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ABSTRACT

When researchers study social science, education, psychology and so on, they
often study how and why variables are related. Hence, mediator and moderator are
developed. Moderated mediation effect is one of the combinations of mediation and
moderation effects. It refers to a mediator affecting the relation between an
independent variable and a dependent variable, and then the mediation effect depends
on the value of the moderator. There are many test methods of moderated mediation
effects. Many researchers prefer to use regression-based tests. The most common
method is the product of coefficients and is assumed the product is normally
distributed. First-order multivariate delta method (Sobel, 1982, 1986) was commonly
used. In fact, moderated mediation effect is not normally distributed. We recommend
using the bootstrapping method when sample size is not large enough.

Except for introducing mediation and moderation models, we extended five
moderated mediation models which were studied by Preacher et al. (2007). Using five
testing methods to detect how many sample size required for different coefficients
combination with appropriate statistical power. Moreover, we provide guidelines for
researchers to study moderated mediation model in determining sample size.

Keywords: mediator, moderator, moderated mediation effect
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1 Introduction

Mediation effect is a causal effect which the effect of an independent variable (X) on a
dependent variable () is transmitted by a mediator (M). Sometimes a mediation
effect is also called an indirect effect. Testing the mediation effect became popular in
psychology after publications by Judd and Kenny (1981) and Baron and Kenny
(1986). Then researchers were interested in whether the mediation effect depends on
other variables, moderators. There were two kinds of effect combined by mediation
and moderation. Baron and Kenny (1986) referred to those effects as mediated
moderation or moderated mediation. Preacher et al. (2007) gathered such effects as
the conditional indirect effect. They defined a conditional effect as “the magnitude of
an indirect effect at a particular value of a moderator (or more than one moderator).”
Mediation and moderation are commonly used in social science, health, psychological,

educational, and sociological research.

When researchers plan a study, they often think how many sample size they need.
MacKinnon et al. (2002) studied empirical power for common sample size of
mediation for many of testing methods. But it would more useful to know the sample
size required for 0.8 power to detect an effect. Fritz and MacKinnon’s (2007) studied
present the necessary sample size for six of the most common (according to the
literature survey) and the most recommended tests of mediation for various
combinations of parameters. The most common and the most recommended tests of
mediation are Baron and Kennys causal-steps test, joint significance test, Sobel
first-order test, PRODCLIN, percentile bootstrap, and bias-corrected bootstrap. They
offered guidelines for researchers in determining sample size with statistical power

0.8 to conduct mediation effect.



Preacher et al. (2007) listed five specific ways to think about moderated
mediation effects and performed a simulation study to examine empirical power and
Type | error rate to provide some guidance on approximately sample sizes. However,
they only studied simple conditions. They also did not clearly point out how many
sample size were necessary when detecting moderated mediation effect. Hence, we
extend their study and then investigate other conditions. In other words, we will
investigate empirical power for various combinations of relevant path coefficients and
for different methods of testing moderated mediation effect. In attempt to find an
approximate sample sizes with appropriate statistic power. To provide guidelines for

researchers when detecting moderated mediation effect.

At the beginning of this article, we reviewed the simple mediation model,
moderation model and the moderated mediation model. In addition, this article’s
purpose is about the sample size. We will briefly discuss why sample size is important
and discuss the relation between sample size and statistical power. Second, we will
introduce several methods of testing moderated mediation effect, including
multivariate delta methods and bootstrapping methods. Those testing methods will be
used in our simulation study. Thirdly, we study empirical power and Type | error rate
for moderated mediation effects under unequal relevant path coefficients in each
moderated mediation model. We attempt to find some information from this
simulation. Further, we try to find an approximately sample size required for 0.8
power to detect moderated mediation effect. At last, we provide guidelines of sample

size for researchers to study moderated mediation model.



2 Literature Reviews

Moderated mediation is one of the combinations of mediation and moderation. We
will review mediation and moderation in advance. There were five possibility formal
path models of moderated mediation model described by Preacher et al. (2007). We
will introduce those moderated mediation models respectively. In addition, the
purpose of this article is to provide guidelines for researchers in determining the
sample size for statistical power 0.8. Many people often have an idea of the better the
larger sample size because it is easily to reject null hypothesis. Hence, we will briefly

discuss the relation between power and sample size.

2.1 Mediation

Mediation effect or indirect effect is a casual effect which the effect of an independent
variable on a dependent variable is transmitted by mediator. Mediator is a variable
which is intermediate in the relation between an independent variable and a dependent
variable. In other words, the independent variable causes the mediator, and in turn, the
mediator causes the dependent variable then the relation of these variables form a
mediation model. Mediation model not only addresses the question of how two
variables are related but also why two variables are related. Hence, mediation model
is commonly used in social science, education, psychology and so on. For example,
how do drug abuse prevention programs reduce drug offer? Researchers are not only
interested in how drug abuse prevention programs reduced drug offer but interested in
why these two variables were related. Because a drug abuse prevention program may
cause a participant’s resistance to drugs, which in turn causes the outcome of a drug
offer. And a drug abuse prevention program is the independent variable (treatment or

control), resistance to drug use is the mediator and the outcome of a drug offer is the

3



dependent variable (acceptance or refusal) (MacKinnon, 2008; Preacher et al., 2007).

r
Independent c Dependent /
Variable Variable
X Y
/ ’
Mediator
M
a b
ra
Independent Dependent /
Variable —> Variable
X o Y

Figure 1 Simple Mediation path diagrams

Figure 1 is the path diagram of the simple mediation model. At the top of figure 1,
the independent variable (X) directly leads to the dependent variable (Y) without
consideration of other variables and it represents an overall effect model (or total
effect model). At the bottom of figure 1, it represents the mediation model, the
independent variable causes the mediator (M) which in turn causes the dependent
variable. In addition, there is a relation of X to Y that is not through M and that is the
direct effect of X on Y. Following three regression equations are used to investigate

mediation.

Y = i1+CX+T'1 (21)
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Y=i,+c'X+bM+r, 2.2)

M = i3 + aX + T'3 (23)

where c is the overall effect of the independent variable on the dependent variable; ¢’
is the effect of the independent variable on the dependent variable controlling for the
mediator; b is the effect of the mediator on the dependent variable controlling for the
independent variable; a is the effect of the independent variable on the mediator; i,

i, and i; are the intercepts; r;, r, and r53 are the residuals.

There have been some assumptions of the mediation regression equations. Each
mediation regression equation requires the usual assumptions for regression analysis.
There are four assumptions: correct function form, no omitted influences, accurate
measurement, and well-behaved residuals. Correct function form refers to each
mediation regression assumes linear relations among variables. Another aspect of the
correct function form assumption is that relations among variables are additive, in
other words, variables do not interact. No omitted influences, it is assumed that the
mediation regression equations reflect the correct underlying model. No important
variables or other influences are omitted form the regression model. Accurate
measurement is that X, M, and Y are reliable and valid measures. Well-behaved
residuals, the residuals in each equation are independent of each other, and the
residuals are assumed to have constant variance at each value of the predictor variable

(MacKinnon, 2008).

The coefficient relating the mediator to the dependent variable is estimated (b) in
equation 2.2. The coefficient relating the independent variable to the mediator is
estimated (@) in equation 2.3. The mediation effect or indirect effect equals the

product of two estimates (@h). The product of coefficients @ and b are used to

estimate mediation effect in simple mediation model and this method is most easily
5



applied to complex models. Under the assumptions of maximum likelihood and
ordinary least squares, @ and b are asymptotically independent and normally
distributed. It is further assumed that the product @b is normally distributed. Sobel
(1982,1986) derived the asymptotic standard error of @b product based on first

derivatives using the multivariate delta method. This is the most commonly used

formulas for the standard error of the mediation effect.

SE;p = J&ZSEZ + b2s,2, (2.4)

~

where sz and sz? correspond to the square standard error of @ and b,
respectively. However, there are other standard error estimators for the mediation

effect based on the product of coefficients.

SEs5 = \/dzs,;z + b2s42 + 542552 (2.5)

The standard error (2.5) is based on the second-order derivatives, although it is
negligible that using second-order standard error to improves accuracy. But both
standard errors are routinely reported in literates on simple mediation. It was found
evidence that the first- and second-order standard errors had the least bias of several

formulas for the mediation effect.

The null hypothesis is ab = 0, in other words, there is no mediation effect and
the alternative hypothesis is ab # 0. To test for significance, the product is divided
by the standard error of the product then the resulting ratio is compared to the
standard normal distribution. For example, using first-order standard error, the test

statistic is

7~ (2.6)



Then this statistic is compared to standard normal distribution. The 100(1 — «)%

confidence limits for the indirect effect are
ab + Z“/ZSE(iB , (2.7)

where Zay, is the value on the standard normal distribution corresponding to the
desired Type | error. The null hypothesis of no mediation effect is rejected at the «

level of significance if the CI does not contain 0.

In fact, using the product of coefficients method is required the assumption that
ab is normally distributed. Because @b is usually positively skewed and kurtotic.
MacKinnon et al. (2004) explained that using this method to test for significance of
the indirect effect has low statistical power and Type | error rates. In addition, the
confidence limits are imbalanced. If the product of coefficients method is used to test

for significance and the total sample size is not large, bootstrapping is recommended.

The alternative tests, the distribution of the product, have been shown to
outperform traditional methods (MacKinnon et al. 2002; MacKinnon et al. 2004). A
program called “PRODCLIN” (MacKinnon et al. 2007) used the product of two
normally distributed variables to compute asymmetric confidence intervals for the
mediation effect. In addition, there was the latest version of PRODCLIN program,
REMEDIATION program (Tofighi and MacKinnon, 2011). It is an R package and

solves several programs with the PRODCLIN package.



2.2 Moderation

Moderation model is testing for the relation between an independent variable and a
dependent variable whether depends on another variable, moderator. Figure 2
represents the moderation model but most researchers prefer to use path diagram of
Figure 3 now. Moderator is a variable that changes the form (direction) or strength of
relation between two variables. For example, a researcher is not only interested in
knowing whether a new instructional method leads to a better learning outcome but
also interested in knowing whether the new instructional method is equally effective
for students with low and high parental involvement (Wu and Zumbo, 2008). A new
instructional method is the independent variable, learning outcome is the dependent
variable and parental involvement is the moderator. A moderator variable can be
continuous or categorical, although a categorical moderator variable will be easier to
interpret (MacKinnon, 2008; Wu and Zumbo, 2008). A single regression equation

forms the moderation model:

Y=ay+ a; X +a; W+ azXW +1r (2.8)

where W is the moderator; a, is the intercept; a, is the relation between the
independent variable and the dependent variable; a, is the relation between the
moderator and the dependent variable; a; is the relation between the independent

variable by a moderator and the dependent variable; r is the residual.

The variables X and W are often centered before the product is formed to
improve interpretation of effects in the interaction model and to reduce collinearity
among the measures, thereby improving the estimation of model parameters. The
main reason of centering is that, unless the moderator has a meaningful zero point, the

interpretation of the main effects, a; and a,, are meaningless. The dependent
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variable is not necessary centered (Fairchild and MacKinnon, 2009; MacKinnon,

2008).

Moderator
w
Independent Dependent
Variable Variable
X g Y

Figure 2 Moderation path diagram-1

Independent
Variable
X a1
/ r
Moderator Dependent
W > Variable
/ v
a
XW 3

Figure 3 Moderation path diagram-2

The regression coefficient d@; is used to estimate moderation effect. If ds

statistically different from zero, it is say that there is a significance moderation of the

9



relation between X and Y. The coefficient @, or a, may be significant or
nonsignificant, but this does not affect the test of moderation. In addition, in
moderation, moderator is uncorrelated with independent variable or dependent

variable.

The moderation effect is commonly known as an interaction effect. It is important
to distinction the difference between a moderation effect and an interaction effect.
Interaction analysis has been extensively applied to correlational data and
experimental data, therefore, the interaction term seems not necessarily casual in
nature. But, the term of moderation effect needs to have causal hypotheses. In short,
an interaction effect is not necessary causal hypothesis for models but a moderation
effect is required the causal hypothesis. That is to say, a moderation effect is a special

case of an interaction effect (Wu and Zumbo, 2008).

2.3 Moderated Mediation

There are two kinds of effects that combine mediation and moderation: mediated
moderation and moderated mediation. Mediated moderation referred to the effect of
an interaction on a dependent variable is mediated. Moderated mediation occurs when
the strength of mediated effect depends on the level of a moderator. In other words,
moderated mediation happens when a mediator is intermediate in the interaction
between the independent variable and moderator to a dependent variable. However,

we only limit our attention on moderated mediation.

There are many conflicting definitions about moderated mediation. For example,
Morgan-Lopze and MacKinnon (2006) defined moderated mediation as when “the
effect of the independent variable on mediator is constant and the effect of the

mediator on the dependent variable depends on the level of moderator”. Muller et al.

10



(2005) defined moderated mediation “happens if the mediating process that is
responsible for producing the effect of the treatment on the outcome depending on the
value of a moderator variable.” Hence, Preacher et al. (2007) discussed several
specific ways to think about moderated mediation effects, which they refer to as

Models 1 through 5.
Model 1: When the Independent Variable is Also the Moderator

In this model, the independent variable (X) functions as a moderator of the b path.
Figure 4 describes the case in which the effect of M on Y is moderated by the X. This
model was described by Judd and Kenny (1981). And this model can also be
understood as the effect of X on Y is moderated by M, that is the path of ¢’ is

moderated by M. The relevant regression equations for Model 1 are:
M=ay+a X +ry, (2.9)
Y =by+c'X+b;M + b, XM + 1. (2.10)
Equation 10 can also be written as:
Y=>by+c'X+ (by+ b X)M + 1. (2.12)
Equation 11 explains the regression of M on Y depends on X.

