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For given real functions g and h, first we give necessary and sufficient
conditions such that there exists a random variable X satisfying that
E(g(X)|X > v) = h(y)rx(y), Yy € Cx, where Cx and rx are the support
and the failure rate function of X, respectively. These extend the results
of Ruiz and Navarro (1994) and Ghitany et al. (1995). Next we investi-
gate necessary and sufficient conditions such that h(y) = E(g(X)|X > v),
for a given function h.
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1. Introduction

The classical characterization of the exponential distributions is by
the memoryless property. Here a nonnegative random variable X is said
to have the memoryless property if it satisfies

(1) P(X >2z+y|X >y)=P(X > z),Yz,y > 0.

This has subsequently been superseded by Cox (1962), Cundy (1966),
Reinhardt (1968) and Shanbhag (1970) with a characterization which uses
the property of constant expected residual life. Further related results
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001.
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can be found in Dallas (1976), Galambos and Hagwood (1992), Rao and
Shanbhag (1994) and references therein. For example, if a nonnegative
and nondegenerate random variable X satisfies that

(2) E(GIX —y)|l X >y)=¢, Vy=0,

where the function G satisfies some mild conditions, then X has an ex-
ponential distribution. Furthermore, for a given real, continuous and
strictly monotone function g, Zoroa et al. (1990) gave necessary and
sufficient conditions for a real function h(y) to be the conditional expec-
tation E(g(X)|X > y) of some continuous random variable X. Ruiz et
al. (1993) extended this result to continuous multivariate random vari-
ables. Ruiz and Navarro (1995) and Marin et al. (1996) gave the related
characterizations for discrete cases. Franco and Ruiz (1995), (1996) also
gave the corresponding characterizations about order statistics and record
values, respectively.

On the other hand, Shanbhag (1970), Osaki and Li (1988), Ahmed
(1991), Nair and Sankaran (1991), Ruiz and Navarro (1994) and Ghitany
et al. (1995) used relationship between conditional expectation and fail-
ure (or hazard) rate function to establish some characterization results.
More precisely, under certain conditions, Ghitany et al. (1995) proved
that the continuous nonnegative random variable X has a probability
density function (p.d.f.) f(z) = exp{—q(z)}, = > 0, if and only if for a
real-valued differentiable function k(y) # 0, Yy > 0,

SX) ], KE) ) k)
H[q’(X)]?] k(X) q'(X)’XZJ} ()

where rx (z) = f(2)/(1—F(z—)), € R, is the failure rate function of X,
and F is the distribution function of X'. They also gave some applications
to characterize the gamma, Weibull, and Gompertz distributions. For a
given real function h and constant ¢, Ruiz and Navarro (1994) character-
ized the distribution of X by the equation E(X|X > y) = e+ h(y)rx(y).
where X is allowed to be discrete or absolutely continuous. The char-
acterization theorems of Ruiz and Navarro (1994) extended the results
of Shanbhag (1970), Osaki and Li (1988), Ahmed (1991) and Nair and
Sankaran (1991), which gave the characterizations of some special distri-
butions.

In this paper, for a random wvariable X with p.d.f. [, let Cx =
{z|f(x) # 0} denote the support of X. First we extend the results of
Ruiz and Navarro (1994) and Ghitany et al. (1995). For given real con-
tinuous functions g and h, we will give necessary and sufficient conditions

rx(y), Yy = 0,

3) E{
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such that there exists a continuous random variable X satisfying that
E(g(X)|X > y) = h(y)rx(y), Yy € Cx. The corresponding characteriza-
tion for discrete random variable is also given. Next, replacing the strictly
monotone function g, which is assumed in Zoroa et al. (1990), Marin et
al. (1996) and Franco and Ruiz (1996), by a more general function, some
related characterizations are investigated.

2. Characterizations based on a relationship between the con-
ditional expectation and the failure rate function

In this section, first we give the following characterization theorem
based on a relationship between the conditional expectation and failure
rate function.

Theorem 1. Let a < b, be extended real numbers, and g and h be
the real functions defined on (a,b). Assume g is continuous and h(y) #
0,Vy € (a,b). Then there exists an absolutely continuous random variable
X with Cx = (a,b), such that E(g(X)|X > y) is finite, Vy € Cx, and

(4) E(g(X)|X = y) = h(y)rx(y), VyeCyx,

if and only if for any fixed w € (a, b), the following conditions hold.
(i) [Y g(u)/h(u)du is finite, Yz,y € (a,b).
(ii) f? exp{— [ g(u)/h(w)du}/|h(y)|dy < oo.
(iii) limy—yp [¥ g(u)/h(u)du = oo.
Moreover, the p.d.f. of the random variable X which satisfies (4) with
Cx = (a,b), is

(5) [() = — e Jud oty )
”w'f"(yﬂ

where ay; = ]{f exp{— [ g(u)/h(u)du}/|h(y)|dy.

