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Abstract

It is well known that if W is N (0, 1) distributed, then W 2 has the χ2
1 distribu-

tion. Roberts and Geisser(1966) generalized this result and gave a necessary and

sufficient condition for the square of a random variable to be gamma distributed. In

this note, first the class of random variables is characterized when the distribution

of its nth power is given, where n is a positive integer. Next, some characterization

results based on certain quadratic statistics are also provided.
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1. Introduction

It is well known that if W is N (0, 1) distributed, then W 2 has the χ2
1 distribution.

Roberts and Geisser(1966) generalized this result and gave a necessary and sufficient

condition for the square of a random variable to be gamma distributed. In Roberts

(1971), it was further explored that a necessary and sufficient condition was given

for the nth, n ≥ 0, power of a random variable to be gamma distributed. On the

other hand, from elementary algebra, it is well-known that the equation xn = b,

where n is a positive integer, b > 0, has a unique real number solution x = b1/n, if n

is odd; and has two real number solutions x = b1/n and x = −b1/n, if n is even. From

this, it is natural to ask that when the distribution of the nth power of a random

variable X is given, what can we say about the distribution of X? The answer of

this question will be provided in Section 2.

1



Next, some characterization results based on certain quadratic statistics are pre-

sented, which are generalizations of Roberts and Geisser(1966), Roberts(1971), and

Gupta et al.(2004).

2. Characterization of distributions of random vari-
ables whose nth power is given

Let fX(x), x ∈ A, be the probability density function (p.d.f.)of a continuous

random variable X, and the corresponding distribution function of X be

FX(x) =

∫ x

−∞
fX(t)dt, ∀x ∈ R.

Also let the probability mass function(p.m.f.) fX(x) of a discrete random variable

X be given by

fX(x) = P (X = x), x ∈ A,

where A is the support of the distribution of X.

We investigate the problem discussed above and present the main result of this

section in the following .

Theorem 1 Let n be a positive integer, g(y), y ∈ A, a continuous p.d.f. Also

assume A ⊂ [0,∞), when n is even. Then Xn has g as its p.d.f., if and only if the

p.d.f. of X is

fX(x) =

{
nxn−1g(xn) , n is odd,

s(x)|x|n−1g(xn) , n is even,
(1)

where x ∈ B = {x|x ∈ R, xn ∈ A}, s(x) ≥ 0, and s(x) + s(−x) = n, ∀x ∈ B.

Proof. Let Y = Xn. When n is odd, the transformation between X and Y is one

to one, the result is obvious. We now prove the case that n is even.

First we show the sufficiency. Observe that fY (y), the p.d.f. of Y , is given by

fY (y) = (ny1−1/n)−1(fX(y1/n) + fX(−y1/n)), y ∈ A.

It follows that

fY (y) = (ny1−1/n)−1(s(y1/n) + s(−y1/n))y(n−1)/ng(y)

= g(y), y ∈ A,
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using the fact that s(x) + s(−x) = n, ∀x ∈ B.

Next we show the necessity. Since the p.d.f. of the random variable Y , g(y),

y ∈ A, is continuous, it follows that the distribution FX(x) = P (X ≤ x) is absolutely

continuous with respect to Lebesgue measure, and write fX(x) as the p.d.f. of X.

Define

s(x) = fX(x)|x|1−n(g(xn))−1, x ∈ B.(2)

We will show that this A satisfies s(x) + s(−x) = n, ∀x ∈ B. Given the p.d.f. of X

fX(x) = s(x)|x|n−1g(xn), x ∈ B,(3)

the p.d.f. of Y is

fY (y) = (ny1−1/n)−1(s(y1/n) + s(−y1/n))y(n−1)/ng(y)

= n−1(s(y1/n) + s(−y1/n))g(y), y ∈ A.

By the assumption, the p.d.f. of Y is g(y), hence almost everywhere in A, s(y1/n) +

s(−y1/n) = n, or equivalently, s(x) + s(−x) = n, almost everywhere in B, which

completes the proof.

¿From the above theorem, for every even integer n, unlike the case in real equa-

tion that there are only two real solutions for the equation xn = b, where b > 0,

there are infinitely many nonnegative functions s(x) satisfy s(x)+ s(−x) = n. Con-

sequently, there are infinitely many distributions for X, satisfying Xn d
= Y , when

the distribution of Y is given.