The point estimation of moderated mediation effect of Model 1 is £(8|X) =
a,(b; + b,X). The method of obtained point estimation is described by Sobel (1986)
and Bollen (1987, 1989). The point estimation may also be obtained by the chain rule
from elementary calculus. The detail of point estimation was discussed in the

Appendix C.

11
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Figure 4 Model 1 path diagram

Model 2: When the a Path is Moderated by W

Figure 5 describes Model 2 of the a path is moderated by W. This model is the
traditionally termed moderated mediation. The relevant regression equations for

Model 2 are:
M = a0+a1X+a2W+a3XW+r1, (212)
Y: bo +b1M+C1'X+C2'W+C3'XW+7’2. (213)

This model can also be used to investigate another conditions, a moderated effect
is mediated by M, mediated moderation. Although Model 2 can be used to discuss two
types of effect, but different parameters are emphasized in each. Mediated moderation
is addressed on the significance of the product d;b; and moderated mediation is
addressed on the point estimation f(8|W) = b,(a, + a;W). We focus attention on
moderated mediation: the effect of X on Y is mediated by M and whether mediation

effect depends on the values of moderator W.

12



Figure 5 Model 2 path diagram

Model 3: When the b path is moderated by W

Figure 6 describes Model 3 of the b path is moderated by M. The relevant regression

equations for Model 3 are:
M= (oA + a1X + 1, (214)
Y=b0+b1M+b2W+b3MW+CIX+T2 . (215)

The moderated mediation effect is expressed as f(8|W) = a, (b, + bsW).

13



MW b3

Figure 6 Model 3 path diagram

Model 4: When the a Path is Moderated by W and the b Path is Moderated by Z

This model is the extension of Model 2 and 3. The paths a and b are moderated by
different moderators, W and Z. This model is described in figure 7. The relevant

regression equations for Model 4 are:
M = a0+a1X+a2W+a3XW+T1, (216)
Y = bo + blM + sz + b3MZ + C1,X + C2,W + C3,XW + . (217)

The moderated mediation effect is expressed as f(8|W,Z) = (&, + asW) (b, +

b37).

14
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Figure 7 Model 4 path diagram

Model 5: When the a and b Paths are both Moderated by W

The a and b paths are both moderated by the same moderator W. This model describes
in figure 8 and this figure is the same as the one Baron and Kenny (1986) described
when they discussed moderated mediation and is also the model suggested by Muller
et al. (2005) to address both mediated moderation and moderated mediation. The

relevant regression equations for Model 5 are:
M = a0+a1X+a2W+a3XW+T1, (218)

Y = bo + blM + szW + C1,X + CZIW + C3,XW + ;. (219)

15



The moderated mediation effect is expressed as f(8|W) = (@, + asW)(by + b,W).

M

al/'// bl

MW a2 a3

XW

Figure 8 Model 5 path diagram

2.4 Power and Sample Size

When researchers plan a study, how many sample size are appropriate? Many people
consider the better the larger sample size because it is easily to have a significant
result for large sample size. But this idea is not true. The power of a statistical test
depends on three parameters: the significance level, the reliability of the sample
results and sample size, and the “effect size,” that is, the degree to which the effect
exists. The relation between significance (a ), power, sample size (n), and effect size
(ES) are complementary. There are four types of power analysis; in each, one of these

parameters is determined as a function of the other three (Cohen, 1988).

The role of significance level represents “the standard of the proof that the

phenomenon exists, or the risk of mistakenly rejecting the null hypothesis (Cohen,

16



1988).” The significance level « (Type | error) represents the rate of rejecting a true
null hypothesis, it is taken as a relatively small value. The lower the value of «, the
poorer the opportunities are that the sample will provide results which meet this
standard, that is the lower the power. The power of a statistical test is the probability
that it will lead to the significant of results. In other words, statistical power is the
correct probability of correctly rejecting a false null hypothesis. Type Il error is the
complement of the power (1-power). It represents the error probability of failing to
reject a false null hypothesis. Generally, we set Type | error equal to 0.05 and Type Il

error equal to 0.2, that is power equal to 0.8 by Cohen’s (1988) advices.

Cohen (1988) defined effect size (ES) as “the degree to which the phenomenon is
present in the population” or “the degree to which the null hypothesis is false.” For
example, R? effect size measures are presented to assess variance accounted for in
mediation models. The measures offer a means to evaluate both component paths and
the overall mediated effect in mediation models (Fairchild et al., 2009). Other effect
size measures for mediation, such as the partial r* and standardized regression
coefficients. Cohen (1988) has suggested conventional values for “small”, “medium”
and “large” effects in the social sciences. The larger the ES, other conditions
(significance, sample size) being equal, the greater the power of the test. The larger
the ES, other conditions (significance, power) being equal, the smaller the required

sample size.

In our first part of simulation, power as a function of Type I error (), effect size
(ES), and sample size (n). We may decide to change our specifications (effect size or
sample size) to increase power when Type | error is fixed. The second part of our
simulation, the types of power analysis is “n as a function of ES, «, and power.” We

wishes to have power equal to 0.8 under a certain ES and Type | error ¢ .
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3 Assessing Methods of Moderated Mediation
Effects

3.1 Product of Coefficients

Normal-theory standard error is the most commonly used method of testing
moderated mediation effect. Because it is most easily applied to complex models.
Sobel (1982) and Bollen (1987, 1989) described the use of the first-order multivariate
delta method in determining asymptotic SEs (standard errors) of a broad class of
mediation effects. A second-order multivariate delta method can be used to yield the
exact SE (Mood et al., 1974). By using these two methods can generate the first- and
second-order variances of moderated mediation effect. The details of first- and
second-order variance approximations for Models 1-5 were referred to appendix D.

Table 1 describes first- and second-order variances of Models 1-5.

For testing the significance of moderated mediation effect, we assume the point
estimator normality. The point estimator is divided by the standard error of the point
estimator then the resulting ratio is compared to the standard normal distribution. For

example of Model 2:

by(G1+asw
7~ 1(@1+azw)

A A 22 22,2 2 2 2
J(a1+a3W) 551+(b1 +551)(S&1+2531.33W+5?13W )

(3.1)

and comparing Z to the standard normal distribution.

This method is appropriate only if the sample size is large and the researcher has
in mind a limited number of key conditional values of moderator(s). Because the test
statistic is asymptotically normal, if the sample size is not large, bootstrapping is

recommended (Preacher et al., 2007).
18



Table 1 First- and Second-Order Variances

Model Second-order variance

(by + b, X)?s3, + (@, + 53 ) (s}, + 2555, X + 55 X*)

2
(@ +@W)2sE + (by +5E)(sE, + 255 5 W+ 53 W)
3
(El + Ea szsg‘._ + (ﬁlz + Sé._) (55. + ESE:,EEW + SEBWEJ
4
(&1 + &EWJE (EE + ESS'_JSEZ + SEEZE}
+(5, 4+ b, z)" (s3, +255 5, W +52W?)
+ (2 + 255,52 + SEZ%) (53, + 2545, W +sEW?)
5

[EI + EE W)z [SI'-%-_ + ESE'_JEEW + E"és.['I"lf:)«-I
+ (&1 + &ijz (551 + ESELJEZW + SEZWE}P

+ (53, +2s5 5 W+ sEW?) (sb + 255, 5, WH SEEW:)

Note. The first-order variance was omitted the part which second-order variance has

been underline in each formula.
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3.2 Percentile Bootstrap

Bootstrapping is the most recommended method for testing moderated mediation
effect. Using bootstrapping, no assumptions needed about the shape of the sampling

distribution, no particular formula for the SE is required (MacKinnon et al., 2004).

Take a sample size of n units from the original sample of n units. Using this
resample, reestimate the point estimate. This process is repeated B times and then
sorting the B bootstrap values of moderated mediation effect from low to high. The
bootstrap confidence interval lower and upper bounds of a 100(1 — «)% CI for the
population moderated mediation effect is defined as (a/2)Bth and (1 — a/2)Bth
values in this sorted distribution, where « is the desired nominal Type | error rate.
This confidence interval is called percentile bootstrap CI. For example, a = 0.05, the
95% CI with B=1,000, the lower and upper bounds of the interval would be the 25th
and 975th values of the moderated mediation effect in the sorted distribution. The null
hypothesis of no moderated mediation effect is rejected at the a level of significance

if the CI does not contain O (Preacher et al., 2007).

The percentile bootstrap Cls can be asymmetrical because they are based on an
empirical estimation of the sampling distribution of the moderated mediation effect.
The percentile bootstrap Cls may be inappropriate and can be further improved
through bias-corrected (BC) and bias-corrected and accelerated (BCa) intervals

(Preacher et al., 2007; MacKinnon et al., 2004).

3.3 Bias-Corrected Bootstrap

The problem of the percentile bootstrap is the confidence interval possibly will not be

centered on the true parameter value. The bias-corrected (BC) bootstrap is adjusted
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for bias in the bootstrap distribution. In other words, the bias-corrected bootstrap
contains a correction for the bias created by the central tendency of the estimate. It is
just like the percentile intervals except that different percentiles of the bootstrap
distribution are used. The correction is made under the assumption that there is a

monotonically increasing function T such that T(8) is normal distributed with
E[T(0)] =T - 2, (3.2)
Var[T(8)] =1 (3.3)

where Z, is the bias, which is the z score of the value obtained from the proportion of
bootstrap estimate below the original estimate in the total number of bootstrap. Let
é*(a) indicate the 100ath percentile of B bootstrap replications. The BC interval of

intended coverage 1 —a is given by

(B Oup) = (0" @) » 0" ), (3.4)

where
a, = O(22 + 24/,) (3.5)
ay = O(229 + 21-4/2) (3.6)

Here ®©(:) is the standard normal cumulative distribution function and z ) is the
(200 “/2 )th percentile point of a standard normal distribution. For example,
Z(0.975) = 1.96 and® (1.96) = .975. The null hypothesis of no moderated mediation
effect is rejected at the a level of significance if the CI does not contain O (Efron and

Tibshirani, 1993; MacKinnon et al., 2004).
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3.4 Bias-Corrected and Accelerated Bootstrap

The percentile intervals are less erratic, but have less satisfactory coverage properties.
The bias-corrected and accelerated (BCa) is an improved version of the percentile
method. The BCa intervals are substantial improvement over the percentile method in
both theory and practice. Same as in bias-corrected bootstrap, let é*(a) indicate the
100ath percentile of B bootstrap replications. The BCa interval endpoints are also
given by percentiles of the bootstrap distribution. The percentiles used depends on
two numbers @ and Z,, called the acceleration and bias-correction. The BCa

interval of intended coverage 1 —a is given by

(810 Oup) = (8% (an) » 0" (@), (3.7)
where
7o+ Z
a = (20 0 @) > (3.8)
1-— a(zo + Z(a/Z))
Zo+ Zq_
a, = D <z“0 0 T ) (3.9)
1-— a(zo + Z(l_a/z))

Here @ (:) is the standard normal cumulative distribution function and z,y is the

(100 “/Z)th percentile point of a standard normal distribution.

The value of the bias-correction Z, is obtained directly from the proportion of

bootstrap replications less than the original estimate 8,

Bo=® (Z?zll (6 < §)>,

= (3.10)

-1 . : . o
@  indicating the inverse function of a standard normal cumulative distribution

function, e.g., ®_1(.975) = 1.96. 2, measures the median bias of 8*, that is, the
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discrepancy between the median of 8* and 8, in normal units.

There are various ways to compute the acceleration @. The easiest to explain is
given in terms of the jackknife values of a statistic & = s(x). Let x; be the original
sample with ith point x; deleted, let 8y = s(x;) and define 8, = ¥, 0y /n. A

simple expression for the acceleration is

~ A 3
(60— 6
a — Zl—l( () (l)) (3'11)

~ ~ 2 3/2
6{Z?=1(9(-) —6u)) }

A

The quantity a is called the acceleration because it refers to the rate of change of the
standard error of & with respect to the true parameter value 6, measured on a

normalized scale (Efron and Tibshirani, 1993).
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4 Simulation

4.1 Empirical Power

This simulation study was to examine the empirical power for the methods of testing
moderated mediation effects across several conditions to provide some guidance on
appropriate sample sizes. The data were simulated using moderated mediation models
across five models. All variables were generated from a normal distribution with a
mean of 0 and a variance of 1. There were five different sample sizes in simulation:
50, 100, 200, 500, and 1,000. For each simulation, the values for relevant coefficients
were varied and those relevant coefficients values included 0, 0.14, 0.39, and 0.59,
corresponding to zero, small (2% of the variance), medium (13% of the variance), and
large (26% of the variance) effect sizes as described in Cohen (1988). For all models,
the direct effect (c’) was always set to 0 because previous simulation pointed out no
difference in power calculations as the direct effect increased (MacKinnon et al., 2004)
and other coefficients were also set to be equal to +1 in the population. In addition, all

conditional values of moderator(s) were also set to be equal to +1.