Proof. First we prove the necessity. From (4), we have

b

(©) [ 9 fu)du =)/ ), Va<y<b.
Y

This in turn implies that

v g(u) e voog(w)f(v)de
O [ fayie = [ 17 g(u)  (w)du
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b b
—In (/’; g(w) f(u)du ) +In (fz g(u)f(u)du)
= —h([ay)fW)]) + Wn(|h(@)f(2)]), Yo,y € (a,b),

thus [¥ g(u)/h(u)du is finite, Y,y € (a,b). For any w € (a,b), from (7)
we have

2

® s = Ly, oy
Since f’J f(y)dy = 1, we have [ exp{— [¥ g(u)/h(u)du}/|h(y)|dy < oo
and the p.d.f. of the absolutely continuous random variable X satisfies
(4), with Cx = (a,b), is given in (5). Also it is easy to see that (6)
implies limy_,, h(y)f(y) =0 Hence limy,_,p exp{— [¥ g(u)/h(u)du} = 0,
ie. limy_yy [¥ g(u)/h(u)du =

Next, assume conditions (i) (iii) hold. For any w € (a,b), let [ be
defined as in (5). Conditions (i) and (ii) imply that f is a p.d.f. of some
random variable X with Cx = (a,b). Also it can be shown that

© = [ = () )) + Inew, Vo <y <t

As the left side of (9) is differentiable with respect to y, s(y) = h(y)f(y)
is also differentiable with respect to y. Taking the derivatives of both
sides of (9) with respective to y, after some manipulations, we obtain

(10) —g(u)f(u)du = d(h(u)f(u)), Yue (a,b).

As condition (iii) is equivalent to lim,_,, h(u)f(u) = 0, (10) implies
b

(11) [ 9@ @iz =hy)w), va<y <o

u

From (11), we obtain that E(g(X)|X > y) is finite, ¥y € Cyx, and
E(g(X)|X > y) = h(y)rx (y), Yy € Cx. The sufficiency is proved.

Example 1. Assume A > 0. By Theorem 1, X has an exponential
distribution with parameter A, if and only if Cx = (0, oc) and

AZy2 4 2\y + 2

(12) E(X?|X > )= 33

rx(y), Yy>0.

Example 2. Let a < b. By Theorem 1, X has a uniform distribution on
(a,b), if and only if C'x = (a,b) and

(13)  BX(X = Z0IX >9) = 2°6 - rx(s), Vo€ (a,b)
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We now explain that Theorem 1 is indeed a generalization of Ruiz
and Navarro (1994) and Ghitany et al. (1995). Assume a = 0, b = oo,
g(y) + W'(y) # 0,¥y > 0, and g and h' are differentiable. By letting k
and ¢ in (3) satisfy k(y) = g(y) + I'(y) and ¢'(y) = (9(y) + ' (v))/h(y),
Yy > 0, we obtain Theorem 1 of Ghitany et al. (1995). Yet Example 2
can not be obtained by Ghitany et al. (1995).

Next, it can be seen that if g(z) = = — ¢, equations (4) and (5) are
equivalent to (3-3b) and (3-3a) of Ruiz and Navarro (1994), respectively,
and Theorem 3 of Ruiz and Navarro (1994) can be obtained from Theorem
1. In Example 1, if (12) is replaced by

Ay +1
22
then the assertions still hold. By using Theorem 3 of Ruiz and Navarro
(1994), the distribution of X also can be determined by (14). But Ruiz
and Navarro (1994) cannot determine the distribution of X by giving (12)

holds. Similar comments can be applied to Example 2.

Corresponding to Theorem 1, we have the following characterization
for discrete case. Throughout the rest of this paper, for convenience when
m = —o0, m < 7 means —o0 < %, and when n = oo, 2 < n means ¢ < oo.

