally, consider the case α > 1/c. Again let φ(s) = (1+ sc)α− 1, then
φ(0+) = 0. It is easy to get

φ′(s) = α(1 + sc)α−1csc−1,

φ′′(s) = α(α− 1)(1 + sc)α−2c2s2c−2 + α(1 + sc)α−1c(c− 1)sc−2

= cα(1 + sc)α−2{(cα− 1)sc + (c− 1)} .

Thus, φ′′(s) ≥ 0 when s is large enough. Hence φ(s) is not a Bernstein
function. From Lemma 2, f̂(s) as defined in (15), is not a Laplace trans-
form.

Case 2. α > β.

First note that as A is not an ordinary renewal process, by Theorem
2, {χi, i ≥ 1} cannot be an independent sequence. That is α0 6= α1. From
(2) and (3) with ĝ(s) = f̂(s), we obtain

ξ̂(s)
η̂(s)

=
p+ (α0 − p)f̂(s)

α1 + (α0 − α1)f̂(s)
. (16)

Substituting ξ̂(s) = (1 + sc)−β , η̂(s) = (1 + sc)−α and α0 − p = p(α0 −α1)
into (16), then solving for f̂(s), yields

f̂(s) =
p(1 + sc)−α − α1(1 + sc)−β

(α0 − α1)((1 + sc)−β − p(1 + sc)−α)
. (17)
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Being a Laplace transform,

f̂
′
(s) =

p(1− α1)(β − α)
α0 − α1

· (1 + sc)β−α−1

(1− p(1 + sc)β−α)2
≤ 0 . (18)

Thus α0 > α1. Again (17) can be rewritten as

f̂(s) =
1

α0 − α1
· p− α1(1 + sc)α−β

(1 + sc)α−β − p
. (19)

For α1 6= 0, since α > β, the function {(1+sc)α−β−p} is positive for every
s > 0, and the function {p−α1(1 + sc)α−β} is negative for s large enough.
Consequently, f̂(s) < 0, f̂(s) as defined in (19), is not a Laplace transform
for α1 6= 0.

For the special case α1 = 0, we investigate when the function

f̂(s) =
1
α0

· p

(1 + sc)α−β − p
(20)

is a Laplace transform. By (1), (20) becomes

f̂(s) =
1− p

(1 + sc)α−β − p
. (21)

Again, let

φ(s) =
1

p(1− p)
(1 + sc)α−β − 1

p(1− p)
. (22)

Since φ(0+) = 0, the problem becomes to determine when the function φ(s)
is a Bernstein function. It can be seen that as in Case 1 by considering the
three situations 0 < α− β ≤ 1, 1 < α− β ≤ 1/c, and α− β > 1/c, parallel
results can be obtained.

Case 3. α < β.

Again (17) can be rewritten as

f̂(s) =
1

α0 − α1
· p(1 + sc)β−α − α1

1− p(1 + sc)β−α
. (23)

Since α0 < α1, if both {p(1 + sc)β−α − α1} and {1 − p(1 + sc)β−α} are
positive, then f̂(s) < 0. It is easy to obtain the inequality

{(α1

p
)

1
β−α − 1} 1

c < s < {(1
p
)

1
β−α − 1} 1

c , α1 6= 1 .
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Therefore, f̂(s) < 0, f̂(s) as defined in (23), is not a Laplace transform for
α1 6= 1.

We now consider the special case α1 = 1. From (1), we have

p =
α0

1 + α0 − α1
=

α0

1 + α0 − 1
= 1 .

This shows that A is the inverse of itself. In other words, given a stationary
Markov chain, the M -inverse exists if α1 = 1 when α < β.

5. Delayed negative binomial renewal process

In the above section, we consider renewal process with continuous in-
terarrival distribution function. In this section we consider the discrete
situation. More precisely, we consider a delayed renewal process with in-
terarrival times being NB(k, θ) and NB(r, θ) distributed (hence ξ̂(s) =

(
θe−s

1− (1− θ)e−s
)k and η̂(s) = (

θe−s

1− (1− θ)e−s
)r); and let {χi, i ≥ 1} be a

stationary Markov chain as defined in Section 1. We find conditions for the
existence of an ordinary renewal process to be the M -inverse of A.

Case 1. k = r.