The four effect sizes for relevant coefficients, five sample sizes and five methods
totally have 1,600 combinations for Models 1-3 and 6,400 combinations for Models
4-5, respectively. The process of generating data sets for a specific combination,
running regression analyses and then testing for significance was replicated a total of
1,000 times for each combination. For the bootstrap methods, a total of 1,000
resampled data sets of size N were taken from the original sample of size N with
replacement. And the point estimate (moderated mediation effect) was calculated for
each bootstrap sample. These 1,000 bootstrap point estimates were used to construct

confidence intervals for the moderated mediation effect and these confidence intervals
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were tested for significance by examining whether they contained zero. This process
was done a total of 1,000 times for each combination. Then power for bootstrap
methods was equal to the proportion of that the bootstrap confidence intervals
detecting the moderated mediation effect. In addition, the Type | error a was set to
be equal to 0.05. According to the literature survey, it would be more useful to know
the sample size required for power 0.8 to detect an effect for researchers planning

studies (Cohen, 1988).

4.1.1 Results and Discussion

Tables 2-6 represent the Type | error rates for Models 1-5, respectively. Tables 7-11
are empirical power for Models 1-5, respectively. Because the results are too much to
display all conditions, we only display some results here. We didn’t display the
conditions of the product of relevant coefficients equal to zero and only display the
results for sample sizes of power over 0.8. For example, in Model 1, we didn’t list the
results when a;=0 or b;=b,=0. The cells values are represent proportions of 1,000
trials found significant at ¢ =0.05 in two-tailed z-tests. For example of Model 2 in
Table 8, b;=0.39, a;=0.14 and a3;=0.39, the empirical power is 0.934, 0.930, 0.951,

0.966 and 0.966 for each methods when sample sizes equal to 100.

Here, empirical power for using first-order delta method variances is slightly
larger than using second-order variances method. That is, rejection rates using
second-order delta method variances slightly lower than first-order variances method.
Type | error rates and empirical power for using bootstrap method is larger than using
z-tests (first and second-order variances); but Type | error rates still not well for using
bootstrap methods; bias-corrected bootstrap and bias-corrected and accelerated

bootstrap results showed high power; bias-corrected bootstrap and bias-corrected and
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accelerated bootstrap showed almost have same empirical power. These results are the
same as the simulations studied by Preacher et al. (2007) which they conduct simple
condition. As the relevant coefficients increased, the power was increased; the larger
the sample size the better the power. In addition, if the product of population relevant

coefficients was equal to zero, the power was very low.

Because Models 1-3 have one path are moderated by moderator and Models 4-5
have two paths are moderated by moderator. We divide Models 1-5 into two groups.
Models 1-3 are first group and Models 4-5 are second group. The results of Models
1-3 are similar and Models 4-5 are similar. Statistical power for detecting moderated
mediation effects was slight larger for Model 1 than Models 3, which in turn higher

than Model 2; Model 5 are higher than Model 4.

4.2 Sample Size Study

From Tables 7-11, we can roughly guess how many sample size are needed to achieve
adequate statistical power 0.8. For example, in Model 1, regression coefficients
b,;=0.14, empirical power is over 0.8 when sample size reached 500 except two
conditions (a;=0, a3=0.14 and a;=0.14, a3=0). We could guess that the required sample
size is 200 to 500 for adequate statistical power 0.8. In Model 2, Table 8, regression
coefficients b;=0.39, we guess that it require 50 to 100 sample size for the most

conditions.

Because the simulation range of sample size is broad, for example, 500 to 1,000.
We couldn’t clearly point out how many sample sizes were necessary when conducted
moderated mediation effect for adequate statistical power. Using second-order
standard errors has the smallest power and the required sample sizes is largest than

other methods. To simplify, we refer to second-order standard errors as the baseline.
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Hence, we try to find a smallest sample sizes for power 0.8 in each model.

4.2.1 Results and Discussion

Results are summaries in Tables 12 and 13. We know that statistical power for
detecting moderated mediation effects was slight larger for Model 1 than Model 3,
which in turn higher than Model 2 and Model 5 is higher than Model 4. Therefore, the
required sample size was slight larger for Model 2 than Model 3, which in turn slight
larger than Model 1 and Model 4 is slight larger than Model 5. Because we use 10

samples as a unit, the results may be same for some conditions.

For example, Table 12 (Models 1-3), if first regression coefficient is 0.14, the
required sample size is around 400-470; regression coefficient combinations are (0.14,
0, 0.14) and (0.14, 0.14, 0), the required sample size is around 1040-1070; and (0.14,
0.14, 0.14) required sample size around 530-540. When first regression coefficient is
0.59, the required sample size is smaller than when first regression coefficient is 0.39
which in turn smaller than when first coefficient is 0.14. And this trend is same as in

Models 4-5.

We found some rules from the study. The form of point estimate for Models 1-3
is a(b+c). If the product of this point estimate is the same and the required sample
size is almost equal. For example, if regression coefficients are (0.14, 0.14, 0.39) and
(0.14, 0.39, 0.14), they all need sample sizes around 440 to reach appropriate
statistical power 0.8. This conclusion is also the same for Models 4-5. The form of
point estimate for Models 4-5 is (a+b)(c+d). Therefore, if regression coefficients are
(0.14, 0.39, 0.14, 0.39), (0.14, 0.39, 0.39, 0.14), (0.39, 0.14, 0.14, 0.39) and (0.39,

0.14, 0.39, 0.14), these four combinations all need sample size around 100.
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5 Conclusions

Fritz and MacKinnon (2007) discussed the required sample size to detect the mediated
effect. In their simulation, they had an initial sample sizes which were estimated using
results from MacKinnon et al. (2002, 2004). First, they calculated empirical power for
initial sample size compared to 0.8, and if the empirical power was larger than 0.8, the
sample size for the next simulation was decreased, and if the empirical power was
smaller than 0.8, the sample size was increased. This iterative process was repeated

until the empirical power was within 0.001 of 0.8.

In our sample size study, the regression coefficients combinations are too many
and we don’t know the initial sample size. We just could guess rough sample size for
empirical power over 0.8 in empirical power estimation. Then we use 10 samples as a
unit and try to find required sample size for empirical power of 0.8. Although the
sample sizes we study are not very accurate but it could provide guidelines for

researchers studying moderated mediation model in determining sample size.
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Appendix A

Table 2 Type | Error Rates for Model 1

Sample Size Test

first second boot bc bca
50 0 0 0.007 0.013 0.013
100 0 0 0.002 0.005 0.005
200 0.001 0.001 0.003 0.006 0.006
500 0 0 0.003 0.013 0.013
1000 0 0 0.002 0.005 0.006

Note. First refers to tests using first-order standard errors, second refers to using
second-order standard errors, boot refers to rejection rates using percentile
bootstrap confidence intervals, bc refers to rejection rates using bias-corrected
bootstrap confidence intervals and bca refers to rejection rates using bias-corrected

and accelerated bootstrap confidence intervals.

Table 3 Type | Error Rates for Model 2

Sample Size Test

first second boot bc bca
50 0 0 0.001 0.004 0.004
100 0 0 0 0.007 0.007
200 0 0 0.002 0.006 0.006
500 0 0 0.002 0.005 0.005
1000 0 0 0.001 0.004 0.004

Table 4 Type | Error Rates for Model 3

Sample Size Test

first second boot bc bca
50 0 0 0.002 0.006 0.007
100 0 0 0.002 0.007 0.008
200 0 0 0.001 0.004 0.004
500 0 0 0.003 0.007 0.007
1000 0 0 0 0.004 0.004
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Table 5 Type | Error Rates for Model 4

Sample Size Test

first second boot bc bca
50 0.001 0.001 0.003 0.004 0.005
100 0 0 0 0.004 0.004
200 0 0 0.003 0.011 0.012
500 0 0 0 0.004 0.004
1000 0 0 0 0.001 0.001

Table 6 Type | Error Rates for Model 5

Sample Size Test

first second boot bc bca
50 0 0 0.001 0.003 0.002
100 0 0 0.002 0.006 0.006
200 0 0 0.001 0.009 0.009
500 0 0 0.002 0.011 0.01
1000 0 0 0.002 0.004 0.004
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Table 7 Empirical Power for Model 1

Regression Coefficients Sample Test
b, ai as Size first second boot bc bca
0.14 0 0.14 1000 0.768 0.748 0.849 0.879 0.879
0.39 500 0.851 0.848 0.866 0.885 0.885
0.59 500 0.870 0.868 0.879 0.883 0.883
0.14 0 1000 0.806 0.781 0.868 0.898 0.898
0.14 500 0.822 0.803 0.889 0.928 0.928
0.39 500 0.863 0.858 0.872 0.882 0.882
0.59 500 0.876 0.875 0.876 0.885 0.885
0.39 0 500 0.845 0.844 0.868 0.890 0.896
0.14 500 0.871 0.865 0.876 0.890 0.890
0.39 500 0.871 0.869 0.882 0.886 0.886
0.59 500 0.852 0.851 0.855 0.859 0.859
0.59 0 500 0.863 0.863 0.878 0.887 0.887
0.14 500 0.862 0.862 0.871 0.874 0.874
0.39 500 0.863 0.862 0.862 0.861 0.861
0.59 500 0.850 0.850 0.849 0.856 0.856
0.39 0 0.14 1000 0.905 0.905 0.906 0.913 0.913
0.39 200 0.962 0.955 0.966 0.970 0.970
0.59 100 0.921 0.900 0.953 0.963 0.963
0.14 0 1000 0.913 0.913 0.920 0.919 0.919
0.14 200 0.787 0.773 0.822 0.850 0.850
0.39 100 0.846 0.830 0.912 0.939 0.939
0.59 100 0.952 0.945 0.966 0.978 0.978
0.39 0 200 0.969 0.964 0.979 0.981 0.981
0.14 100 0.847 0.831 0.902 0.943 0.943
0.39 100 0.952 0.950 0.969 0.976 0.976
0.59 100 0.959 0.958 0.963 0.964 0.964
0.59 0 100 0.892 0.886 0.931 0.950 0.950
0.14 100 0.942 0.934 0.955 0.969 0.969
0.39 50 0.701 0.681 0.756 0.805 0.805
0.59 50 0.724 0.711 0.775 0.804 0.804
0.59 0 0.14 1000 0.939 0.939 0.941 0.941 0941
0.39 100 0.798 0.794 0.811 0.846 0.846
0.59 50 0.860 0.844 0.882 0.920 0.920
0.14 0 1000 0.933 0.931 0.937 0.940 0.940

33



Table 7 Empirical Power for Model 1 (Continue)

Regression Coefficients Sample Test
b, a1 as Size first second boot bc bca
0.14 200 0.857 0.853 0.864 0.873 0.873
0.39 100 0.959 0.956 0.967 0.972 0.972
0.59 50 0.860 0.844 0.882 0.920 0.920
0.39 0 100 0.798 0.787 0.818 0.841 0.841
0.14 100 0.964 0.961 0.963 0.969 0.969
0.39 50 0.897 0.886 0.913 0.944 0.944
0.59 50 0.938 0.935 0.950 0.967 0.967
0.59 0 100 0.979 0.978 0.982 0.986 0.986
0.14 50 0.855 0.835 0.884 0.925 0.925
0.39 50 0.945 0.942 0.956 0.967 0.967
0.59 50 0.960 0.956 0.964 0.972 0.972

Table 8 Empirical Power for Model 2

Regression Coefficients Sample Test
b, a1 as Size first second boot bc bca
0.14 0 0.14 1000 0.817 0.801 0.883 0.915 0.915
0.39 500 0.869 0.864 0.895 0.909 0.909
0.59 500 0.858 0.856 0.867 0.867 0.867
0.14 0 1000 0.78 0.761 0.869 0.891 0.891
0.14 500 0.778 0.759 0.856 0.898 0.898
0.39 500 0.861 0.853 0.863 0.875 0.875
0.59 500 0.880 0.878 0.881 0.884 0.884
0.39 0 500 0.845 0.834 0.877 0.896 0.896
0.14 500 0.869 0.864 0.878 0.892 0.892
0.39 500 0.880 0.875 0.879 0.883 0.882
0.59 500 0.868 0.865 0.867 0.871 0.871
0.59 0 500 0.872 0.867 0.879 0.892 0.892
0.14 500 0.881 0.879 0.880 0.885 0.885
0.39 500 0.888 0.888 0.888 0.892 0.892
0.59 500 0.872 0.872 0.873 0.881 0.881
0.39 0 0.14 1000 0.846 0.845 0.840 0.849 0.849
0.39 200 0.929 0.923 0.943 0.953 0.953
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Table 8 Empirical Power for Model 2 (Continue)

Regression Coefficients Sample Test
b, a1 as Size first second boot bc bca
0.59 100 0.874 0.862 0.924 0.954 0.954
0.14 0 1000 0.875 0.873 0.879 0.886 0.886
0.14 500 0.984 0.984 0.988 0.988 0.988
0.39 100 0.826 0.798 0.886 0.921 0.921
0.59 100 0.934 0.925 0.954 0.971 0.971
0.39 0 200 0.958 0.953 0.966 0.971 0.971
0.14 100 0.819 0.796 0.885 0.941 0.941
0.39 100 0.934 0.930 0.951 0.966 0.966
0.59 100 0.944 0.943 0.959 0.959 0.959
0.59 0 100 0.869 0.856 0.927 0.950 0.950
0.14 100 0.941 0.932 0.955 0.967 0.967
0.39 100 0.952 0.949 0.963 0.966 0.966
0.59 100 0.962 0.960 0.957 0.964 0.964
0.59 0 0.14 1000 0.869 0.869 0.871 0.873 0.873
0.39 200 0.958 0.957 0.959 0.966 0.966
0.59 100 0.970 0.965 0.961 0.973 0.973
0.14 0 1000 0.863 0.862 0.853 0.858 0.858
0.14 500 0.992 0.992 0.989 0.990 0.990
0.39 100 0.917 0.911 0.915 0.929 0.929
0.59 50 0.787 0.769 0.824 0.870 0.870
0.39 0 200 0.961 0.957 0.956 0.959 0.959
0.14 100 0.992 0.918 0.923 0.943 0.943
0.39 50 0.828 0.809 0.862 0.907 0.907
0.59 50 0.925 0.919 0.939 0.953 0.953
0.59 0 100 0.957 0.954 0.964 0.973 0.973
0.14 50 0.785 0.768 0.815 0.882 0.882
0.39 50 0.917 0.909 0.928 0.956 0.956
0.59 50 0.943 0.937 0.940 0.961 0.961

