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ON A STUDY OF RENEWAL PROCESS
CONNECTED WITH CERTAIN CONDITIONAL
' MOMENTS
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National Sun Yat-sen University, Kaohsiung

SUMMARY. We prove that the inter-arrival times of a renewal process {A(t),t > 0}, with
Sk being the kth arrival time, have a gamma distribution if for some integers n > 2, r > 2, and
1<khi<ki<- - <k <n, E(Sp |A(t) = n) is proportional to E(5; |A(t) = n), for every t > 0
and i = 1,...,r — 1. Under stronger conditions, characterizations of the Poisson process can be
obtained. We also study the cases with negative order of conditional moments.

1. Introduction

Let {X,k > 1} be a sequence of independent and identically distributed
positive random variables with common continuous distribution function F.
For every n > 1, define S, = 3 ¢ ; Xi, Sp = 0, and let A(t) be the integer k
such that Sy <t < Si;1. Defining in such way, {A(t),t > 0} is known as a
renewal process with X; and S; denoting the k-th inter-arrival time and k-th
arrival time, respectively. Let 6, =t — S Aty and ve = Sppy4y — L.

Chung (1972), Cinlar and Jagers (1973), Huang et al. (1993) and Li et al.
(1994) have characterized Poisson process among the class of renewal processes
through some conditional expectations about S, 8; or ;. In particular, Cinlar
and Jagers (1973) proved that if for every integer n > 1 and for some 1 < k < n,

E(Sk|A(t) =n) = kt/(n+1), Vt>0, (1)
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then {A(t),t > 0} is a Poisson process. Huang et al. (1993) improved this result
and proved that as long as (1) holds for a single integer n > 1, then {A(t),t > 0}
is a Poisson process. Wesolowski (1989), (1990) characterized that two indepen-

dent non-degenerate positive random variables are gamma distributed by the
conditions

EB(X'|X+Y)=a(X+Y) and EX’|X+Y)=bX+Y)  ...(2)

for (r,s) being either (1,2) or (1,—1). Inspired by Wesolowski’s works, Li et al.
(1994) obtained a similar result when (r,s) = (—1,—2). Also they characterized
a renewal process {A(t),t > 0} to be a Poisson process, by two identities such
as

E(Si|A(t) =n) =at" and E(S{|A(t) =n) = bt*,Vt > 0, ...(3)

for some fixed integers 1 < k < n and (r, s) being one of the elements in the set
B ={(1,2),(1,-1), (—1,—2)}, where o and b are constants, although they are
not given in the first place yet can be determined afterwards. Note that except
(r,s) € B, Li et al. (1994) do not have other similar results. Characterizations
of the Poisson process in the class of nonhomogeneous Poisson process using
certain conditional expectations can also be found in Huang and Li (1993) and
the references therein.

On the other hand, Hall and Simons (1969) characterized gamma distribu-
tions by using

EX)X+Y)=a(X+Y)? and E(Y’X+Y)=bX+Y)2. ...(4)

In the same paper, stated in terms of reverse martingale, they also provided a
characterization of the gamma distribution from the assumptions

bnjE(S,'lle,,j“) =bp,Sp,, J=12,.,1-1, ...(5)
for some integers r > 2 and 1 < ny <ny < --- < n,.

Based on the idea of Hall and Simons (1969), in the present paper we will
investigate some properties of the conditional moments of the arrival times of
a renewal process. We prove that the inter-arrival times of a renewal process
have a gamma distribution if for some integers n > 2, r > 2, and 1 < k; <
ky < - < k. < m, E(S;|A(t) = n) is proportional to E(Sf |A(t) = n), for
everyt > 0 and 7 = 1,...,7 — 1. Under stronger conditions, a characterization
of the Poisson process will be obtained. We also study the cases with negative
order of conditional moments, where only positive order was considered in Hall

and Simons (1969). Finally we give some extensions of the results in Li et al.
(1994).
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2. A characterization of the gamma distribution

Before we study the case of renewal process started from the next section,
we give a characterization of the gamma distribution, by using conditional mo-
ments with negative orders. The result can be compared with that of Hall and
Simons (1969), where the condition (4) was used.

