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Abstract. Based on the exponential and Poisson characteristics of the Poisson
process, in this work we present some characterizations of the Poisson process
as a renewal process. More precisely, let gt be the residual life at time t of the
renewal process A � fA�t�; tV 0g, under suitable condition, we prove that if
Var�gt� � E2�gt�; EtV 0, then A is a Poisson process. Secondly, we show that
if Var�A�t�� is proportional to E�A�t��, then A is a Poisson process also, and
Var�A�t�� � E�A�t��.
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1. Introduction

In this work, we will investigate what kind of conditions are necessary to force
a renewal process to become a Poisson process. Let fXn; nV 1g be a sequence
of independent and identically distributed (i.i.d.) random variables with com-
mon distribution function F. Throughtout this paper we assume F �0� � 0.
Let S0 � 0, Sn �

Pn
i�1 Xi; nV 1. Also let A�t� � supfnjSn U tg, tV 0, denote

the number of renewals in �0; t�. The random variables dt � tÿ SA�t�; gt �
SA�t��1 ÿ t; and bt � SA�t��1 ÿ SA�t�, will be called respectively ``current life at
t'', ``residual life at t'', and ``total life at t'' of the (ordinary) renewal process
A � fA�t�; tV 0g. In the above set up, if fXn; nV 1g are still assumed to
be independent, but only X2;X3; . . . are identically distributed with the com-
mon distribution function F, while X1 has possibly a di¨erent distribution
function, say H with H�0� � 0, then fXn; nV 1g form the interarrival times of

* Support for this research was provided in part by the National Science Council of the Republic
of China, Grant No. NSC 88-2118-M110-001.



a delayed renewal process, say Ad � fAd�t�; tV 0g. In particular if H�t� �
�E�X2��ÿ1 � t

0 1ÿ F �u� du, then the process becomes a stationary renewal
process, say As � fAs�t�; tV 0g.

When F is exponential, then A becomes a Poisson process. Poisson pro-
cesses are related to many distributions, among them, uniform, exponential
and Poisson distributions are the most important. Many interesting properties
of the Poisson process are more or less based on the characteristics of these
three distributions.

For example, Huang et al. (1993) prove that, given a function G, under
mild conditions, as long as

E�G�dt�jA�t� � n� � E�G�X1�jA�t� � n�; EtV 0; �1�
holds for a single positive integer n, then A is a Poisson process. Li et al.
(1994) and Huang and Su (1997) prove that for some ®xed n and k, k U n, if

E�S r
kjA�t� � n� � atr and E�S s

kjA�t� � n� � bts; EtV 0; �2�
for certain pairs of r and s, where a and b are independent of t, then A has to
be a Poisson process. When A is a Poisson process, the fact that (1) and (2)
hold are based on the so called order statistics property. More precisely, for
the Poisson process A, given A�t� � n;S1 US2 U � � � USn are distributed as
the order statistics of n i.i.d. random variables with the common uniform dis-
tribution on �0; t�. By using this property (1) and (2) can be obtained easily.

When A is a Poisson process, not only Xn, but gt, independent of t, is also
exponentially distributed. This basically is resulted from the memoryless
property of the exponential distribution. Conversely, Gupta and Gupta (1986)
prove that given a function G, under certain conditions, if E�G�gt�� � c;
EtV 0, where c > 0 is a constant, then A is a Poisson process. Huang et al.
(1993) consider an arbitrarily delayed renewal process Ad , and let gd

t denoted
the residual life at t, they claim that for some ®xed positive integer n, if
E�G�gd

t �jAd�t� � n� is independent of t, then Ad is an arbitrarily delayed
Poisson process, which means the distribution of X1 can be arbitrary, while
X1;X2; . . . are i.i.d. exponentially distributed. If Var�gt� is constant and F is
assumed to be continuous, Huang and Li (1993) prove that F is the exponen-
tial distribution function.

On the other hand, a Poisson process also has the superposition property,
which says that the superposition of independent Poisson processes is still a
Poisson process. Conversely, if A is a Poisson process, independent thinned
processes will be obtained through thinning operations on A. This property is
a continuous time analog of the following characteristic of Poisson distribu-
tion: Assume N i.i.d. multinomial trials with k cells are conducted resulting
into Z1;Z2; . . . ;Zk as the numbers of various types of ``successes'' corre-
sponding to the k cells, that is Z1 � Z2 � � � � � Zk � N, then the mutual in-
dependence for any Zi;Zj; 1U i < j U n, forces N to be Poisson distributed
(see Moran (1952) and Patil and Seshadri (1964)). Based on the above Poisson
characteristic, Chandramohan et al. (1985), Chandramohan and Liang (1985)
and Huang (1989) prove that the existence of a pair of uncorrelated thinned
processes implies the renewal process is Poisson. As a byproduct, Chan-
dramohan et al. (1985) prove that for a stationary renewal process As,

Var�As�t�� � E�As�t��; EtV 0; �3�
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if and only if As is a Poisson process. A similar result for an (ordinary) renewal
process is given by Chen (1994). Note that mean and variance are equal is also
an interesting property enjoyed by the Poisson random variable.