(14) E(X|X >y)= rx(y), Yy>0,

Theorem 2. Let m < n, where m and n are extended integers, and
{a;;m < i < n} be a sequence of real numbers with a; < a4, Vm <
t < n. Also let g and h be the real functions defined on {a;,m <i < n}.
Assume that h(e;) # 0, ¥m + 1 < i@ < n. Then there exists a discrete
random variable X with Cx = {a;,m < i < n} such that E(g(X)|X > y)
is finite, Vy € C'x, and

(15) E(g(X)|X = y) = h(y)rx(y), Vye€ Cx,
if and only if for any fixed integer p, m < p < n, define

53 [T, (h(ai) — g(as))

k=p+1 Hz—p h’(a!‘*“l)

(16) T

where v, = 0 if p = n < o0, and

p—1 .|
H i h (@it1)
17 i=
¢ kgn a—k (h(a‘z) - fl(az))

where G, = 0 if p = m > —oo, the following conditions hold.
(i) h(ags1)(hlax) — glag)) > 0,¥m <k <n—1.
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(ii) 7p < o0.
(iii) 3, < oo.
(iv) If n < oo, then h(an) = g(ay), and if n = oo then

(18) lim I—p (h'(a't) (a’ ))

kmo0 152 h(aip) =

Moreover, the p.d. f. of the random variable X satisfies (15) with C'x =
{ai;m <i<mn}is

LTI, () =g(e))
1+ Bp+1p H::; hias+1)
(19)  flax) = _l+ﬁ::+’rp N

L ! h{aig) : B
T T gy T Sksp-L

yforp+ 1 <k<mn,

Proof. First assume that there exists a random variable X with Cy =
{ai,m < i < n}, such that (15) holds. Let [ be the p.d.f. of X, (15)
implies that

(20) S plalfia) = Boglfles), Wm <k <n.
i=k

From (20), we have
(21) Zg(ﬂi)f(ai) = g(ak) f(ak) + h(ak+1) [ (ag41), Ym <k <n-—1
i=k

In view of (20) and (21), we have

(22)  hlak1)f(ag41) = flax)(har) — glax)), Ym<k<n-—1

As f(ax) and f(agy1) are positive and h(ag4i) is nonzero, we have
h(ags1)(h(ag) — glag)) > 0, Vm < k < n— 1. Let p be any fixed in-
teger, where m < p < n, from (22), we have

o (h(ai) — g(a:))
]_Ik Lh(aH_]) '

(23) [lag) = flap) Vp+1<k<mnm,

and 122, hlaivr)
(24) flar) = Jlap) P~ (h(as) — g(a:))

s VYm<k<p-1.
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By (23), (24) and the fact that 377, f(a;) = 1, it is clear that 7, < oo,
Bp < oo and flap) = (1+ B+ 'yp) !, where fp and 1, are defined as in
(16) and (17). Hence the p.d.f. of X is given as in (19). Also from (20),
it is easy to see that if n < oo, then h(a,) = g(a,), and if n = oo then
limy—so0 h(ag) f(ax) = 0, ie. Timg_oo TTE5) (A(as) — glai))/TTES] h(ais)
= 0. The necessity is proved.

On the other hand, assume for some fixed integer p, m < p < n,
conditions (i)-(iv) hold. Define the function f as in (19). Tt is easy to see
that conditions (i)-(iii) imply that [ is a p.d.f. of some random variable,
say X with Cx = {aj,n < i < n}. From the definition of the function f,
we have

(25) h(ak1)f (axs1) = hlag)f(ar) — g(ar)f(ar), Vm <k <n—1.

Also it can be seen that if n = oo, (18) is equivalent to limg_, o h(ag) f(ax)
= 0. Now for any fixed integer j, m < j < n — 1, summing both sides
of (25) up for k = j,---,m — 1, and using condition (iv), we obtain
ha;)f(a;) = ¥k=;glar)f(ax), and this implies that E(g(X)|X > y)
is finite, Vyy € C'x, and E(g(X)|X > y) = h(y)rx(v), Vy € Cx.

Example 3. Assume 0 < ) < 1. By Theorem 2, the p.d.f. of X is given
by f(k) =0(1—60)%, Yk =0,1,2,--+, if and only if Cx = {0,1,2,---} and
1—6 k

(26) B(X|X 2 k) = ——+5rx(k), Vk=0,1,2,

Example 4. Assume m < n are two finite integers. By Theorem 2, the
p.d.f. of X is given by f(k) = (n —m 4+ 1)~', m < k < n, if and only if
Cx ={m,m+1,--+,n} and

CNEXX >k =F+ k+1)2+- +0D)rxk), Ym<k<n

Note that if g(x) = = — ¢, then (15) is equivalent to (3-5b) of Ruiz
and Navarro (1994). Hence Theorem 2 is an extensions of Theorem 4 of
Ruiz and Navarro (1994).