We have the following immediate consequence.

Corollary 1 Let n be a positive integer. The distribution of Xn belongs to the

exponential family, with p.d.f.

g(y) = c(θ)h(y)e
∑k

j=1 wj(θ)tj (y), y ∈ A,(4)

if and only if the p.d.f. of X is

fX(x) =

{
nxn−1c(θ)h(xn)e

∑k
j=1 wj(θ)tj(xn) , n is odd,

c(θ)s(x)|x|n−1h(xn)e
∑k

j=1 wj(θ)tj (xn) , n is even,
(5)
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where x ∈ B = {x|xn ∈ A}, s(x) ≥ 0, and s(x) + s(−x) = n, ∀x ∈ B.

As gamma distribution belongs to the exponential family, Corollary 1 is a gen-

eralization of Roberts and Geisser(1966).

Example 1 Note that by Corollary 1, X2 has a χ2
1 distribution with the p.d.f.

g(y) =
1√
2π

y−1/2e−y/2, y > 0,

if and only if the p.d.f. of X is

fX(x) =
1√
2π

|x||x|−1e−x2/2s(x)

=
1√
2π

e−x2/2s(x), x ∈ R,

where

s(x) + s(−x) = 2, ∀x > 0.(6)

Obviously s(x) = 2F (x) satisfies (6), where F is a symmetric distribution, that is

F (x) + F (−x) = 1, ∀x ∈ R.(7)

This result is exactly the Corollary 1 of Roberts and Geisser(1966). Hence the

random variable Z with a SN (λ) distribution or SGN (λ1, λ2) distribution, satisfies

Z2 ∼ χ2
1. Here Z has a skew-normal distribution with parameter λ > 0, denoted by

Z ∼ SN (λ), if its p.d.f. is given by

f(z|λ) = φ(z)2Φ(λz), z ∈ R,

where φ and Φ are the p.d.f. of N (0, 1) and distribution function of N (0, 1), respec-

tively (see Azzalini (1985)). Moreover U has a skew-generalized normal distribution

with parameters λ1 ∈ R, λ2 ≥ 0, denoted by U ∼ SGN (λ1, λ2), if its p.d.f. is given

by

f(u|λ1, λ2) = 2φ(u)Φ(
λ1u√

1 + λ2u2
), u ∈ R

(see Arellano-Valle et al. (2003)). Note that SN (0) = N (0, 1), SGN (0, λ2) =

N (0, 1). So both skew-normal and skew-generalized normal classes contain the

N (0, 1) distribution.
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Now let X1 and X2 be two random variables satisfying Xn
1

d
= Xn

2 , where n is an

even integer. Also let ξ be an even function. Then ξ(x1)
d
= ξ(x2). In particular let

X1 ∼ N (0, 1), X2 ∼ SN(λ), X3 ∼ SGN (λ1, λ2). Then ξ(X1)
d
= ξ(X2)

d
= ξ(X3), for

every even function ξ.

We also state a generalization of Roberts(1971), the proof is exactly the same as

that of Theorem 1 hence is omitted.

Corollary 2 Let n ∈ R \ {0}, g(y), y ∈ A, be a continuous p.d.f. Then |X|n has g

as its p.d.f., if and only if the p.d.f. of X is

fX(x) = s(x)|x|n−1g(|x|n),(8)

where x ∈ B = {x|x ∈ R, xn ∈ A}, and s(x) + s(−x) = n, ∀x ∈ B.

To this end, we state without proof a theorem for the discrete case.

Theorem 2 Let n be a positive integer, g(y), y ∈ A, a p.m.f., where A is assumed

to be a finite or countable set. Also assume A ⊂ [0,∞), when n is even. Then Xn

has g as its p.m.f., if and only if the p.m.f. of X is

fX(x) =

{
g(xn) , n is odd,

s(x)g(xn) , n is even,

where x ∈ B = {x|x ∈ R, xn ∈ A}, s(x) ≥ 0, and s(x) + s(−x) = n, ∀x ∈ B.