35



Table 9 Empirical Power for Model 3

Regression Coefficients Sample Test
b, ai as Size first second boot bc bca
0.14 0 0.14 1000 0.799 0.776 0.877 0.902 0.902
0.39 500 0.841 0.828 0.860 0.876 0.876
0.59 500 0.871 0.869 0.876 0.886 0.886
0.14 0 1000 0.780 0.756 0.854 0.897 0.897
0.14 500 0.789 0.778 0.861 0.901 0.901
0.39 500 0.867 0.863 0.876 0.892 0.892
0.59 500 0.876 0.873 0.877 0.886 0.886
0.39 0 500 0.846 0.840 0.873 0.890 0.890
0.14 500 0.884 0.881 0.889 0.900 0.900
0.39 500 0.885 0.883 0.892 0.893 0.892
0.59 500 0.845 0.845 0.839 0.844 0.844
0.59 0 500 0.853 0.850 0.861 0.869 0.869
0.14 500 0.883 0.881 0.881 0.890 0.890
0.39 500 0.885 0.884 0.894 0.895 0.895
0.59 500 0.877 0.877 0.877 0.881 0.881
0.39 0 0.14 1000 0.881 0.878 0.887 0.888 0.888
0.39 200 0.955 0.952 0.963 0.972 0.972
0.59 100 0.894 0.882 0.938 0.966 0.966
0.14 0 1000 0.881 0.879 0.881 0.885 0.885
0.14 200 0.745 0.730 0.793 0.826 0.826
0.39 100 0.822 0.808 0.885 0.921 0.921
0.59 100 0.924 0.917 0.950 0.963 0.963
0.39 0 200 0.949 0.946 0.962 0.972 0.972
0.14 100 0.850 0.830 0.890 0.929 0.929
0.39 100 0.947 0.942 0.966 0.975 0.975
0.59 100 0.959 0.958 0.964 0.973 0.973
0.59 0 100 0.899 0.889 0.936 0.955 0.955
0.14 100 0.936 0.931 0.951 0.965 0.965
0.39 100 0.959 0.955 0.960 0.964 0.964
0.59 50 0.735 0.725 0.771 0.808 0.808
0.59 0 0.14 1000 0.923 0.923 0.921 0.923 0.923
0.39 100 0.774 0.764 0.784 0.815 0.815
0.59 50 0.696 0.678 0.750 0.801 0.801
0.14 0 1000 0.923 0.923 0.921 0.923 0.923
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Table 9 Empirical Power for Model 3 (Continue)

Regression Coefficients Sample Test
b, a1 as Size first second boot bc bca
0.14 200 0.835 0.828 0.831 0.850 0.850
0.39 100 0.924 0.920 0.938 0.950 0.950
0.59 50 0.835 0.819 0.860 0.907 0.907
0.39 0 200 0.974 0.972 0.978 0.979 0.979
0.14 100 0.934 0.931 0.931 0.947 0.947
0.39 50 0.849 0.835 0.878 0.911 0.911
0.59 50 0.941 0.935 0.959 0.974 0.974
0.59 0 100 0.981 0.980 0.981 0.987 0.987
0.14 50 0.847 0.833 0.880 0.911 0.911
0.39 50 0.940 0.932 0.947 0.961 0.961
0.59 50 0.956 0.955 0.968 0.981 0.981
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Table 10 Empirical Power for Model 4

Sample Test
a1 as b, bs Size first second boot bc bca
0 0.14 0 0.14 1000 0.666 9,642 0.816 0.847 0.847

0.39 1000 0.869 0.867 0.871 0.878 0.878

0.59 1000 0.854 0.853 0.856 0.853 0.853

0.14 0 1000 0.673 0.647 0.801 0.862 0.862
0.14 1000 0.834 0.827 0.848 0.862 0.862

0.39 1000 0.870 0.869 0.879 0.879 0.879

0.59 1000 0.882 0.882 0.880 0.883 0.883

0.39 0 1000 0.883 0.878 0.875 0.886 0.886
0.14 1000 0.869 0.869 0.862 0.866 0.866

0.39 1000 0.867 0.866 0.873 0.874 0.874

0.59 1000 0.883 0.882 0.871 0.870 0.870

0.59 0 1000 0.868 0.866 0.865 0.875 0.875
0.14 1000 0.864 0.862 0.856 0.860 0.860

0.39 1000 0.898 0.898 0.899 0.901 0.901

0.59 1000 0.887 0.887 0.884 0.885 0.885

0.39 0 0.14 1000 0.944 0.944 0.952 0.960 0.906
0.39 200 0.894 0.876 0.929 0.947 0.947

0.59 200 0.963 0.958 0.958 0.967 0.967

0.14 0 1000 0.950 0.939 0.946 0.951 0.951
0.14 200 0.720 0.701 0.837 0.882 0.882

0.39 200 0.958 0.955 0.963 0.972 0.972

0.59 200 0.949 0.945 0.954 0.955 0.955

0.39 0 200 0.936 0.928 0.951 0.969 0.969
0.14 200 0.950 0.959 0.963 0.969 0.969

0.39 200 0.965 0.965 0.962 0.965 0.965

0.59 200 0.955 0.955 0.957 0.961 0.961

0.59 0 200 0.953 0.951 0.954 0.958 0.958
0.14 200 0.971 0.968 0976 0.979 0.979

0.39 200 0.955 0.955 0.955 0.958 0.958

0.59 200 0.953 0.953 0.949 0.951 0.951

0.59 0 0.14 1000 0.947 0.947 0.950 0.954 0.954
0.39 100 0.729 0.705 0.807 0.858 0.858

0.59 100 0.928 0.911 0.952 0.963 0.963

0.14 0 1000 0.947 0.947 0.947 0.947 0.947
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Table 10 Empirical Power for Model 4 (Continue)

Sample Test

a as b1 bs Size first second boot bc bca
0.14 | 200 0.866 0.858 0.887 0.910 0.910
0.39 100 0.904 0.891 0.928 0.956 0.956
0.59 100 0.962 0.960 0.966 0.979 0.979
039 O 100 0.727 0.700 0.809 0.861 0.861
0.14 100 0.921 0.912 0.956 0.964 0.964
0.39 100 0.967 0.962 0.963 0.976 0.976
0.59 100 0.972 0.971 0.967 0.977 0.977
059 O 100 0.944 0.938 0.967 0.977 0.977
0.14 100 0.946 0.942 0.951 0.967 0.967
0.39 100 0.963 0.961 0.957 0.963 0.963
0.59 100 0.964 0.964 0.959 0.962 0.962
014 O 0 0.14 1000 0.684 0.658 0.818 0.869 0.869
0.39 1000 0.860 0.859 0.867 0.873 0.873
0.59 1000 0.877 0.877 0.877 0.877 0.877
014 O 1000 0.679 0.650 0.823 0.879 0.879
0.14 1000 0.850 0.846 0.859 0.874 0.874
0.39 1000 0.858 0.857 0.863 0.868 0.868
0.59 1000 0.880 0.880 0.883 0.883 0.883
039 O 1000 0.850 0.845 0.862 0.871 0.872
0.14 1000 0.872 0.869 0.972 0.880 0.880
0.39 1000 0.856 0.856 0.845 0.846 0.846
0.59 1000 0.864 0.864 0.862 0.863 0.863
059 O 1000 0.882 0.880 0.885 0.886 0.886
0.14 1000 0.881 0.881 0.880 0.875 0.875
0.39 1000 0.877 0.877 0.869 0.870 0.870
0.59 1000 0.876 0.876 0.873 0.873 0.873
014 O 0.14 1000 0.934 0.928 0.945 0.951 0.951
0.39 200 0.677 0.651 0.756 0.809 0.809
0.59 500 0.987 0.986 0.991 0.991 0.991
014 O 1000 0.931 0.929 0.945 0.956 0.956
0.14 | 500 0.981 0.978 0.985 0.992 0.992
0.39 500 0.991 0.991 0.988 0.990 0.990
0.59 500 0.993 0.993 0.991 0.991 0.991
039 O 500 0.983 0.983 0.985 0.986 0.986
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Table 10 Empirical Power for Model 4 (Continue)

Sample Test
a as b1 bs Size first second boot bc bca

0.14 | 500 0.992 0.992 0.989 0.991 0.991

0.39 500 0.991 0.991 0.992 0.991 0.991

0.59 500 0.993 0.993 0.990 0.989 0.989

059 O 500 0.986 0.986 0.990 0.990 0.990
0.14 | 500 0.992 0.992 0.993 0.992 0.992

0.39 500 0.991 0.991 0.992 0.991 0.991

0.59 500 0.993 0.993 0.990 0.989 0.989

039 O 0.14 1000 0.959 0.958 0.956 0.961 0.961
0.39 200 0.986 0.983 0.985 0.988 0.988

0.59 100 0.889 0.876 0.920 0.941 0.941

014 O 1000 0.951 0.950 0.952 0.954 0.954
0.14 | 200 0.855 0.844 0.882 0.905 0.905

0.39 100 0.846 0.830 0.894 0.926 0.926

0.59 100 0.914 0.911 0.917 0.949 0.949

039 O 200 0.980 0.978 0.985 0.985 0.985
0.14 100 0.846 0.831 0.892 0.932 0.932

0.39 100 0.919 0.912 0.917 0.932 0.932

0.59 100 0.930 0.927 0.923 0.932 0.932

059 O 100 0.878 0.865 0.914 0.939 0.939
0.14 100 0.906 0.901 0.913 0.929 0.929

0.39 100 0.938 0.936 0.937 0.947 0.947

0.59 100 0.924 0.923 0.917 0.921 0.921

059 O 0.14 1000 0.954 0.954 0.952 0.953 0.953
0.39 100 0.792 0.779 0.833 0.855 0.855

0.59 100 0.982 0.974 0.986 0.992 0.992

014 O 1000 0.961 0.961 0.961 0.962 0.962
0.14 | 200 0.898 0.891 0.917 0.924 0.924

0.39 100 0.964 0.961 0.968 0.976 0.976

0.59 50 0.771 0.749 0.788 0.848 0.848

039 O 100 0.788 0.772 0.821 0.854 0.854
0.14 100 0.968 0.964 0.974 0.980 0.908

0.39 50 0.797 0.788 0.822 0.833 0.883

0.59 50 0.850 0.839 0.857 0.884 0.884

059 O 100 0.979 0.977 0.984 0.988 0.988
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Table 10 Empirical Power for Model 4 (Continue)

Sample Test

a as b1 bs Size first second boot bc bca
0.14 |50 0.767 0.749 0.791 0.853 0.853
0.39 50 0.840 0.835 0.846 0.893 0.892
0.59 50 0.865 0.861 0.849 0.871 0.871
039 O 0 0.14 1000 0.952 0.949 0.952 0.954 0.954
0.39 200 0.906 0.895 0.945 0.965 0.965
0.59 200 0.939 0.935 0.942 0.953 0.953
014 O 1000 0.947 0.946 0.953 0.961 0.961
0.14 | 200 0.735 0.709 0.834 0.878 0.878
0.39 200 0.961 0.958 0.966 0.974 0.974
0.59 200 0.951 0.960 0.954 0.956 0.956
039 O 200 0.902 0.890 0.942 0.957 0.957
0.14 | 200 0.944 0.944 0.949 0.962 0.962
0.39 200 0.967 0.967 0.972 0971 0.971
0.59 200 0.959 0.956 0.957 0.957 0.957
059 O 200 0.953 0.948 0.956 0.963 0.963
0.14 | 200 0.953 0.951 0.958 0.963 0.963
0.39 200 0.965 0.965 0.956 0.961 0.961
0.59 200 0.962 0.961 0.961 0.963 0.963
014 O 0.14 1000 0.950 0.948 0.953 0.956 0.956
0.39 200 0.989 0.985 0.990 0.996 0.996
0.59 100 0.900 0.889 0.925 0.949 0.949
014 O 1000 0.956 0.956 0.958 0.960 0.960
0.14 | 200 0.838 0.829 0.872 0.899 0.899
0.39 100 0.844 0.821 0.894 0.925 0.925
0.59 100 0.919 0.914 0.917 0.928 0.928
039 O 200 0.978 0.973 0.984 0.987 0.987
0.14 100 0.844 0.833 0.878 0.912 0.912
0.39 100 0.920 0.917 0.926 0.936 0.936
0.59 100 0.930 0.930 0.925 0.935 0.935
059 O 100 0.894 0.883 0.925 0.941 0.941
0.14 100 0.905 0.899 0.909 0.923 0.923
0.39 100 0.930 0.929 0.916 0.937 0.937
0.59 100 0.950 0.949 0.937 0.937 0.937
039 O 0.14 1000 0.955 0.955 0.956 0.955 0.955
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Table 10 Empirical Power for Model 4 (Continue)