THEOREM 1. Let X and Y be two independent non-degenerate random
variables with E(|X|") < o0 and E(|Y|") < 00, for r=1,-1. If
EXUX+Y)=a(X+Y) ' and EY X +Y)=bX+Y) ...(6)

hold for some constants a and b, then (i) a > 1,b > 1,ab—a — b > 0; (ii)
X and Y, or ~X and =Y have gamma distributions with the same scale
parameter.

PRoOF. From (6) we have
BY/X|X+Y)=a-1, (D)
and
E(X/Y|X+Y)=b—1. .(®)
For every 0 € R, let f(6) = E(X 'eX) and g(8) = E(Y "'e?Y), wherei = /1.
Then (7) and (8) imply
£(6)g"(6) = (a—1)f'(6)g'(9), .- (9)
and
f"(8)9(6) = (6 —1)f'(8)g'(0), ... (10)

respectively. As both X and Y are non-degenerate, (9) and (10) imply a # 1
and b # 1. Furthermore, from (9) and (10), we obtain

£(6) = E(X 1) lg'(0)e 7, ...(11)

and
£1(0) = (B ) *(g(0)" . ' ... (12)
Substituting (11) and (12) into (9), yields

2= L) B @) = LB T O +Ka, - (13)

where Kj is a constant. Letting @ — 0 and noting that E(X!)/a= E(Y)/b=
E(X+Y), }’in(l)g’(ﬂ) =1 and ginég(G) = E(Y 1), we have K; = 0. Thus

(g(8)) Me—Dleg'(6) = E(Y ) ~e—D/e, .- (14)
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Now if b(a — 1)/a = 1, then g(8) = E(Y!)exp{i(E(Y?))~16}, which in turn
implies Y is degenerate. Therefore b(a —1)/a # 1, and

. aa —ab —bla—1)a af(a+b—ab)
9(6) = ((E(Y‘l))”‘" %)/ +i--———“+l:1 (B@y—Y) e 9)

Consequently,
E(e™) = lg'(o) =(1- if‘__l.’__a___bg)-b(a—l)/(ab—a—b), ...(15)
i aE(Y1)
and ab—a—b
E(eX) = (1—i W;—_‘)—, 0)-{.(»-1)/(@—,;—5). ...(16)

This completes the proof.
3. Main results

Let the renewal process {A(t),t > 0} be defined as in Section 1. Also for
a gamma distributed random variable with parameters oo and 8 (denote this
distribution by I'(y, 8)), let G, s(t) denote its distribution function, that is

Gosty = [ ..(7)
’ fo T(a)8°

We now present two preliminary results that will be needed in establishing
our main results. First we give a lemma which can be proved by using standard
technique of conditional expectations.

LEMMA 1. Let the common distribution function F of the inter-arrival
times of the renewal process {A(t),t > 0} have a I'(«, B) distribution. Then
for every t > 0, integersr > —ka and 1 <k < n,

Grasr. _Gn a+-r,
B(STIA) = ) = Cray T2 ng — e g)(t), .8

where

r=0, ...(19)
(k= 5)"" ,—127 > ka.
Also E(S}|A(t) =n) does not ezxist when r < —ka.

The next lemma provides a sufficient condition for a gamma renewal process
to be Poisson.