In this case A becomes an ordinary renewal process. Hence by Theorem
2, we obtain {χi, i ≥ 1} is an independent sequence. So this reduces to
the problem of determining the p-thinning. The case p = 1 is trivial, A is
the inverse of itself for every α > 0. For every 0 < p < 1, from (2) and (3)
with ĝ(s) = f̂(s), we obtain

f̂(s) =
ξ̂(s)

p+ (1− p)ξ̂(s)
.

Since ξ̂(s) = η̂(s) = (
θe−s

1− (1− θ)e−s
)r, it yields

f̂(s) =
θr

p(es − (1− θ))r + (1− p)θr
. (24)

Let

φ(s) = (
es − (1− θ)

θ
)r − 1 . (25)

It is easy to obtain

φ′(s) = (
1
θ
)rr(es − (1− θ))r−1es,
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φ′′(s) = (
1
θ
)rr{(r − 1)(es − (1− θ))r−2e2s + (es − (1− θ))r−1es}

= (
1
θ
)rr(es − (1− θ))r−2es{res − (1− θ)} .

Since r is an integer, φ′′(s) is positive for every s > 0. Hence φ(s) is not a
Bernstein function. Consequently, by Lemma 2, f̂(s) as defined in (24) is
not a Laplace transform.

Case 2. k < r.

First note that as A is not an ordinary renewal process, by Theorem 2
{χi, i ≥ 1} cannot be an independent sequence. Hence α0 6= α1. From (2)
and (3) with ĝ(s) = f̂(s), we obtain

ξ̂(s)
η̂(s)

=
p+ (α0 − p)f̂(s)

α1 + (α0 − α1)f̂(s)
. (26)

Substituting ξ̂(s) = (
θe−s

1− (1− θ)e−s
)k, η̂(s) = (

θe−s

1− (1− θ)e−s
)r and α0 −

p = p(α0 − α1) into (26), then solving for f̂(s), yields

f̂(s) =
1

α0 − α1
·
α1(

θe−s

1− (1− θ)e−s
)k − p(

θe−s

1− (1− θ)e−s
)r

p(
θe−s

1− (1− θ)e−s
)r − (

θe−s

1− (1− θ)e−s
)k

=
1

α0 − α1
· α1θ

k(es − (1− θ))r − p θr(es − (1− θ))k

p θr(es − (1− θ))k − θk(es − (1− θ))r
. (27)

Being a Laplace transform,

f̂
′
(s) =

p(1− p)(k − r)
α0 − α1

· θk+r(es − (1− θ))k+r−1

(p θr(es − (1− θ))k − θk(es − (1− θ))r)2
≤ 0 .(28)

Thus α0 > α1, and from (1) we have α0 > p > α1.
Again (27) can be rewritten as

f̂(s) =
1

α0 − α1
· α1(es − (1− θ))r−k − p θr−k

p θr−k − (es − (1− θ))r−k
. (29)

If α1 6= 0, since θ ≤ es − (1− θ), {α1(es − (1− θ))r−k − p θr−k} is positive
for s large enough and {p θr−k − (es − (1 − θ))r−k} is negative for every
s > 0, we obtain f̂(s) < 0 for s large enough. Therefore, f̂(s) as defined in
(29), is not a Laplace transform when α1 6= 0.
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Now consider the case α1 = 0. In this case

f̂(s) =
1
α0

· p θr−k

(es − (1− θ))r−k − p θr−k
.

Furthermore, by using (1), we obtain

f̂(s) =
1− p

( es−(1−θ)
θ )r−k − p

. (30)

Again, let

φ(s) =
1

p(1− p)
(
es − (1− θ)

θ
)r−k − 1

p(1− p)
.

Then

φ′(s) =
1

p(1− p)θr−k
(r − k)(es − (1− θ))r−k−1es,

φ′′(s) =
r − k

p(1− p)θr−k
{(r − k − 1)(es − (1− θ))r−k−2e2s + (es − (1− θ))r−k−1es}

=
(r − k)(es − (1− θ))r−k−2es

p(1− p)θr−k
{(r − k)es − (1− θ)} .

Since r − k is an integer, φ′′(s) is positive for every s > 0. Hence φ(s)
is not a Bernstein function. Consequently, f̂(s) as defined in (30), is not
a Laplace transform by Lemma 2. This shows that when r > k, for any
Markov chain, there does not exist an ordinary renewal process N such
that A can be obtained through this Markov chain thinning.