Regression coefficients Sample Test
a as b1 bs Size first second boot bc bca
0.39 100 0.817 0.806 0.840 0.876 0.876
0.59 100 0.981 0.977 0.983 0.993 0.993
014 O 1000 0.962 0.962 0.959 0.960 0.960
0.14 | 200 0.888 0.883 0.888 0.898 0.898
0.39 100 0.973 0.967 0.979 0.979 0.979
0.59 |50 0.795 0.769 0.822 0.875 0.875
039 O 100 0.824 0.811 0.840 0.877 0.877
0.14 100 0.970 0.967 0.968 0.974 0.974
0.39 |50 0.820 0.798 0.849 0.889 0.889
0.59 |50 0.884 0.874 0.873 0.906 0.905
059 O 100 0.981 0.978 0.984 0.988 0.988
0.14 |50 0.826 0.815 0.824 0.886 0.886
0.39 |50 0.893 0.883 0.875 0.910 0.910
0.59 |50 0.892 0.889 0.879 0.901 0.901
059 O 0.14 1000 0.968 0.968 0.967 0.966 0.966
0.39 100 0.845 0.835 0.846 0.864 0.864
0.59 100 0.994 0.992 0.992 0.995 0.995
014 O 1000 0.966 0.966 0.963 0.960 0.960
0.14 | 200 0.887 0.886 0.887 0.939 0.939
0.39 100 0.979 0.978 0.978 0.981 0.981
0.59 |50 0.903 0.896 0.900 0.928 0.928
039 O 100 0.825 0.822 0.830 0.855 0.855
0.14 100 0.980 0.980 0.975 0.975 0.975
0.39 |50 0.917 0.906 0.922 0.945 0.945
0.59 |50 0.966 0.960 0.956 0.971 0.971
059 O 50 0.771 0.761 0.796 0.846 0.846
0.14 |50 0.888 0.876 0.894 0.925 0.925
0.39 |50 0.967 0.963 0.956 0.970 0.970
0.59 |50 0.974 0.974 0.970 0.978 0.978
059 O 0 0.14 1000 0.957 0.957 0.953 0.955 0.955
0.39 | 200 0.988 0.985 0992 0.993 0.993
0.59 100 0.935 0.924 0.950 0.974 0.974
014 O 1000 0.959 0.958 0.957 0.961 0.961
0.14 | 200 0.875 0.863 0.897 0.915 0.915
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Table 10 Empirical Power for Model 4 (Continue)

Regression Coefficients Sample Test
a as b1 bs Size first second boot bc bca

0.39 100 0.930 0.920 0.942 0.960 0.960

0.59 100 0.952 0.950 0.958 0.965 0.965

039 O 100 0.744 0.720 0.807 0.858 0.858

0.14 100 0.912 0.893 0.934 0.959 0.959

0.39 100 0.959 0.950 0.956 0.966 0.966

0.59 100 0.960 0.957 0.960 0.966 0.966

059 O 100 0.924 0.921 0.936 0.955 0.955

0.14 100 0.956 0.956 0.969 0.976 0.976

0.39 100 0.957 0.956 0.953 0.961 0.961

0.59 100 0.960 0.960 0.953 0.957 0.957

014 O 0.14 1000 0.955 0.955 0.957 0.955 0.955
0.39 100 0.828 0.816 0.854 0.893 0.893

0.59 100 0.975 0.972 0.981 0.985 0.985

014 0 1000 0.958 0.958 0.957 0.959 0.959

0.14 | 200 0.886 0.880 0.894 0.910 0.910

0.39 100 0.957 0.954 0.973 0.972 0.972

0.59 100 0.994 0.993 0.993 0.997 0.997

039 O 100 0.790 0.770 0.829 0.875 0.875

0.14 100 0.967 0.962 0.970 0.980 0.980

0.39 |50 0.787 0.779 0.815 0.867 0.867

0.59 |50 0.836 0.829 0.826 0.865 0.865

059 O 100 0.976 0.976 0.979 0.984 0.984

0.14 |50 0.759 0.736 0.776 0.852 0.852

0.39 |50 0.842 0.831 0.840 0.871 0.871

0.59 |50 0.863 0.857 0.846 0.881 0.881

039 O 0.14 1000 0.963 0.963 0.957 0.958 0.958
0.39 100 0.845 0.837 0.857 0.871 0.871

0.59 100 0.990 0.990 0.996 0.997 0.997

014 O 1000 0.958 0.958 0.959 0.956 0.956

0.14 | 200 0.885 0.885 0.882 0.891 0.891

0.39 100 0.976 0.976 0.975 0.983 0.983

0.59 |50 0.893 0.885 0.888 0.923 0.923

039 O 100 0.835 0.830 0.844 0.859 0.859

0.14 100 0.979 0.977 0.984 0.986 0.986
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Table 10 Empirical Power for Model 4 (Continue)

Regression Coefficients Sample Test
a1 as o] bs Size first second boot bc bca

0.39 |50 0.936 0.931 0.929 0.956 0.956

0.59 |50 0.957 0.950 0.947 0.972 0.972

059 O 100 0.992 0.992 0.992 0.994 0.994

0.14 |50 0.901 0.886 0.894 0.933 0.933

0.39 |50 0.952 0.947 0.946 0.966 0.965

0.59 |50 0.977 0.976 0.971 0.974 0.974

059 O 0.14 1000 0.962 0.962 0.961 0.954 0.954
0.39 100 0.870 0.866 0.863 0.882 0.882

0.59 |50 0.892 0.820 0.806 0.854 0.854

014 0 1000 0.995 0.995 0.956 0.956 0.956

0.14 | 200 0.914 0.914 0.905 0.910 0.910

0.39 100 0.978 0.977 0.975 0.975 0.975

0.59 |50 0.892 0.820 0.806 0.854 0.854

039 O 100 0.880 0.876 0.886 0.892 0.892

0.14 100 0.973 0.972 0.972 0.978 0.978

0.39 |50 0.946 0.941 0.942 0.961 0.961

0.59 |50 0.988 0.988 0.984 0.987 0.987

059 O 50 0.835 0.824 0.831 0.860 0.860

0.14 |50 0.927 0.921 0.923 0.937 0.937

0.39 |50 0.978 0.975 0.979 0.981 0.981

0.59 |50 0.998 0.997 0.995 0.996 0.996
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Table 11 Empirical Power for Model 5
Sample Test
a1 as b, b, Size first second boot bc bca
0 014 O 0.14 1000 0.713 0.685 0.826 0.864 0.864
0.39 1000 0.846 0.841 0.856 0.854 0.854
0.59 1000 0.858 0.858 0.854 0.860 0.860
014 O 1000 0.738 0.706 0.859 0.898 0.898
0.14 1000 0.855 0.840 0.872 0.886 0.886
0.39 1000 0.871 0.868 0.868 0.872 0.872
0.59 1000 0.886 0.886 0.879 0.874 0.874
0.39 0 1000 0.880 0.877 0.887 0.896 0.896
0.14 1000 0.875 0.873 0.878 0.880 0.880
0.39 1000 0.861 0.860 0.871 0.869 0.869
0.59 1000 0.871 0.870 0.862 0.867 0.867
0.59 0 1000 0.871 0.870 0.875 0.876 0.876
0.14 1000 0.857 0.857 0.858 0.862 0.862
0.39 1000 0.870 0.870 0.863 0.866 0.866
0.59 1000 0.886 0.886 0.880 0.882 0.882
0.39 0 0.14 1000 0.969 0967 0.969 0972 0.972
0.39 200 0.918 0907 0.951 0.964 0.964
0.59 200 0.944 0941 0.954 0.959 0.959
0.14 0 1000 0.964 0964 0.967 0.970 0.970
0.14 200 0.798 0.776 0.870 0911 0.911
0.39 200 0.950 0.946 0.958 0.967 0.967
0.59 200 0.948 0948 0.939 0.943 0.943
0.39 0 200 0.916 0907 0.941 0.958 0.958
0.14 200 0.975 0973 0.978 0.983 0.983
0.39 200 0.956 0955 0.954 0.956 0.956
0.59 200 0.951 0951 0.945 0.949 0.949
0.59 0 200 0.957 0956 0.956 0.966 0.966
0.14 200 0.954 0953 0949 0951 0.951
0.39 200 0.951 0950 0.940 0.956 0.956
0.59 200 0.965 0964 0.960 0.956 0.956
0.59 0 0.14 1000 0.964 0964 0.968 0.970 0.970
0.39 100 0.789 0.763 0.860 0.904 0.904
0.59 100 0.931 0925 0.949 0.962 0.962
0.14 0 1000 0.976 0976 0.970 0975 0.975
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Slze first second boot bc bca
0.14 | 200 0.908 0.903 0.919 0.934 0.934
0.39 100 0.933 0.924 0.949 0.966 0.966
0.59 100 0.952 0949 0.958 0.973 0.973
039 O 100 0.766 0.749 0.834 0.877 0.877
0.14 100 0.923 0913 0.947 0.970 0.970
0.39 100 0.959 0.955 0.960 0.967 0.967
0.59 100 0.953 0.952 0.955 0.960 0.960
059 O 100 0.953 0.951 0.949 0.973 0.973
0.14 100 0.956 0.955 0.961 0.969 0.969
0.39 100 0.966 0.965 0.967 0.971 0.971
0.59 100 0.960 0.959 0.957 0.963 0.963
014 O 0 0.14 1000 0.713 0.687 0.817 0.869 0.869
0.39 1000 0.867 0.865 0.869 0.871 0.871
0.59 1000 0.861 0.861 0.860 0.870 0.870
014 O 1000 0.717 0.690 0.828 0.876 0.876
0.14 1000 0.850 0.847 0.864 0.881 0.881
0.39 1000 0.864 0.862 0.866 0.866 0.866
0.59 1000 0.887 0.887 0.875 0.878 0.878
039 O 1000 0.863 0.860 0.874 0.879 0.879
0.14 1000 0.876 0.876 0.874 0.879 0.879
0.39 1000 0.874 0.873 0.970 0.968 0.968
0.59 1000 0.889 0.889 0.884 0.884 0.884
059 O 1000 0.865 0.863 0.866 0.867 0.867
0.14 1000 0.859 0.858 0.858 0.858 0.858
0.39 1000 0.884 0.884 0.880 0.879 0.879
0.59 1000 0.870 0.870 0.869 0.872 0.872
014 O 0.14 1000 0.969 0.968 0.976 0.979 0.979
0.39 | 500 0.993 0.993 0.989 0.991 0.991
0.59 | 500 0.989 0.989 0.989 0.990 0.990
014 O 500 0.654 0.622 0.753 0.800 0.800
0.14 | 500 0.986 0.986 0.987 0.992 0.992
0.39 | 500 0.986 0.985 0.987 0.987 0.987
0.59 | 500 0.84 0984 0983 0.984 0.984
039 O 500 0.990 0.989 0.993 0.993 0.993
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Size first second boot bc bca