3. Characterizations based on the functions of conditional ex-
pectations

In this section, we will give some characterizations based on the funec-
tions of conditional expectations. First we have Theorem 3 which is
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a generalization of Laurent (1974) and can be compared with Zoroa et
al. (1990), where the function g in the theorem is assumed to be strictly
monotone. The proof is standard, hence is omitted. Note that if g(z) = z
and h(y) = y+c, then (28) in Theorem 3 is the same as (2) with G(z) = =,
and this is a much weaker condition than (1).

Theorem 3. Let g be a given real, continuous function. Assume h is a
real function with h(z) — g(z) # 0, a.e. Then there exists an absolutely
continuous random variable X such that E(g(X)|X > y) is finite, ¥y € D,
and

(28) h(y) = E(g(X)|X >y), Yye D,

where D = {y|P(X > y) > 0}, if and only if the following conditions
hold.

(i) D = (—o0,b), where b € (—o0,00) U {oc0}.

(ii) h is differentiable almost everywhere in D.

(iii) Let Q(y).= j‘fmfj)h_%%u—),y < b, then @ is a nonnegative and in-
creasing function.

(iv) [*, i oo,

oo h(u)—g(u)
(v) Timy—ss h(y) exp{— [¥,, o<} = 0.

Moreover, the distribution function of X satisfies (28) is

Y dh(w)

- aE)
(29) F(y)=1—¢ J-co Mul=els], 4 e D.

If g is strictly increasing and (28) is satisfied, it is easy to see that
gly) < h(y), Yy € D, and thus h(y) — g(y) # 0, a.e. In fact, if there does
not exist an interval (dy,ds) such that g(y) is constant on (dy, ds), it can
be proved that (28) implies that h(y) — g(y) # 0, a.e.

Example 5. Let a < b be two real numbers, it can be shown that X has
a uniform distribution on (a, b), if and only if

) %‘(a""-&-ab"}“ b?), Yy < a,
(30) BXX 2y)={ " i
3"+ by +b°), Ya<y <b

Let X1, < Xo.,, € -+ < X,.n be the order statistics from a random
sample having the common distribution function F. Theorem 3 of Wu
and Ouyang (1996) characterized the absolutely continuous distribution



function F' by
(31) E(H(Xl:n)lxl:n & t) = g(t) + ﬁs Va <y <b,

where ¢ is a constant and g is a nonconstant differentiable function. Tn
fact, from Theorem 3, we know that (31) characterizes the distribution
of X1.,, and hence the distribution function F' can also be uniquely de-
termined. Moreover, by Theorem 3, more general results than Wu and
Ouyang (1996) can also be obtained.

Again, corresponding to Theorem 3, we have the following theorem
for discrete case.

Theorem 4. Let m < n, where m and n are extended integers, and
{a;;m < i < n} be a sequence of numbers with a; < a4, ¥Ym < i <
i+ 1 < n. Also let g and h be two given functions defined on {a;,m < i <
n} such that h{a;) # h(ai+1), ¥m < i < i+ 1 < n. Then there exists a
random variable X with Cx = {a;,m < i < n}, such that E(g(X)[X > y)
is finite, Vy € C'x, and

(32) h(y) = E(g(X)|X >y), VyeCx,

if and only if the following conditions hold.

()O<h—(‘é”—;{:9—%)—)<l Vm <i<n—1,and [[eicn HI—?&%}%EH>O,
Ym+1<k<n.

(ii) If n < oo, then h(a,) = g(an) and if n = oo, then limg_ o0 h(aps:)-

H hiai)—gla;) _ 0.
m<z<k h i1 )—g{a; -

Moreover, the p.d.f. of X satisfies (32) with Cx = {a;,m <i < n}is

h(agy1) — hiay) h(ai) — g(ai)
h(ak41) = glar) iy Plairr) — glai)’

" hiai)—g(ai) Manti)—hlan) :
where [, <icm—173 ) —o(a) = 1 and Ao )—g(an) = 1 if m,n < oo.

Proof. Following Theorem 3.1 of Marin et al. (1996), the necessity can
be proved easily, hence the proof of this part is omitted. We now prove
the sufficiency. Assume conditions (i) and (ii) hold. Define the function
S as in (33). Condition (i) implies 0 < f(ap) < 1, ¥m < k < n. Also
define the function S as S(k) = [ln<i<i- lﬁ%ﬁj—),‘dm < k < mn,
where S(m) = 1, if m < co. It can be seen that f(ax) = S(k) — Sk +1),
Vm <k <n-—1,and f(a,) = S(n) if n < co. Condition (ii) implies that

(33) f(ag) =

m < k< n,
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Yk=m flar) = 1 and S(k) = ¥ivy f(a:),¥m < k < n. Hence [ is a p.d.f.
of some random variable X with Cx = {a;,m <i < n} and

Ei—A-Hf(az) _S(k+1)  hfag) —glax)
ik [ (a:) Sk)  hlaktr) — glax)’

This implies

(34)

Ym<k<n—1.