Mok +3)  r21,
Cr,k = 1
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LEMMA 2. As in Lemma 1, let F have a I'(o, ) distribution. Given
the integers s #0, r and 1 < ky,ka < n, if for some constant a > 0,

1 E(SL |A(t) = n) = aB(SET*|A) =n), ¥t >0, ... (20)

then {A(t),t > 0} is a Poisson process, and

c, )

c,:.,,z [Tjatn+r +3) 821,

a= .. (21)
St [ (4 s +i) < -l

Cr+n,k2

Proor. First assume s > 1. By Lemma 1, (20) implies

Gradr, (t)—G n+l)atr (t)
s r +nf (n+l)atr8
ECr B = D Caras®

...(22)
Grotrts ﬂ(t) - G(n+l)a+r+s 5(t)
= aChisi ﬁr+s > : , VE>0.
ek Grap(t) — G(n+1)a,p(t)
Thus
aCrispy _ Bt (Grarrpt) = Cininyatrs®) (g (23)

Cr,kl Gna+r+s,ﬁ(t) - G(n+1)a+r+s.ﬁ(t) '

Letting t — 0 in the right side of (23) and using L’Hospital’s rule repeatedly,
yields

a7 (Chasrs® = Clarnarns®)
a%+klk > (s i ! lim G(l~(i-l) = G(z+(1)+1)a+ 2
=0 ) . fwl+f+s,ﬂ(t) - (n+l)a+r+s,ﬁ(t)
~ s sl s—1-1 .
= ﬂsz(—sj)—'ﬁsn(na+r+]) .- (24)
=0 ’ =0

H(na +7+3),
J=1

where H;=lo is defined to be 1, the superscript (I + 1) denotes the (I + 1)th
derivative with respect to t, and we have used here that for 0 < I1<s-—1,

£ (Crarrg®) = Clpyarra®) 170

na+r,p (n+1)atr8 .

lim =p° ”(na+r+]). ...(25)
- (I+1) {t+1)

t—0 Gna+r+s,ﬂ(t) - G(n+l)a+r+s,ﬁ(t) 7=0

Similarly, by letting t — oo in the right side of (23), it follows

s—1

=H(na+a+r+j). ...(26)
70 -

aCT-i—S,kg
C",kl
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Therefore, by comparing (24) and (26), we obtain o = 1. This proves the
assertion that {A(t),t > 0} is a Poisson process. Substituting o = 1 into (26)
the constant a can be obtained immediately.

Finally, when s < —1, by letting s = —~s > 1 and #' = r + s, then the
equation (20) is equivalent to that for the case s > 1. Hence we obtain the
assertions immediately again.

We now characterize the common inter-arrival distribution function to be
gamma distributed, under the assumption that certain conditional moments of
the arrival times with the same order are assumed to be proportional to each
other.

THEOREM 2. Assume for some integersn > 2, 1> 2, 1<k <ky <
- < kr <n, and positive constants a;,i = ,.,r—1,

6 E(S|A(t) =n) = B(SL|A®t) =n), i=1,..,r—1, ...(27)

for every t > 0 whenever P(A(t) =n) > 0. Also assume E(X]) < 00. Then
F has a I'(«, B) distribution for some constants o and B. Moreover

ko + )
Tims (ki + )
PROOF. From (27) we obtain (by letting a, = 1)

i=1,..,r—1. ...(28)

s [ (st =)= Frae — ) dBi @)
0o ...(29)
= Qi+l A z’ (Fﬂ—ki+1 (t - m) - Fﬂ~ki+1+1(t - .’l:)) dFkHl (.’1;),

t=1,..,7— 1, where Fj is the j-fold convolution of F with itself, j > 1. By
taking the Laplace transforms, (29) can be converted into

a(¢%(0)" Q) _0¢"—ke+1(0)

...(30)

= a;+1(9%1(0)) A () —0¢ﬂ—k.-+1+l ) |

where

#(9) = /0 ” e dF(z),0 > 0. ...(31)

After cancelling the common factors, (30) turns to

aighih(0) (%(0) 7 = @i (654(0) 7, - (32)



34 WEN-JANG HUANG AND JYH-CHERNG SU

for every 8 > 0 and i« = 1,...,7 — 1. Now (32) has the form (5) of Hall and
Simons (1969), and it is given there that the solution of (32) is

o(0) = (1 +p6)"°, ... (33)

for some a, 3 > 0. This proves that F has a I'{e, 8) distribution. Using Lemma
1 the constants a;’s are also obtained.