3. Characterizations based on quadratic statistics

Apparently other than N (0, 1) distribution, there are infinitely many distri-

butions for X, such that X2 is χ2
1 distributed. With some other types of condi-

tions, characterizations of the N (0, 1) distribution can also be obtained. Roberts

and Geisser(1966) showed that if X1 and X2 are independent and identically dis-

tributed(i.i.d.) random variables, then X2
1 , X

2
2 , and 1

2
(X1 + X2)

2 are all χ2
1 dis-

tributed, if and only if X1 and X2 are N (0, 1) distributed. A generalization of

Roberts and Geisser(1966) was given in Theorem 3 of Gupta et al.(2004), where
1
2
(X1+X2)

2 was replaced by (AX1+BX2)
2, A, B 	= 0 and A2+B2 = 1. Roberts(1971)
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gave a sufficient condition for a quadratic form to be χ2
k distributed, and stated a

qualified necessary condition.

Based on some quadratic statistics, and under the assumption that the distri-

bution is uniquely determined by its sequence of moments, Gupta et al.(2004) gave

two characterization results for the SN (λ) distribution. Their results are stated in

the following with a more general form.

Theorem 3 (Gupta et al.(2004) Theorem 1). Let X and Y be i.i.d. F0, a given dis-

tribution that is uniquely determined by its sequence of moments where all of them

do exist. Denote by G0 the distribution of X2 (and Y 2), and by H0 the distribution

of 1
2
(X + Y )2. Let X1 and X2 be i.i.d. F , an unspecified distribution with sequence

of moments which all exist. Then X2
1 ∼ G0, X2

2 ∼ G0, and 1
2
(X1 + X2)

2 ∼ H0, if

and only if F (x) = F0(x) or F (x) = 1 − F0(−x).

Theorem 4 (Gupta et al.(2004) Theorem 2). Let F0 be a given distribution

uniquely determined by its sequence of moments where all of them exist. Let Y ∼ F0.

Let G0 be the distribution of Y 2, and H0 be the distribution of (Y +a)2, where a 	= 0

is a constant. Let X ∼ F , an unspecified distribution which admits moments of all

order. Then X2 ∼ G0, and (X + a)2 ∼ H0, if and only if F = F0.

In this section some characterization of distributions based on certain quadratic

statistics are investigated. To begin with, a lemma by Gupta et al. (2004) is pre-

sented.

Lemma 1 ( Gupta et al.(2004) Lemma 6). The skew-normal distribution is uniquely

determined by its sequence of moments.

Now we have the following generalized result.

Theorem 5 Let X and Y be i.i.d. F0, a given distribution that is uniquely

determined by its sequence of moments where all of them exist. Denote by G0 the

distribution of X2(and Y 2), and by H0 the distribution of (X+aY 2k)2 for some fixed

nonnegative integer k and a 	= 0. Let X1 and X2 be i.i.d. with distribution function

F , an unspecified distribution with sequence of moments where all of them exist.
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Then X2
1 ∼ G0 , X2

2 ∼ G0 and (X1 + aX2k
2 )2 ∼ H0, if and only if F (x) = F0(x).

Proof: The sufficiency follows directly from the definition of F0, G0 and H0. To

prove the necessity, first note that since all moments of F0 exist and X and Y are

independent, it follows that all moments of G0 and H0 do exist. Define the following

for i = 1, 2, · · ·.
µi is the ith moment of F ,

µ0
i is the ith moment of F0.

Since both (X1 + aX2k
2 )2 and (X + aY 2k)2 ∼ H0, we have

E[(X1 + aX2k
2 )2]l = E[(X + aY 2k)2]l, ∀l = 1, 2, · · · .(9)

The even moments of F coincide with the even moments of F0, i.e.,

µ2i = µ0
2i ∀i = 1, 2, · · · ,(10)

since X2
1 ∼ G0 and X2 ∼ G0. So, we will only proceed by induction to show that

all the odd moments of F coincide with the odd moments of F0, i.e.

µ2i−1 = µ0
2i−1 ∀i = 1, 2, · · · .(11)

First, taking l = 1 in (9) and using (10), we get µ1 = µ0
1. Hence, the induction

statement (11) is true when i = 1. Now suppose µ2i−1 = µ0
2i−1, i = 1, 2, · · · , n.