Case 3. k > r.

Again from (27), by a similar argument as in Case 2, we obtain

f̂(s) =
1

α0 − α1
· α1 θ

k−r − p(es − (1− θ))k−r

p(es − (1− θ))k−r − θk−r
, (31)

here α0 < α1, and from (1), we have α0 < p < α1.
Similarly, if both {α1 θ

k−r−p(es−(1−θ))k−r} and {p(es−(1−θ))k−r−
θk−r} are negative, then f̂(s) < 0. It is easy to obtain the inequality

((
α1

p
)

1
k−r − 1)θ + 1 < es < ((

1
p
)

1
k−r − 1)θ + 1, α1 6= 1 .

Therefore, f̂(s) < 0, and f̂(s) is not a Laplace transform when α1 6= 1.
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Now consider the special case α1 = 1. From (1), we have

p =
α0

1 + α0 − α1
=

α0

1 + α0 − 1
= 1 .

This shows that A is the inverse of itself. In other words when k > r, given
a Markov chain, the M -inverse exists if and only if α1 = 1.

6. An example

In Sections 4 and 5, where A is a delayed renewal process, we give
conditions such that the M -inverse exists, with interarrival times being
gamma-c or negative binomial distributed, respectively. For some special
delayed renewal process A, which does not belong to any of the above two
classes, the M -inverse may also exist. We give an example in this section.

Let A be a delayed renewal process with distribution functions of the
interarrival times {Yi, i ≥ 1} being :

P(Y1 ≤ x) = 1− 1
2
(2 + x)e−2x, x > 0,

P(Yk ≤ x) = 1− (1 + x)e−2x, x > 0, k ≥ 2,

and P (Yk ≤ x) = 0, if x < 0. Then the Laplace transforms of Y1 and Y2

are

ξ̂(s) = E(e−sY1) =
4 + 1.5s
(2 + s)2

, s > 0, (32)

and

η̂(s) = E(e−sY2) =
4 + s

(2 + s)2
, s > 0, (33)

respectively. In the following we find the conditions that given A, and a
stationary Markov chain {χi, i ≥ 1}, as defined in Section 1, when the
M -inverse of A exists.

From (2) and (3) with ĝ(s) = f̂(s), we obtain

ξ̂(s)
η̂(s)

=
p+ (α0 − p)f̂(s)

α1 + (α0 − α1)f̂(s)
. (34)

Substituting (32), (33) and α0 − p = p(α0 − α1) into (34), then solving for
f̂(s), yields

f̂(s) =
1

α0 − α1
· (p− 1.5α1)s+ 4(p− α1)

(1.5− p)s+ 4(1− p)
. (35)
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Being a Laplace transform,

f̂
′
(s) =

1
α0 − α1

· 2p(α1 − 1)
((1.5− p)s+ 4(1− p))2

≤ 0 . (36)

Thus α0 > α1. Note that from (1) we have α0 > p > α1.
Since (−1)nf̂ (n)(s) ≥ 0,∀ n ≥ 1, s > 0, with α0 > α1, we only need

to find the conditions such that whether f̂(s) ≥ 0,∀s > 0. The problem is
equivalent to determining when p−1.5α1 ≥ 0. Solving the above inequality
with p =

α0

1 + α0 − α1
and noting that 0 ≤ α0, α1 ≤ 1, yields

1 ≥ α0 ≥
3α1(1− α1)

2− 3α1
and α1 ≤

3−
√

3
3

. (37)

(37) is then a necessary and sufficient condition for f̂(s) being a Laplace
transform. This is also the necessary and sufficient condition for A having
an M -inverse.

7. Discussion

As mentioned in Theorem 1, a function ψ on (0,∞) is a Laplace trans-
form if and only if it is completely monotone with ψ(0+) = 0. Usually,
it is difficult to determine whether a function is completely monotone.
It is also difficult to determine whether the function φ(s) = (1 + sc)α,
0 < c ≤ 1, 1 < α ≤ 1/c and s > 0, is a Bernstein function. In this work we
have solved the problem for the case that α is an integer. The case that α
is not an integer will be investigated in the future work.
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