In view of Theorem 2 and Lemma 2, the stronger conditions that E(S},|A(t) =
n) is proportional to t", ¥ i = 1, ..., 7, will yield the process {A(t),t > 0} is Pois-
son. We state the result in the following.

THEOREM 3. In Theorem 2, if the conditions in (27) are replaced by
GE(SLIA®) =n)=t", i=1,..,m, ...(34)

for every t > 0 whenever P(A(t) =n) > 0, where ¢;,i = 1,...,7, are positive
constants, then {A(t),t > 0} is a Poisson process and

NCE)
Next we have a result which is slightly different from Theorem 3 and can be

shown by following the steps of the previous theorem. A remark will be given
after the theorem.

=1,..,r ...(35)

THEOREM 4. Assume for some integersn > 2, 1 > 2,1 <k < ky; <

k1 €0, 21, 1<k 7 nq, and vositive constants ¢, 1 =1,..,T,

GE(SLIA) =n)=t",i=1,..,r -1, ... (36)
and
¢ E(SK|AR) =m) =1, ... (37)

for every t > 0 whenever P(A(t) = n) > 0 and P(A(t) = n;) > 0. Also
assume E(X]) < co. Then {A(t),t >0} is a Poisson process.

Note that (37) implies ¢, (k,/k)E(Sk|A{t) =m1) =1t, ¥ 1 < k < my. So that
when r = 2 and n = ny, (36) and (37) can be reduced to (12) and (13) of Li et
al. (1994). Therefore we have obtained a generalization of Theorem 3 of Li
et al. (1994).
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4. Results based on negative order of conditional moments

In using the reverse martingale assumption such as (5) to characterize the
gamma distribution, Hall and Simons (1969) wondered whether there is a solu-
tion for F when r is positive and non-integral. Although we cannot answer the
question for the case of non-integral r, in this section we will give some results
related to negative order of conditional moments, which has the same flavor as
Theorem 1 for the case of renewal process. Again let {A(t),t > 0} be a renewal
process as defined in Section 1.

THEOREM 5. Assume there exist integers1 < k; < ky < n and a constant
- a1 > 0, such that

a1 B(S.1|A(t) = n) = E(S;'|A(t) = n), ...(38)
for every t > 0, whenever P(A(t) = n) > 0. Also assume E(X;) < oo and
E‘(S,:ll) < o0o. Then a; < ki/ky and F has a I'(a,3) distribution, where
a>0 and B = (a1 — 1)/(a1ks — k1).

PROOF. From (38) we obtain

i [ &7 (Falt = 2) — Fahia6 ~ 2)) 4B, 2)
0

¢ ..(39)
= [&7 Bt = 2) = Focsurs(e — ) i (o)
which in turn implies
n—k; _ An—ki+1 n—ky _ An—ky+1
Ll O R S e OB sl O R
where o
ha(6) = / s e dFy, (z), ..(a1)
0
and o
ha(6) = / s e 4R, (z). ..(42)
0
Since h}(0) = —¢*1(0) and hy(8) = —¢*2(8), (40) can be rewritten as
P(e) _  By(0) L

hi(0) ~ M ha(8)

Thus
h1(0) = ch3' (9), ... (44)
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where c is a constant. Differentiating both sides of (44) twice, with respect to
0, yields

p-ak)/(@-1)-1(0)¢/ () = q, ...(45)
for some constant o;.

Now if k; — aky = 0, then ¢(6) = €%, which contradicts the assumption
that F is continuous. Hence k) — a1kg # 0 and

$(0) = (1 + af)~ (=D (@k-k) ...(46)

where o = a;(k; — a1k2)/(a; — 1). Finally, in order that ¢(8) is a Laplace
transform, 8 = (a1 —1)/(a1ks — k1) must be positive. Also as obviously a; < 1,
we have a; < k1 /k2.