In this paper based on the above exponential and Poisson characteristics of
the Poisson process, we present some characterizations of the Poisson process
as a renewal process.

2. Characterizations related to the exponential characteristic

Let A be a renewal process with m1 � E�X1� <y and m2 � E�X 2
1 � <y.

Huang and Li (1993) prove that when F is continuous, Var�gt� � constant
implies that the process A is Poisson. Obviously, when A is a Poisson process,
it is also true that Var�gt� � E2�gt�; EtV 0. Conversely we have the following
result.

Theorem 1. Let F be an absolutely continuous distribution function with density
function F 0. Assume

Var�gt� � E2�gt�; EtV 0:

Then A is a Poisson process.

Proof. The following arguments are very similar to those of Theorem 1 of
Huang and Li (1993). First from the assumption we have

E�g2
t � � 2E2�gt�; EtV 0: �4�

Letting

g�t� � E�gt�;

(4) implies

2g2�t� �
�y

t

�xÿ t�2 dF �x� �
� t

0

E�g2
tÿx� dF�x�

�
�y

t

�xÿ t�2 dF �x� � 2

� t

0

g2�tÿ x� dF�x�

�
�y

0

�x2 ÿ 2xt� t2� dF�x� ÿ
� t

0

�tÿ x�2 dF �x�

� 2

� t

0

g2�tÿ x� dF�x�:

Taking the Laplace transforms with respect to t, gives

2L�g2�t�� � m2

y
ÿ 2m1

y2
� 2

y3
ÿ 2

y3
f�y� � 2L�g2�t��f�y�; �5�
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where

f�y� �
�y

0

eÿyt dF�t�;

and

L�q�t�� �
�y

0

eÿytq�t� dt;

denotes the Laplace transform of the function q�t�. On the other hand, from

E�gt� �
�y

t

�xÿ t� dF�x� �
� t

0

E�gtÿx� dF �x�;

we obtain

L�g�t�� � m1

y
ÿ 1

y2
� 1

y2
f�y� � L�g�t��f�y�: �6�

Now (5) and (6) can be rewritten as

m2

y
ÿ 2m1

y2
� 2 L�g2�t�� ÿ 1

y3

� �
�1ÿ f�y��; �7�

and

m1

y
� L�g�t�� � 1

y2

� �
�1ÿ f�y��; �8�

respectively. Comparing (7) and (8) yields

m2

m1

ÿ 2

y
� 2 L�g2�t�� ÿ 1

y3

� ��
L�g�t�� � 1

y2

� �
;

which is equivalent to

2L�g2�t�� � m2

m1

L�g�t�� � m2

m1

1

y2
ÿ 2

y
L�g�t��: �9�

By the Uniqueness Theorem, (9) implies

2g2�t� � m2

m1

g�t� � m2

m1

tÿ 2

� t

0

g�u� du; EtV 0: �10�

The assumption that F is di¨erentiable implies g is also di¨erentiable. Hence,
taking the derivatives of both sides of (10) with respect to t, it follows

4g�t� ÿ m2

m1

� �
g 0�t� � m2

m1

ÿ 2g�t�; EtV 0: �11�
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Now let t0 � maxftjtV 0; 2g�s� � m2=m1; sU tg, which is well de®ned as from
(4) 2g�0� � m2=m1. Assume t0 <y, then m2=m1 � 2g�t0�. There exists a t1 > t0,
which is su½ciently close to t0, such that g 0�t1�0 0, and g 0�t� has the same
sign as g 0�t1�, Et A �t0; t1�, while

4g�t1� ÿ m2

m1

� 2 2g�t1� ÿ m2

m1

� �
� m2

m1

> 0:

If g 0�t1� > 0, then m2=m1 ÿ 2g�t1� < 0; if g 0�t1� < 0, then m2=m1 ÿ 2g�t1� > 0,
which both contradicts (11). Therefore t0 �y and consequently

g�t� � E�gt� � m2=�2m1�; EtV 0;

which in turn implies F is exponential.

Next, for a stationary renewal process As, let gs
t be the residual life at t.

Then

Var�gs
t � � E2�gs

t �; EtV 0;

can only imply

2h1h3 � 3h2
2 ; �12�

where h1 � E�X2�, h2 � E�X 2
2 � and h3 � E�X 3

2 � (the derivation is left to the
reader). Examples of the common distribution F which satisfy (12) and are not
exponential can be found easily. Note that if F is assumed to be gamma dis-
tributed, then (12) implies F is exponential.