0.14 | 500 0.991 0.991 0.991 0.992 0.992

0.39 | 500 0.990 0.990 0.989 0.986 0.986

0.59 | 500 0.994 0.994 0.994 0.993 0.993

059 O 500 0.998 0.998 0.997 0.998 0.998

0.14 | 500 0.990 0.990 0.986 0.988 0.988

0.39 | 500 0.991 0.991 0.991 0.991 0.991

0.59 | 500 0.995 0.995 0.996 0.994 0.994

039 O 0.14 1000 0.972 0972 0.970 0.975 0.975
0.39 100 0.703 0.684 0.807 0.866 0.866

0.59 100 0.893 0.882 0.906 0.942 0.942

014 O 1000 0.977 0977 0.981 0.979 0.979

0.14 | 200 0.905 0.897 0.926 0.946 0.946

0.39 100 0.882 0.868 0.914 0.943 0.943

0.59 100 0.888 0.886 0.899 0.924 0.924

039 O 200 0.994 0.992 0.998 0.998 0.998

0.14 100 0.886 0.869 0.919 0.944 0.944

0.39 100 0.917 0914 00916 0.944 0.944

0.59 100 0.917 0915 0.921 0.933 0.933

059 O 100 0.888 0.877 0.910 0.939 0.939

0.14 100 0.928 0.926 0.927 0.946 0.946

0.39 100 0.922 0921 0.925 0.935 0.935

0.59 100 0.938 0.936 0.936 0.937 0.937

059 O 0.14 1000 0.967 0.967 0.964 0.966 0.966
0.39 100 0.842 0.826 0.874 0.903 0.903

0.59 100 0.986 0.984 0.989 0.994 0.994

014 O 1000 0.974 0974 0970 0.969 0.969

0.14 | 200 0.912 0909 0915 0.926 0.926

0.39 100 0.977 0976 0974 0.986 0.986

0.59 100 0.997 0.997 0.996 0.998 0.998

039 O 100 0.841 0.823 0.873 0.904 0.904

0.14 100 0.900 0.968 0.974 0.977 0.977

0.39 |50 0.992 0991 0.993 0.995 0.995

0.59 |50 0.993 0.993 0.990 0.990 0.990

059 O 100 0.988 0.984 0.991 0.993 0.993
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Size first second boot bc bca
0.14 |50 0.991 0.990 0.990 0.993 0.993
0.39 |50 0.991 0.989 0.993 0.992 0.992
0.59 |50 0.993 0.993 0.990 0.990 0.990
039 O 0 0.14 1000 0.975 0972 0973 0.977 0.977
0.39 | 200 0.919 0.913 0.948 0.959 0.959
0.59 | 200 0.963 0961 0.966 0.972 0.972
014 0 1000 0.968 0.967 0970 0.976 0.976
0.14 | 200 0.779 0.746 0.858 0.916 0.916
0.39 | 200 0.963 0960 0.967 0.971 0.971
0.59 | 200 0.956 0.964 0.951 0.957 0.957
039 O 200 0.911 0.898 0.943 0.961 0.961
0.14 | 200 0.938 0.934 0.952 0.959 0.959
0.39 | 200 0.959 0.958 0.956 0.961 0.961
0.59 | 200 0.960 0.959 0.953 0.960 0.960
059 O 200 0.951 0.948 0947 0.954 0.954
0.14 | 200 0.963 0.962 0.959 0.964 0.964
0.39 | 200 0.961 0.961 0.960 0.960 0.960
0.59 | 200 0.953 0.952 0.947 0.947 0.947
014 O 0.14 1000 0.970 0970 0.969 0.972 0.972
0.39 | 200 0.985 0.984 0.989 0.994 0.994
0.59 100 0.895 0.890 0.917 0.933 0.933
014 O 1000 0.969 0.969 0.967 0.969 0.969
0.14 | 200 0.877 0.868 0.904 0.924 0.924
0.39 100 0.868 0.847 0.893 0.924 0.924
0.59 100 0.927 0.921 0.924 0.947 0.947
039 O 200 0.987 0.986 0.993 0.994 0.994
0.14 100 0.876 0.856 0.912 0.935 0.935
0.39 100 0.930 0.925 0.927 0.939 0.939
0.59 100 0.915 0913 0.908 0.917 0.917
059 O 100 0.891 0.884 0.913 0.933 0.933
0.14 100 0.918 0914 0.927 0.939 0.939
0.39 100 0.928 0.924 0919 0.936 0.936
0.59 100 0.927 0926 0914 0.919 0.919
039 O 0.14 1000 0.973 0973 0976 0.976 0.976
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Size first second boot ba bca
0.39 100 0.845 0.832 0.865 0.899 0.899
0.59 100 0.985 0.984 0985 0.991 0.991
014 O 1000 0.966 0.964 0.966 0.966 0.966
0.14 | 200 0.904 0.902 0.912 0.925 0.925
0.39 100 0.972 0969 0979 0.981 0.981
0.59 |50 0.825 0.807 0.834 0.886 0.886
039 O 100 0.860 0.854 0.871 0.904 0.904
0.14 100 0.966 0.965 0.971 0.978 0.978
0.39 |50 0.843 0.830 0.838 0.893 0.893
0.59 |50 0.893 0.883 0.884 0.912 0.912
059 O 100 0.992 0.992 0.988 0.994 0.994
0.14 |50 0.817 0.808 0.832 0.881 0.881
0.39 |50 0.906 0.897 0.872 0.908 0.908
0.59 |50 0.898 0.888 0.874 0.902 0.902
059 O 0.14 1000 0.976 0976 0974 0.974 0.974
0.39 100 0.860 0.857 0.861 0.880 0.880
0.59 |50 0.995 0.994 0.995 0.996 0.996
014 O 1000 0.978 0978 0.977 0.975 0.975
0.14 | 200 0.893 0.893 0.901 0.909 0.909
0.39 100 0.983 0.983 0.985 0.986 0.986
0.59 |50 0.915 0.908 0.925 0.952 0.952
039 O 100 0.861 0.856 0.864 0.883 0.883
0.14 100 0.984 0.982 0.985 0.984 0.984
0.39 |50 0.932 0.927 0.927 0.952 0.952
0.59 |50 0.971 0969 0.966 0.979 0.979
059 O 50 0.820 0.806 0.813 0.862 0.862
0.14 |50 0.912 0906 0.904 0.933 0.933
0.39 |50 0.960 0.955 0.957 0.970 0.970
0.59 |50 0.975 0975 0.968 0.978 0.978
059 O 0 0.14 1000 0.978 0976 0974 0.978 0.978
0.39 100 0.754 0.738 0.825 0.869 0.869
0.59 100 0.939 0.931 0.958 0.968 0.968
014 O 1000 0.972 0972 0970 0.973 0.973
0.14 | 200 0.883 0.877 0.909 0.921 0.921
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Size first second boot bc bca

0.39 100 0.907 0.901 0.942 0.957 0.957

0.59 100 0.966 0.964 0.961 0.969 0.969

039 O 200 0.991 0.989 0.990 0.994 0.994

0.14 100 0.915 0.899 0.930 0.953 0.953

0.39 100 0.964 0.962 0.964 0.968 0.968

0.59 100 0.964 0964 0.967 0.972 0.972

059 O 100 0.950 0.942 0.948 0.960 0.960

0.14 100 0.946 0.943 0.948 0.960 0.960

0.39 100 0.965 0.92 0.959 0.965 0.965

0.59 100 0.965 0.963 0.966 0.965 0.965

014 O 0.14 1000 0.970 0.970 0.969 0.968 0.968
0.39 100 0.834 0.823 0.869 0.903 0.903

0.59 100 0.975 0974 0984 0.989 0.989

014 O 1000 0.971 0971 0.973 0.973 0.973

0.14 | 200 0.895 0.891 0.899 0.912 0.912

0.39 100 0.961 0.957 0.971 0.980 0.980

0.59 100 0.995 0.994 0.994 0.995 0.995

039 O 100 0.849 0.836 0.874 0.895 0.895

0.14 100 0.975 0.972 0.980 0.988 0.988

0.39 |50 0.803 0.792 0.817 0.867 0.867

0.59 |50 0.861 0.854 0.867 0.885 0.885

059 O 100 0.984 0.982 0.982 0.987 0.987

0.14 100 0.992 0.992 0.992 0.996 0.996

0.39 |50 0.851 0.840 0.856 0.880 0.880

0.59 |50 0.883 0.878 0.860 0.890 0.890

039 O 0.14 1000 0.966 0.966 0.968 0.965 0.965
0.39 100 0.885 9,877 0.878 0.903 0.903

0.59 100 0.996 0.995 0.995 0.996 0.996

014 O 1000 0.972 0971 0971 0.972 0.972

0.14 | 200 0.909 0.908 0.914 0.927 0.927

0.39 100 0.980 0.979 0.976 0.983 0.983

0.59 |50 0.918 0.907 0.989 0.942 0.942

039 O 100 0.879 0.875 0.881 0.899 0.899

0.14 100 0.979 0979 0.980 0.985 0.985
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Table 11 Empirical Power for Model 5 (Continue)

Regression Coefficients Sample Test
a as b1 b, Size first second boot bc bca

0.39 |50 0.920 0.914 0.921 0.947 0.947

0.59 |50 0.966 0.965 0.963 0.976 0.976

059 O 100 0.993 0.993 0.992 0.994 0.994

0.14 50 0.924 0915 0.919 0.942 0.941

0.39 |50 0.962 0.956 0.953 0.967 0.967

0.59 |50 0.969 0.967 0.968 0.977 0.977

059 O 0.14 1000 0.969 0969 0.969 0.971 0.971
0.39 100 0.872 0.870 0.859 0.880 0.880

0.59 50 0.854 0.848 0.844 0.871 0.871

0.14 0 1000 0.977 0977 0975 0971 0.971

0.14 | 200 090 0905 0.905 0.915 0.915

0.39 100 0.980 0.9778 0.980 0.978 0.978

0.59 |50 0.947 0942 0937 0.954 0.954

039 O 100 0.891 0.889 0.887 0.901 0.901

0.14 100 0.982 0.981 0.983 0.985 0.985

0.39 |50 0.967 0.963 0.965 0.972 0.972

0.59 |50 0.990 0.989 0.979 0.988 0.988

059 O 50 0.841 0.831 0.826 0.879 0.879

0.14 |50 0.936 0.931 0.936 0.955 0.955

0.39 |50 0.984 0.981 0.981 0.988 0.988

0.59 |50 0.994 0.994 0.987 0.992 0.992
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Table 12 Required Sample Sizes with 0.8 Empirical Power for Models 1-3

Regression Coefficients Model 1 Model 2 Model 3
Sample Size
0.14 0 0.14 1040 1070 1040
0.39 460 460 460
0.59 440 430 440
0.14 0 1040 1060 1050
0.14 530 540 530
0.39 430 440 440
0.59 420 420 420
0.39 0 460 470 460
0.14 440 430 440
0.39 420 420 420
0.59 420 420 420
0.59 0 410 440 430
0.14 410 420 430
0.39 410 420 410
0.59 400 420 410
0.39 0 0.14 750 850 800
0.39 130 150 140
0.59 90 100 90
0.14 0 740 840 780
0.14 220 240 230
0.39 100 110 100
0.59 80 80 80
0.39 0 130 150 140
0.14 100 110 100
0.39 80 80 80
0.59 70 70 70
0.59 0 90 100 90
0.14 80 80 80
0.39 70 70 70
0.59 60 70 70
0.59 0 0.14 660 820 740
0.39 110 130 110
0.59 60 70 70
0.14 0 660 830 730
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Table 12 Required Sample Sizes with 0.8 Empirical Power for Models 1-3

(Continue)
Regression Coefficients Model 1 Model 2 Model 3
Sample Size
0.14 180 230 200
0.39 70 80 80
0.59 50 60 50
0.39 0 110 130 120
0.14 70 80 80
0.39 50 60 50
0.59 40 50 40
0.59 0 70 70 70
0.14 50 60 50
0.39 40 50 40
0.59 40 40 40

Note. First column of regression coefficients is a; in Model 1, b; in Model 2 and a; in
Model 3; second column: by in Model 1, a; in Model 2 and b, in Model 3; third
column: b, in Model 1, az in Model 2 and bs in Model 3.
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Table 13 Required Sample Sizes with 0.8 Statistical Power for Models 4-5

Regression Coefficients Model Model | Regression Coefficients Model Model
4 5 4 5

0 014 0 0.14 | 1220 1180 |039 O 039 0 170 160
0.39 | 850 850 0.14 | 140 140

0.59 | 840 840 0.39 | 120 130

014 0 1240 1170 0.59 | 120 130

0.14 | 900 880 059 0 130 130

0.39 | 850 860 0.14 | 130 130

0.59 | 830 830 0.39 | 130 130

039 O 880 850 0.59 | 120 120
0.14 | 860 830 014 O 0.14 | 650 570

0.39 | 840 820 0.39 | 130 120

0.59 | 820 820 0.59 |90 90

059 O 850 830 014 O 610 580
0.14 | 840 820 0.14 | 190 180

0.39 | 830 830 0.39 | 100 100

0.59 | 830 810 0.59 |80 80

039 O 0.14 | 670 600 039 O 130 120
0.39 | 170 160 0.14 | 100 100

0.59 | 140 130 0.39 |80 80

014 O 640 590 0.59 |70 70

0.14 | 230 220 059 O 90 90

0.39 | 140 140 0.14 | 80 80

0.59 | 130 130 0.39 |80 70

039 O 170 170 0.59 |70 70
0.14 | 140 140 039 O 0.14 | 620 550

0.39 | 130 130 0.39 | 100 100

0.59 | 120 120 0.59 |70 60

059 O 130 130 014 O 590 560
0.14 | 130 130 0.14 | 170 160

0.39 | 120 120 0.39 |70 70

0.59 | 120 120 0.59 |60 50

059 O 0.14 | 560 560 039 O 100 100
0.39 | 110 110 0.14 |70 70

0.59 |80 80 0.39 |50 50

014 O 550 550 0.59 |50 50
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Table 13 Required Sample Sizes with 0.8 Statistical Power for Models 4-5

(Continue)

Regression Coefficients Model Model | Regression Coefficients Model Model
4 5 4 5

0.14 | 170 170 059 O 70 60

0.39 |90 90 0.14 | 60 50

0.59 |70 70 0.39 |50 50

039 0 120 110 0.59 |50 40
0.14 |90 90 059 0 0.14 | 580 530

0.39 |70 70 0.39 | 100 90

0.59 |60 60 0.59 |60 50

059 O 80 80 014 O 580 520
0.14 |70 70 0.14 | 160 150

0.39 |70 60 0.39 |70 60

0.59 |60 60 0.59 |50 50

014 O 0 0.14 | 1220 1180 039 O 100 90
0.39 | 870 860 0.14 |70 60

0.59 | 840 830 0.39 |50 40
014 O 1230 1170 0.59 |40 40
0.14 | 910 880 059 O 60 60

0.39 | 850 840 0.14 |50 50

0.59 | 820 810 0.39 |40 40

039 O 860 830 0.59 |40 40
0.14 | 830 820 0 0 0.14 | 620 580

0.39 | 820 820 0.39 | 120 110

0.59 | 810 810 0.59 |80 80

059 O 840 830 014 O 610 580
0.14 | 830 810 0.14 | 180 170

0.39 | 830 810 0.39 |90 90

0.59 | 830 810 0.59 |70 70
014 O 0.14 | 720 670 0.59 039 O 120 120
0.39 | 260 250 0.14 |90 90

0.59 | 240 230 0.39 |70 70
014 O 720 670 0.59 |60 70
0.14 | 320 300 059 O 80 80

0.39 | 230 230 0.14 |70 70

0.59 | 230 220 0.39 |60 70

039 O 260 250 0.59 |60 60
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Table 13 Required Sample Sizes with 0.8 Statistical Power for Models 4-5