Again under stronger conditions the renewal process will become Poisson.
Since it can be proved along the lines of Theorem 3, we only state the result.

THEOREM 6. Assume there exist integers 1 < ky < ky < n and constants
a and b, such that

E(SA() =n)=at™, ... (47)
and

E(SHA@) =n)=bt"", ... (48)
for every t > 0 whenever P(A(t) =n) > 0. Also assume E(X;) < oo and
E(S,:ll) <oo. Thenky 22, a=nf{ky—1), b=n/(k; — 1), and {A{t),t > 0}

18 a Poisson process.
When {A(t),t > 0} is a Poisson process, for integers 1 < k < n and r > —k,
a1 E(Sp|A(®) =n) = E((t — Sk)"|A@®) =n), Vt>0, ... (49)

where a; is a suitable constant. Yet when F is just gamma distributed, (49) may
not be true. We now give a converse result concerned with the case that r = —1.

THEOREM 7. Assume there exist two integers 2 < k < n—1 and con-
stants a and b, such that

E(S;'A®t) = n) = at™?, ... (50)

and
E((t — Si) YA(t) =n) = bt 1, ... (51)

for every t > 0 whenever P(A(t) = n) > 0. Also assume F(X;) < oo,
E(5;') < o0 and

/1 t 1 F,_(t)dt < oo. ... (52)
0
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Then {A(t),t > 0} is a Poisson process and a =n/(k— 1), b=n/(n — k).

ProOF. From (50) and (51), we obtain for every ¢t > 0,

/0 t 7 (Fpi(t — ) — Frga(t — x)) dFi(x) = at™! (Fo(t) — Fopa (), ... (53)

and

/0 (t — 2) " (Fack(t — 2) — Fp_gsa(t — 7)) dFe(z) = bt~ (Fa(t) — Fan(£)).

...(54)
Taking the Laplace transforms of both sides of (53) and (54), respectively, it
follows

£(0n(0) = —a -/:o e 7 (Fo(t) — Frya(t)) dt, ...(55)
and o
£O)n'(6) = —b./o- e (Fo(t) — Fopa(2)) dt, ...(56)
where for 8 > 0,
£(6) = f:o t7 e (Fy i (t) — Fra(t)) dt, ... (57)
and o
n(0) = /0 t e ®dF (). ...(58)
Differentiating both sides of (55) and (56), respectively, we have
£"(0)n(6) = (a — 1)¢'(6)n'(6), -+(59)
and
£(0)n"(0) = (b—1)¢'(0)n' (6). -+ (60)

Also (55) and (56) imply

£'(0)n(0) = (a/b)¢(O)n' (6). .-+ (61)

Solving (59), (60) and (61) we obtain the assertions.
5. Some extensions of the results by Li et al. (1994)

In this section we give some simple extensions of the results in Li et al.
(1994). First we extend Theorem 3 of the above paper.
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THEOREM 8. Assume for some fized integers 1 < k; < ny, and 1 <ky <
ny,

E(SK|A(t) =ny) = at, ...(62)
and
E(SLIA(t) = ng) = bt® + ¢, ...(63)
hold for some constants a, b and c, for every t > 0, whenever P(AQt) =
n) >0, i=1,2. Also assume E(X}) < 00. Then

(D) a=ki/(n1+1), b=ko(ks + 1)/[(n2 + 1)(nz + 2)] and ¢ = 0;
(ii) {A(t),t > 0} is a Poisson process.

PROOF. As in the proof of Theorem 3 of Li et al. (1994), (62) implies

1_Tf/’(o) = "™ (g). ...(64)
Hence
1———# = gt mtnd/bom g) ...(65)
From this we have
E(S,|A(t) = ny) = a't, ...(66)

where o' = k3/(k1a™! —n; +n,). Now using Theorem 3 of Li et al. (1994), (66)
and (63) together imply the assertions.

Thus although (62) and (63) look more general than (12) and (13) of Li et
al. (1994), basically there are not much difference between these two pairs of
conditions.