3. Characterizations related to the Poisson characteristic

As mentioned in Section 1, for a renewal process A, the equality of E�A�t��
and Var�A�t�� for every tV 0 implies that A is a Poisson process. Similar
result holds for a stationary renewal process As. In this section we will gener-
alize these results. Let M�t� � E�A�t��, Ms�t� � E�As�t�� and supp(G) denote
the support of the function G.

Theorem 2. Let E�X1� <y, M�t� be continuous with inf supp�M� � 0. Also
assume M 0

��0� exists and that

Var�A�t�� � bM�t�; EtV 0; �13�

where b is a constant. Then b � 1 and F is exponential.

Proof. First we have the well-known identity

E
A�t�

k

� �� �
� k!Mk�t�; Ek V 2; �14�
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where Mk is the k-fold convolution of M with itself. Hence (13) implies

M2�t� ÿ bÿ 1

2
M�t� ÿ 1

2
M 2�t� � 0; EtV 0;

which is equivalent to� t

0

M�tÿ x� �M�x� ÿM�t� ÿ bÿ 1

2

� �
dM�x� � 0; EtV 0:

Using Proposition 2.2 of Lau and Rao (1990), this in turn implies there exists
a x A �0; t�, such that

M�tÿ x� �M�x� ÿM�t� ÿ bÿ 1

2
� 0; EtV 0:

Since M�0� � 0, by letting t tend to 0 in the above equation, it follows b � 1.
The rest of the proof is the same as Theorem 3 of Chen (1994).

The next theorem is for the stationary renewal process. Note that it is
implicitly assumed that the common interarrival time distribution function F
is not periodic for a stationary renewal process.

Theorem 3. Let

Var�As�t�� � bE�As�t��; EtV 0; �15�

where b is a constant. Then b � 1 and fAs�t�; tV 0g is a Poisson process.

Proof. Again for every positive integer k, by the identity

E�As�t��As�t� ÿ 1� � � � �As�t� ÿ k � 1�� � k!Ms�t� �Mkÿ1�t�; EtV 0; �16�

see Lemma 2.1 of Chandramohan et al. (1985), we have

E�As�t��As�t� ÿ 1�� � 2

h1

� t

0

M�tÿ x� dx � 2

h1

� t

0

M�x� dx;

where again h1 � E�X2�. Therefore (15) implies

�bÿ 1� t

h1

� 2

h1

� t

0

M�x� dxÿ t2

h2
1

:

Taking the derivatives of both sides with respect to t, then letting t � 0, we
obtain b � 1 and M�t� � t=h1 follows. Consequently F is exponential as
required.

Now let fxn; bV 1g be a sequence of i.i.d. random variables with
P�xn � 1� � p � 1ÿ P�xn � 0�, where 0 < p < 1. Let A1 � fA1�t�; tV 0g
and A2 � fA2�t�; tV 0g be the two thinned processes obtained by thinning the
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renewal process A through fxn; nV 1g. More precisely, let the n-th point of A
be assigned to the process A1 or A2, respectively, according to xn � 1 or 0.
Obviously, E�A1�t�� � p�1ÿ p�ÿ1E�A2�t��, i.e. E�A1�t�� is proportional to
E�A2�t��, EtV 0, for every renewal process A. Yet given that Var�A1�t�� is
proportional to Var�A2�t��, EtV 0, will imply A is Poisson. We state and
prove the consequence of Theorem 2 in the following.

Corollary 1. If

Var�A1�t�� � c Var�A2�t��; EtV 0; �17�

where c is a constant, then A is a Poisson process and c � p�1ÿ p�ÿ1.

Proof. First it is easy to obtain

Var�A1�t�� � p�1ÿ p�E�A�t�� � p2E�A2�t�� ÿ p2E2�A�t��;

Var�A2�t�� � p�1ÿ p�E�A�t�� � �1ÿ p�2E�A2�t�� ÿ �1ÿ p�2E2�A�t��:

Substituting these into (17), yields

Var�A�t� � p�1ÿ p��1ÿ c�
c�1ÿ p�2 ÿ p2

E�A�t��:

The assertions then follow from Theorem 2 immediately.

As expected, there is a similar corollary for the case of stationary renewal
process. We omit the statement of this corollary. On the other hand, Theorem
3 has the following generalization, which can be proved by using (16) and the
fact that E�As�t�� � t=h1.

Theorem 4. The stationary renewal process As is Poisson, if and only if for a
®xed k V 1,

E�As�t��As�t� ÿ 1� � � � �As�t� ÿ k � 1�� � E k�As�t��; EtV 0: �18�
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