Again from (9) we have

2l∑
m=0

(
2l

m

)
a2l−mµmµ2k(2l−m) =

2l∑
m=0

(
2l

m

)
a2l−mµ0

mµ0
2k(2l−m)(12)

holds ∀l = 1, 2, · · ·. Take l = n + 1, then (12) becomes

2n∑
m=0

(
2n + 2

m

)
a2(n+1)−mµmµ2k(2n+2−m) + aµ2n+1µ2k + µ2n+2(13)

=

2n∑
m=0

(
2n + 2

m

)
a2(n+1)−mµ0

mµ0
2k(2l−m) + aµ0

2n+1µ2k + µ0
2n+2.

By (10), all terms with even moments in the left–hand side of (13) cancel with the

corresponding terms in the right–hand side of (13). Also by the induction hypothesis,

µ2i−1 = µ0
2i−1 ∀i = 1, 2, · · · , n. It follows that (13) would give µ2n+1 = µ0

2n+1. Hence,
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the induction argument is complete which proves that µ2i−1 = µ0
2i−1, ∀i = 1, 2, · · ·.

Consequently, we have obtained µi = µ0
i , ∀i = 1, 2, · · ·, and it follows that F = F0.

In Theorem 5, we give a characterization result based on the distribution X2
1 ,

X2
2 and (X1 + aX2k

2 )2 for some fixed nonnegative integer k and a 	= 0. Obviously,

unlike the situation in Theorem 1, we cannot replace the power 2 by an arbitrary

integer power n ≥ 2 in Theorem 5. On the other hand, it is interesting to know

whether the result of Theorem 5 still holds if the quadratic statistic (X1 + aX2k
2 )2 is

replaced by the quadratic statistic (X1 + aX2k+1
2 )2 for some fixed positive integer k

and a 	= 0. We are unable to prove the “only if ”part in this case. In addition , we

also consider to replace (X1 +aX2k
2 )2 by the form such as (Xp

1 +aX2k
2 )2 where p ≥ 3

is odd. Yet even for the simplest case (X3
1 + X2

2 )2, we can only obtain µ2i = µ0
2i and

µ6i−3 = µ0
6i−3, ∀i = 1, 2, · · ·. In other words we cannot arrive at all of the moments

of X and X1 are equal.

Again, it is easy to see Theorem 4 is an immediate consequence of Theorem 5.

We give two more simple corollaries in the following.

Corollary 3 Let X1 and X2 be i.i.d. F , an unspecified distribution which admits

moments of all order. Then X2
1 ∼ χ2

1, X2
2 ∼ χ2

1 and (X1 +aX2k
2 )2 ∼ H0(λ), for some

fixed nonnegative integer k and a 	= 0, if and only if F = SN (λ), where H0(λ) is

the distribution of (X + aY 2k)2when X and Y are i.i.d. SN (λ) random variables.

Proof: Take F0 = SN (λ), so that G0 = χ2
1 and H0 = H0(λ). Apply Theorem 5 and

note that SN (λ) distribution is uniquely determined by its moments by Lemma 1.

Corollary 4 Let X1 and X2 be i.i.d. F , an unspecified distribution which admits

moments of all order. Then X2
1 ∼ χ2

1, X2
2 ∼ χ2

1 and (X1 + aX2k
2 )2 ∼ H0, for some

fixed nonnegative integer k and a 	= 0, if and only if F = N (0, 1), where H0 is the

distribution of (X + aY 2k)2 when X and Y are i.i.d. N (0, 1) random variables.

Proof: The result is obtained from Corollary 3 by taking λ = 0. Alternatively, take

F0 = N (0, 1), so that G0 = χ2
1 and apply Theorem 5.

4. Conclusion

The characterizations we give in Section 3, need the assumption that the distri-
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butions are determined by their moments, respectively. Although this assumption

is not needed in Roberts and Geisser(1966). For X1 and X2 being i.i.d., along the

lines of Roberts and Geisser(1966), it is easy to obtain X2
1 , X2

2 and (AX1 + BX2)
2,

where A = 1/
√

2, B = −1/
√

2, are all χ2
1 distributed, if and only if X1 and X2 are

N (0, 1) distributed. Yet without the moments assumption, we cannot find other

similar characterizations for different pairs of A and B.
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