Similarly, we have the following parallel extension of Theorem 4 of Li et al.
(1994).

THEOREM 9. Assume for some fized integers 1 < k; < nand 2 <k, <
na,

E(Si|A(t) = ny) = at, ...(67)
and
E(S,;1|A(t) =ny) = bt . ...(68)

hold for some constants a and b, for everyt > 0 whenever P(A(t) = ng) > 0,
i=1,2. Also assume E(X;) < co and E‘(S,:zl) < 00. Then

(i) a= kl/(nl + 1) and b= N2/(k2 + l);

(ii) {A(t),t > 0} is a Poisson process.

Theorems 3, 4 and 5 of Li et al. (1994) are special cases of the following
theorem (corresponding to r = 0, r = —1 and r = —2, respectively). This the-
orem can also be compared with Theorem 3 of the present paper, where there
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are r equations, and here only two equations are needed.

THEOREM 10. Assume for some integersr and 1 < k < n,
tE(Sp|A(t) =n) = aE(S;A(t) = n), ...(69)
and
tE(S,'C+1|A(t) =n) = bE(S[T?|A(t) = n), ...(70)

hold for some constants a and b, for every t > 0 whenever P(A{) =n) > 0.
Also assume E(X]*?) < 00 if r > 0, or E(X;) < 00 and E(S]) < o0 ifr <0.
Then

()r>—ka=n+r+1)/(k+7),b=(n+r+2)/(k+r+1);

(ii) {A(t),t > 0} is a Poisson process.

PROOF. From (69) and (70), it follows

((¢"*(0) — ¢"*+1(0))/8)’ q(6)
OO A - (71)
and
((¢"*(8) — ¢ *+1(9))/0) q"(6)
FFO =@y = Vg ... (72)
where
o(6) = /0 e dFy(z). ...(73)
Note that '
a(6) = (¢*(0), r>0, ...(74)
and
@) =¢4@), r<o. ...(75)

Also it is easy to see that both a and b # 1. Hence

70 _a=1 ¢(0)
¢® ~5-1 ¢6)’

which has the solution ¢(0) = (m;0 + my)¢, where m;, mg are constants and
e=(a—1)/(b—1). This together with (74) or (75) imply #(0) = (1+B6)~° for
some «, 3 > 0. Finally, the assertions (i) and (ii) are achieved by using Lemma
2.

.. (76)
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6. Concluding remark

Inspired by Theorem 10, under certain conditions, we can use
X+ Y)EX'|X+Y)=aE(X"TX +Y), .. (77)
and
(X+Y)E(X™MX+Y)= bE(X™?X +Y), ...(78)

where a and b are constants, to characterize X and Y to be gamma distributed.
It is easy to see that this is a generalization of Wesolowski (1989), (1990), and
Theorem 1 of Li et al. (1994), where they used (2), for a pair of (r,s) € B, to
characterize X and Y to be gamma distributed.

In Theorem 2, for each i = 1,...,r — 1, we can replace n by n; in the ith
equation of (27) and still obtain similar characterizations, if some suitable mod-
ifications about the conditions for the integers {n;} and {k;} are made. That is
Theorem 2 can be further generalized. We state the theorem in the present form
as it is simpler and easier to understand. On the other hand, the conditions

E(S}A(t) = n) = at? and E((t — Sk)*|A(t) = n) = bt? .. (79)
are equivalent to
E(SEA(t) = n) = at? and E(Si|A(t) = n) = «t, ... (80)

where ¢ = (1+ a — b)/2. Also it is already known that using the two equations
in (80), F can be characterized. Yet for the cases such as given

E(S:%|A(t) =n) = at™? and E(S2A@) =n) =bt72, ... (81)
E(S:%|A(t) =n) = at™? and E((t — Si) A(t) = n) = bt 2, ... (82)

as the computations become very complicated, we are still unable to determine
the distribution function F from either (81) or (82).
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