(Continue)

Regression Coefficients Model Model | Regression Coefficients Model Model
4 5 4 5

0.14 | 230 230 014 O 0.14 | 610 570

0.39 | 220 220 0.39 | 110 100

0.59 | 210 210 0.59 |70 70
059 0 230 230 0.14 O 600 560
0.14 | 230 220 0.14 | 170 160

0.39 | 220 210 0.39 |80 70

0.59 | 220 210 0.59 |60 60
039 0 0.14 | 630 560 039 0 110 100
0.39 | 130 120 0.14 | 80 70

0.59 |90 90 0.39 |60 60
014 0 630 560 0.59 |50 50
0.14 | 200 180 059 0 70 70

0.39 | 100 90 0.14 | 60 60

0.59 |80 80 0.39 |50 50
039 0 130 120 0.59 |50 50
0.14 | 100 100 039 0 0.14 | 590 540

0.39 | 80 80 0.39 | 100 90

0.59 |80 80 0.59 |60 60
059 0 90 90 014 0 600 550
0.14 | 80 80 0.14 | 160 150

0.39 |70 70 039 |0 60

0.59 |70 70 0.59 |50 50
059 0 0.14 | 600 540 039 0 100 90
0.39 | 110 100 0.14 | 60 60

0.59 |70 70 0.39 |50 40
014 0 610 540 0.59 |40 40
0.14 | 170 160 059 0 60 60

0.39 |80 70 0.14 |50 50

0.59 |60 60 0.39 |40 40
039 0 110 100 0.59 |40 40
0.14 | 80 70 059 0 0.14 | 580 550

0.39 |60 60 0.39 |90 90

0.59 |50 50 0.59 |50 50
059 0 70 70 014 0 570 540
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Table 13 Required Sample Sizes with 0.8 Statistical Power for Models 4-5

(Continue)
Regression Coefficients Model Model | Regression Coefficients Model Model
4 5 4 5
0.14 | 60 60 0.14 | 160 150
0.39 |50 50 0.39 |60 60
0.59 |50 50 0.59 |40 40
039 0 0 0.14 | 650 600 039 0 90 90
0.39 | 170 160 0.14 | 60 60
0.59 | 130 130 0.39 |40 40
014 0 650 600 0.59 |30 30
0.14 | 240 220 059 O 50 50
0.39 | 140 140 0.14 |40 40
0.59 | 130 130 0.39 |40 30
0.59 |30 50

Note. First and 7th columns is coefficient a;, second and 8th is coefficient as , third
and 9th is coefficient b1 in Models 4-5; 4th and 10th is coefficient bs and b, for Model

4 and 5, respectively.
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Appendix B

R code of Model 1

sample.size=c(50,100,200,500,1000);

[2] c=0;

[3] a1=0.14;

[4] b1=0.14;

[5] b2=0.14;

[6] x=1;

alpha=0.05;

nrep=1000;

nboot=1000;

pl=rep(0,nrep);

p2=rep(0,nrep);

Z1=rep(0,nrep);

Z2=rep(0,nrep);

percent= rep(0,nboot);

bc= rep(0,nboot);

bca=rep(0,nboot);

output=array(rep(0),c(5,5));

for(tin 1:5)

{

n=sample.size[t];

for(i in 1:nrep)

{

[23] X=rnorm(n,0,1);

rl=rnorm(n,0,1);

r2=rnorm(n,0,1);

[26] M=al*X+r1;

[27] Y=b1*M+b2*X*M+c*X+r2;

[28] MVmodel=Im(M~X);

[29] fit.al=summary(MVmodel)S$Scoefficients[2,1];

[30] SEal=summary(MVmodel)Scoefficients[2,2];

[31] DVmodel=Im(Y~M+X+X*M);

[32] fit.b1=summary(DVmodel)Scoefficients[2,1];

[33] SEbl=summary(DVmodel)$Scoefficients[2,2];
58



[34] fit.b2=summary(DVmodel)S$coefficients[4,1];

[35] SEb2=summary(DVmodel)Scoefficients[4,2];

[36] co=vcov(DVmodel);

[37] SEb12=co[2,4];

[38] PE=fit.al*(fit.b1+fit.b2*x);  # Point Estaimtor

[39]sel=sqrt(((fit.b1+fit.b2*x)"2)*SEalr2+(fit.a1"2)*
(SEb17r2+2*SEb12*x+(SEb2/r2)*(x"2)));  # first-order delta method

[40]se2=sqrt(((fit.b1+fit.b2*x)"2)*SEaln2+(fit.alr2+SEalr2)*
(SEb17r2+2*SEb12*x+(SEb2/2)*(x"2)));  # second-order delta method

z1=PE/sel;
22=PE/se2;
Z1[i]=21;
22[i]=22;

# first
if(Z1[il<gnorm(alpha/2)|Z1[i]>gnorm(1-(alpha/2)))
{

p1[i]=1;

}

else

{
p1[i]=0;
}

# second
if(zZ2[il<gnorm(alpha/2)|Z2[i]>gnorm(1-(alpha/2)))
{

p2[i]=1;

}

else

{
p2[i]=0;
}

# bootstrap
boot.PE=rep(0,nrep);
for(j in 1:nboot)
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{

r=sample(1:n,n,replace=T);

Xnew=X]r];

Mnew=M[r];

Ynew=Y[r];

boot.MVmodel=Im(Mnew~Xnew);
boot.al=summary(boot.MVmodel)Scoefficients[2,1];
boot.DVmodel=Im(Ynew~Mnew+Xnew+Xnew*Mnew);
boot.bl=summary(boot.DVmodel)Scoefficients[2,1];
boot.b2=summary(boot.DVmodel)Scoefficients[4,1];
boot.PE[j]=boot.al*(boot.b1+boot.b2*x);

}

# Percentile Bootstrap
sorting=sort(boot.PE);
lower=round((alpha/2)*nboot);
upper=round((1-(alpha/2))*nboot);
if(lower==0)

{

lower=1;

}

else

{

lower=lower;

}

boot.lower=sorting[lower];
boot.upper=sorting[upper];
if(boot.lower<=0 && boot.upper>=0)

{

percent[i]=0;

}

else

{

percentli]=1;

}

# Bias Corrected
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bias=rep(0,nboot);
for(k in 1:nboot)

{
if(boot.PE[k]<=PE)
{

bias[k]=1;

}

else

{

bias[k]=0;

}

}

z0=mean(bias);

lower.limit=round((pnorm(2*gnorm(z0)+gnorm(alpha/2)))*nboot);

upper.limit=round((pnorm(2*gnorm(z0)+gnorm(1-(alpha/2))))*nboot);

if(lower.limit==0)
{

lower.limit=1;

}

else

{

lower.limit=lower.limit;

}
bias.lower=sorting[lower.limit];
bias.upper=sorting[upper.limit];
if(bias.lower<=0 && bias.upper>=0)
{

bc[i]=0;

}

else

{

bcli]l=1;

}

# Bias-Corrected Acceleration
bca.PE=rep(0,n);

for(gin 1:n)

{

bca.X=X[-q];
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bca.M=M[-q];

bca.Y=Y[-q];

bca.MVmodel=Im(bca.M~bca.X);

bca.al=summary(bca.MVmodel)Scoefficients[2,1];
bca.DVmodel=Im(bca.Y~bca.M+bca.X+bca.X*bca.M);
bca.bl=summary(bca.DVmodel)Scoefficients[2,1];
bca.b2=summary(bca.DVmodel)Scoefficients[4,1];
bca.PE[g]=bca.al*(bca.bl+bca.b2*x);

}

mean.bca.PE=mean(bca.PE);

a=mean.bca.PE-bca.PE;

acce=sum(a”3)/(6*((sum(a”2))*(3/2)));
bca.lower.limit=round((pnorm(gnorm(z0)+(gnorm(z0)+gnorm(alpha/2))/(1-acce*(qn
orm(z0)+gnorm(alpha/2)))))*nboot);
bca.upper.limit=round((pnorm(gnorm(z0)+(gnorm(z0)+gnorm(1-alpha/2))/(1-acce*(
gnorm(z0)+qnorm(1-alpha/2)))))*nboot);

if(bca.lower.limit==0)

{

bca.lower.limit=1;

}

else

{

bca.lower.limit=lower.limit;

}
bca.lower=sorting[bca.lower.limit];
bca.upper=sorting[bca.upper.limit];
if(bca.lower<=0 && bca.upper>=0)
{

bcali]=0;

}

else

{

bcali]=1;

}

}

output[1,t]=mean(pl);
output[2,t]=mean(p2);
output[3,t]=mean(percent);
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output[4,t}=mean(bc);
output[5,t}=mean(bca);
}

output;

Note. The values for relevant coefficients were varied and those relevant coefficients
values included 0, 0.14, 0.39, and 0.59. Other models we just change some parts that
we mark.

Model 2
[2] a2=1;

c1=0;

c2=0;

c3=0;
[3] b1=0.14;
[4] a1=0.14;
[5] a3=0.14;
[6] w=1;
[23] X=rnorm(n,0,1);

W=rnorm(n,0,1);
[26] M=al*X+a2*W+a3*X*W+r1;
[27] Y=b1*M+c1*X+c2*W+c3*X*W+r2;
[28] MVmodel=Im(M~X+W+X*W);
[29] fit.al=summary(MVmodel)Scoefficients[2,1];
[30] SEal=summary(MVmodel)Scoefficients[2,2];
[31] fit.a3=summary(MVmodel)Scoefficients[4,1];
[32] SEa3=summary(MVmodel)Scoefficients[4,2];
[33] co=vcov(MVmodel);
[34] SEa13=co[2,4];
[35] DVmodel=Im(Y~M+X+W+X*W);
[36] fit.bl=summary(DVmodel)Scoefficients[2,1];
[37] SEbl=summary(DVmodel)Scoefficients[2,2];
[38] PE=(fit.al+fit.a3*w)*fit.b1; # Point Estimate
[39] sel=sqrt(((fit.al+fit.a3*w)"2)*SEb172+(fit.b172)*(SEal”r2+2*SEal3*w
+(SEa372)*(w”2)));
[40]se2=sqrt(((fit.al+fit.a3*w)"2)*SEb1/2+(fit.b172+SEb172)*
(SEa172+2*SEa13*w+(SEa3”2)*(wh2)));
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Model 3
[2] b2=1;

c =0;
[3] a1=0.14;
[4] b1=0.14;
[5] b3=0.14;
[6] w=1;
[23] X=rnorm(n,0,1);

W=rnorm(n,0,1);
[26] M=al*X+r1;
[27] Y=b1*M+b2*W+b3*M*W+c*X+r2;
[28] MVmodel=Im(M~X);
[29] fit.al=summary(MVmodel)Scoefficients[2,1];
[30] SEal=summary(MVmodel)Scoefficients[2,2];
[31] DVmodel=Im(Y~M+W+X+M*W);
[32] fit.b1=summary(DVmodel)Scoefficients[2,1];
[33] SEb1=summary(DVmodel)Scoefficients[2,2];
[34] fit.b3=summary(DVmodel)Scoefficients[5,1];;
[35] SEb3=summary(DVmodel)Scoefficients[5,2];
[36] co=vcov(DVmodel);
[37] SEb13=co[2,5];
[38] PE=fit.al*(fit.b1+fit.b3*w);
[39] sel=sqrt(((fit.b1+fit.b3*w)"2)*(SEalr2)+(fit.al”r2)*
(SEb1/A2+2*SEb13*w+(SEb3/2)*(WA2)));
[40] se2=sqrt(((fit.b1+fit.b3*w)"2)*(SEal”2)
+(fit.a172+SEa172)*(SEb1A2+2*SEb13*w+(SEb3A2)*(WA2)));
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Model 4
[2] a2=1;
b2=1;
cl1=0;
c2=0;
c3=0;

[3] a1=0.14;

[4] a3=0.14;

[5] b1=0.14;

b3=0.14
[6] w=1;
z=1;

[23] X=rnorm(n,0,1);
W=rnorm(n,0,1);
Z=rnorm(n,0,1);

[26] M=al*X+a2*W+a3*X*W+r1;

[27] Y=b1*M+b2*Z+b3*M*Z+c1*X+c2*W+c3*X*W+r2;

[28] MVmodel=Im(M~X+W+X*W);

[29] fit.al=summary(MVmodel)Scoefficients[2,1];

[30] SEal=summary(MVmodel)Scoefficients[2,2];

[31] fit.a3=summary(MVmodel)Scoefficients[4,1];

[32] SEa3=summary(MVmodel)Scoefficients[4,2];

[33] a13=vcov(MVmodel);

[34] SEa13=a13[2,4];

[35] DVmodel=Im(Y~*M+Z+X+W+M*Z+X*W);

[36] fit.bl=summary(DVmodel)Scoefficients[2,1];

[37] SEbl=summary(DVmodel)Scoefficients[2,2];
fit.b3=summary(DVmodel)Scoefficients[6,1];
SEb3=summary(DVmodel)Scoefficients[6,2];
b13=vcov(DVmodel);

SEb13=b13[2,6];

[38] PE=(fit.al+fit.a3*w)*(fit.b1+fit.b3*z);

[39] sel=sqrt(((fit.al+fit.a3*w)"2)*(SEb172+2*SEb13*z+(SEL312)*(2/2))

+((fit.b1+fit.b3*z)A2)*(SEalr2+2*SEal3*w+(SEa3/2)*(w”2)));