(35)  (h(ar) —glar)) Y fla) = (hars) —glar)) D flas),
=k i=k+1

Ym<k<n—1.

Subtracting (h(ar) — glag)) Xiess1 f(a;) from both sides of (35), after
some manipulations, we obtain

(36) hlag) Y f(ai) = glar)f(ar) + hlaksr) Y flas),
i=k i=k+1

Vm<k<n-—1.

From condition (ii), (36) implies that h(ay) Sip f(ai) = Siep gla:) fla;),
V¥ < k < n. and this implies that E(g(X)|X > y) is finite, Yy € Cy,
and h(y) = E(9(X)|X > y), VyeCx.

Ruiz and Navarro (1995), (1996) gave the characterizations for both
cases of discrete and continuous distributions using the doubly truncated
mean function h(z,y) = E(g(X)|lz < X < y), where g is a monotone
function. They also investigated the necessary and sufficient conditions
as in Theorems 3 and 4. If the function g is not restricted to be monotone,
for example anly assumed to be continuous, so far we could not give the
explicit form of necessary and sufficient conditions.

In the rest of this paper, we give some related results on point pro-
cesses. Assume N = {N(t),t > 0} is a renewal process with N(0) = 0.
Huang et al. (1993) proved that if E(S,|N(t) =n) = nt/(n+ 1), where
S, is the nth arrival time of N, then N is a Poisson process. For non-
homogeneous Poisson processes defined on (—oo, o), we have some more
interesting results. In the following, let g be a real continuous function.
For a positive integer n, denote F,, as the set of nonhomogeneous Pois-
son processes, where it is assumed that for each M € F,, the mean
function m(t) = E(M((—o0,1])) < oo, Vi € R, m is differentiable, and
[t glu)dm™ () is finite, Vi € R. We state the following theorem without
proof.
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Theorem 5. Let n be a fixed positive integer, a € (—o0,0c) U {—o0}
and h be any real function with g(x) — h(z) # 0, for almost all z > a.
Then there exists a nonhomogeneous Poisson process M € F,, such that
a = inf{t|E(M((—oc0c,t])) # 0} and

(37) h(t) = E(g(Sn)|M(t) =n), Vt>a,

where Sy, is the nth arrival time of the process M, if and only if the
following conditions hold.
(i) A is differentiable on (a, 0o).

(ii) fY Rj_]h—(%)(m is finite, Y,y € (a, o0).

(iii) [ Wf)i—%)(u_) is increasing in y, Y,y € (a,00), and limg_q [Y

= 00.

: . dh

(iv) limg_yq h(£) exp{— i’m—(%)m} =0, Vy € (a,00).
Moreover, the mean function m of the nonhomogeneous Poisson pro-

cess M satisfies (37) with a = inf{t| E(M((—o0,t])) # 0} is m(y) = m(z)-

dh
exp{ [ ﬂr)_(%l(m/ﬂ}, Vz,y > a.

Again it is known that the sequence of upper record values from a pop-
ulation with continuous distribution F' forms the sequence of arrival times
of a nonhomogeneous Poisson process, say {B(t),t > 0}, with m(t) =
E(B(t)) = —In(1 — F(t)), where limy_o m(t) = oo. Now denote F), as
a subset of F,, with lim;_,. m(t) = oo, where m(t) = E(M((—oc,t])),
VM € F,. We have the following theorem. Once again the proof is
standard hence is omitted.

dh(u
g{u)—h(x)

Theorem 6. Let a < b, be two extended real numbers, and h be any
real function with g(z) — h(z) # 0, for almost all z € (a,b). Then
there exists a nonhomogeneous Poisson process M € F, such that a =
inf{t| E(M((—o0,t])) # 0}, b = inf{t|E(M((—o00,])) = oo} and h(t) =
E(g(Sn)|M(t) = n), Va < t < b, where as usual S,, denote the nth arrival
time of the process M, if and only if the conditions (i)-(iv) in Theorem 5
with (@, 00) being replaced by (a,b), and the following condition (v) are
satisfied.

: ih
(v) limy_p [¥ aif—(%)(m = oo, Vz € (a,b).

In Theorems 5 and 6, if g is strictly increasing, then the result still hold
without the assumption that mn is differentiable. In this case, Theorem 6
is equivalent to Theorem 3.2 of Franco and Ruiz (1996).
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