[40] se2=sqrt(((fit.al+fit.a3*w)"2)*(SEb172+2*SEb13*z+(SEL3/2)*(2/2))

+((fit.b1+fit.b3*z)A2)*(SEal”r2+2*SEal3*w+(SEa3/2)*(wA2))
+(SEb1A2+2*SEb13*2+(SED3A2)*(212))*(SEalr2+2*SEal3*w+(SEa3/2)*(wA2)));
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Model 5

[2] a2 =1;

cl1=0;
c2=0;
c3=0;

[3] a1=0.14;

[4] a3=0.14;

[5] b1=0.14;

b2=0.14

[6] w=1;

[23] X=rnorm(n,0,1);
W=rnorm(n,0,1);

[26] M=al*X+a2*W+a3*X*W+r1,;

[27] Y=b1*M+b2*M*W+c1*X+c2*W+c3*X*W+r2;

[28] MVmodel=Im(M~X+W+X*W);

[29] fit.al=summary(MVmodel)Scoefficients[2,1];

[30] SEal=summary(MVmodel)Scoefficients[2,2];

[31] fit.a3=summary(MVmodel)Scoefficients[4,1];

[32] SEa3=summary(MVmodel)Scoefficients[4,2];

[33] a13=vcov(MVmodel);

[34] SEa13=a13[2,4];

[35] DVmodel=Im(Y~*M+X+W+M*W+X*W);

[36] fit.bl=summary(DVmodel)Scoefficients[2,1];

[37] SEbl=summary(DVmodel)Scoefficients[2,2];
fit.b2=summary(DVmodel)Scoefficients[5,1];
SEb2=summary(DVmodel)Scoefficients[5,2];
b12=vcov(DVmodel);

SEb12=b13[2,5];

[38] PE=(fit.al+fit.a3*w)*(fit.b1+fit.b2*w);

[39] sel=sqrt((fit.b1+fit.b2*w)"2*(SEal1”2+2*SEal3*w+(SEa372)*(wA2))

+((fit.al+fit.a3*w)A2)*(SEb1A2+2*SEb12*w+(SEb2/A2)* (WwA2)));

[40] se2=sqrt((fit.b1+fit.b2*w)"2*(SEa1”2+2*SEal3*w+(SEa372)*(w”2))
+((fit.al+fit.a3*w)"2)*(SEb1A2+2*SEb12*w+(SEb2/2)* (WA2))
+(SEalA2+2*SEal3*w+(SEa3/2)*(wA2))*(SEb1A2+2*SEb12*w+(SEb2/A2)*(WA2)))
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Appendix C

Point Estimates of Moderated Mediation Effects

The indirect effect of X on Y in Models 1-5 can be easily derived using a matrix
algebra approach described by Sobel (1986) and Bollen (1987, 1989). Let B is a
matrix which the rows and columns are correspond to all the variables in the
regression equations. This B matrix may be collapsed by nothing that interaction term
is an exact function of variables already represented, B*. The indirect effects of X on

Y can be obtained using the formula:
F=(I1-B)'-1-B"

The indirect effects may also be obtained by the chain rule from elementary calculus

(Stolzenberg, 1980; Preacher et al., 2007).
Model 1

(a) Using a matrix algebra approach,

Xro o o0 o
g = XM 0o 0 0 O
~ Ml|lagz O 0 O
Y Lc" b, by O
X 0 0 0
13>k = M al 0 0
Ylc"+b,M by +b,X 0
1 0 0
(I1-B*)1 =[ —a 1 0
0 0 0
F=(I—B*)‘1—I—B*=[ 0 0 O]
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The point estimate of the indirect effect of X on Y is f(8|X) = @, (b, + b, X).
(b) Using chain rule,

oy oy aM_(b ‘b
9X oM ax V1T 4

Model 2

(a) Using a matrix algebra approach,

X[O 0O 0 O O]
wil0o 0 0 0 0]
B=xw|0 0 0 0 Of
Mlal a, a3z 0 O
Y leg ¢ ¢35 by O
X 0 0 0 O
B*—W 0 0 0 O
" MlagtazsW a,+az3X 0 O
Ylcg+esW c3+c3X by O
0 0 0 0
0 0 0 0
— (T_R*)"1_7]_R* —
F=(1-B") I-B" = 0 0 0 0
bi(a; + asW) by(a,+azX) 0 O

The point estimate of Model 2 is f(8|W) = by(a, + asW)
(b) Using chain rule,

ay odY oM

a aM aX (a1 + a3W) b1
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Model 3

(a) Using a matrix algebra approach,

Xr0 0 0 0 O
M[al 0 0 O o]
B= W|O 0 0 O 0|
Mwlo 0 0 0 0
vy L’ b, b, by ol
X[0 0 0 0
g = M|a 0 0 0
“wlo 0 0 0
Y lc' by +bsW by, +bsM 0
0 0 0 0
0 0 0 0
— _ RN 1 Rp* —
F=(-B" I1-B* = 0 00 o
a;(by+bsW) 0 0 0

The point estimate of Model 2 is f(8|W) = a, (b, + bsW)

(b) Using chain rule,

oy oy aM_(b ‘W)
oX oM ox 1T
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Model 4

(a) Using a matrix algebra approach,

Xro 0 0 0 0 0 0
wilo 0 0 0 0 0 O
xwl|0 0 0 0 0 0 0
B= M|a; a, az 0 0 0 O
Z10 0 O O O o0 O
MzZ|!0 0 O O O O O
Y leg ¢ ¢§ by b, by O
X [ 0 0 0 0 O]
w| o 0 0 0 0f
B*=Ml|a; + azW a, + asX 0 0 0|
A 0 0 0 ol

vl +esw e +ciX by+bsZ by+bM 0l

F=(I-B)!-1-B"

[ 0 0 0
0 0 0

_ 0 0 0
0 0 0

(ay + azW)(by + bsZ) (ay + asX)(by + bsZ) 0

The point estimate of Model 2iis f(8|W,Z) = (a, + asW)(b; + b3Z)
(b) Using chain rule,

ay odY oM

a—X:a—M'a—X: (b1+b3Z)-(a1+a3W)
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Model 5

(a) Using a matrix algebra approach,

Xr0 0 0 0 0 O
wilio o0 0 0 0 0
_xwl|o 0 0 0 0 0
B="wla, a az 0 0 0
Mw|o 0 0 0 0 O
Y leg ¢; ¢ by by Ol
X 0 0 0 0
. wl| o 0 0 0
B ~ M|a; +asW a, + azX 0 0
Ylci+cesW cy+ciX+b,M by +b,W 0
F=(I-B)!-1-B
[ 0 0 0 0 0]
0 0 0 0 O
= 0 0 0 0 O
0 0 0 0 O
(aq + azW)(by + b,W)  (ay + azX)(by +b,W) 0 0 O

The point estimate of Model 2is f(8|W) = (a; + asW) (b, + bsW)
(b) Using chain rule,

aY dY oM

a—X:a—M'a—X:(b1+b2W)'(a1+a3W)
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Appendix D

First- and Second-Order Variance Approximations

Let @ isa column vector of the sample coefficients involved in an indirect effect.
Let p isa column vector of the means of the regression coefficients, i.e., p = E[8].
Let f(8) is the effect of interest, a differentiable function of the coefficients in 9.
Let £(@) is the covariance matrix of 8.

Let D = dgf () is the gradient of £(@) evaluated at p.

Let H=09%,f(0) is the Hessian of (@) evaluated at p.

The gradient and Hessian are, respectively, matrices of first and second partial

derivatives of f(8) with respect to all relevant free parameters.
Because var[f(8)] = E[f%(8)] — E2[f(0)],

f(®) ~ f(W +D'(@—p)+5(0— ) H(®—p) (by Taylor’s theorem)
EL/(8)) ~ E[f(w) + D8~ ) + 5 (0 — W) H(B - W]

=f(40 +3E[(0 - W)'H(8 - p)]

= f(w) +-tr{HZ(D)}
£20) ~ (70 + D@~ 1) 450 - w'n(- u))z

= f2W + D' (8~ w)(8 — 1) D+ (8 1) H(® — n)(8 — ) H(B — 1)

+ 2f(D' (0 —p) + F(W (8 — ) H(B — )

+D'(0—p)(0—p)H(O - p)
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E[f2(8)] ~ E[f2(w) + D'(8 —pn)(8 — ) D
1 —~ 4 —~ —~ 4 —_~ —~
+2 (8- H(® —pn)(0 - ) H(B - 1) +2f(WD'(6 — )

+ F@ (@ )H(® — 1) + D'(8 - W) (8 — w)'H(O - )]
= F2(w) + D'E(B)D + LE[(8 - ) H(® - w)(0 — W) H(B - W)
+ f(Wer{HZ(8)}
= f2(w) + D'E(@)D +: (tr{HE(D)})" + 2tr {(Hf@)z}

+ f(Wer{HZ(8)}
var[f(8)] = E[£(8)] - E*[f(8)]
= £200 + D'E@)D + 3 (r{HE(®)))’ + 70 {(HE(®)) ] + rer(HE(@))
—(ﬂm+%WUﬁ@Hf
:ﬁug+wﬂmn+gﬁ&ﬁ@nf+;4oﬁwnﬂ+f@mﬂﬁ@n
—f2(w) - fQOtr{HE(B)} - 1 (er(HE(B)})’
= D'2(0)D + or {(HE(0)) |

. .\ 2
D'E()D is the first-order part and ~¢r {(HZ(B)) } is the second-order part.
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Simple Mediation

6=1[a b f(0)

_0 11 gy [sa® 0
n=[] o =@=[% |

ab D'=[p al

warlf @) ~ 03D + 3or{(450))

6 = [dl Bl BZ], f(@lX) == &1(31 + Bz)() D’ = [Bl + BzX a,]_

2
o1 x a2 0
=1 0 0 $®8) =0 s5  shp
X 00 0 Spp5, S,

varlf(8)] = D'E(@)D + 5 1 {(HE(@)) ]

~ -~ 2 ~ 2 A~ o A R A 2
[(by + b, X)sj, a;s;, + a155,5,X @1S5,5, alSEZ]

2 .2 2 o 2 .2 y2
+ Sa,5h, + 25@1sb1,bzx + Sd1552X

+ s, (sgl + 255, 5,X + sgzxz)

= (by + b,X)?s, + (&, + s2)(s}, + 255, 5, X + 55, X?)
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0=1[a, a; b rf(6lw)=hb(a, +asw) D =I[b, bW a, +awl
0 1 Sél Sdlrafi 0
= [0 0 W] £(0) = [saya; S3, O
by
% o _\2
var[f(8]%)] = D'E(@)D + 5 tr {(Hz(e)) }
= [blsél + blsal_@3W blsdl,dg + bls§3W Sl%l (&1 + d3W)] Blw
a, + a;w

+s5 (s§, + 254, a,W + 55, W?)

+s5 (s§, + 25a,,a,W + 55, W?)

52

0 1 W !
H=|1 0 0‘ $(0)=|0
W 0 0 0

varlf(8)] = D'E(®)D + 5 1 {(HE(@)) ]

f(8|w) = a (b, + bsw)

~ ~ ~ 2
(a, + a3W)Zs§1 + by (Sél + 25@1@3W + S§3W2)

. ~ ~ 2
(Cl1 + Cl3W)ZSlg)1 + (bl + 51271)(56%1 + 25@1'63W + S§3WZ)

_ 2 ~ ~ ~ 2 ~ o A R A~ 2
= [Sal (bl + b3W) a1551 + alsbllbgw alsbl,b3 + alsBSW]

2 ;.2 o 2 172
+ Sa\l(SBl +2$b1,b3W+SB3W )
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(s + bsW)2sZ, + &y (B, + 2s5,5,W + sE,W?)

+s3, (sg1 + 255, 5,W + SI%SWZ)

N N A 2 2 2
(b; + b3W)Zs§1 +(a," + sél)(sﬁl + 255, 5, W + 553W2)

Model 4
0=1[a, a; b, byl f(8|W,Z)=(a,+asw)(b,+bs2)

D' =1[b, +bsZ bW +bWZ @, +a:W a,Z+ a;wz]

2
0 o0 1 7z S&, s@;aS 0 0
Ho [0 0 W oWzl sy e S o 0
1 W 0 0 Slg)l 55153
Z WZ 0 0 >
0 0 Sby,bs Sh,

_ o1 o
var|f(8]x)] ~ D'E(8)D + Etr{(Hz(e))z}
= (@ + a;W)? (sg, + 255,5,% + s2. 2%)
+(by +bsZ) (53, + 254,a,W + SE,W?)

+ (sgl + 255, 5.7 + sggzz) (s2, + 254, a,W + 2 W?)
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6 = [dl 63 bl Ez]’ f(a'W) == (fll + d3W)(Bl + 32W)

D, = [Bl + Ezw 51W + BZWZ al + a3W alw + a3W2]

r <2
0 0 1 W T S oY
H= 0 0 w w? 2(6) _ Sdlﬁg Sds 0 0
1w 0 0 0 0 Sl%l Sby,b,
w w2 0 0 2
0 551‘32 552

varlf(8])] ~ DE@)D + 3 tr {(HE(®)) ]
= (by + b,W)" (52, + 25a,0,W + sZW?)
+ (@ + asW)? (sl%1 + 255, 5,W + SI%ZWZ)

+ (sél + 254, 0,W + s§3W2) (551 + 255, 5,W + SEZWZ)
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