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中文摘要 

調節式中介效果之樣本大小研究 

 

指導教授：陳俞成 博士 

嘉南藥理科技大學醫務管理系 

 

學生：朱安婷 

國立高雄大學統計學研究所 

 

摘要 

 

在研究社會科學、教育學和心理學等時，常探討變數間是如何互相影響，因

而發展出中介變數 (Mediator)和調節變數 (Moderator)。調節式中介效果

(Moderated Mediation Effect)是其中一種中介效果和調節效果的組合，指的是一

中介變數影響解釋變數和相依變數之關係，而此中介效果會隨著調節變數的值而

改變。檢定調節式中介效果的方法有很多種，許多研究者偏好使用以迴歸為基礎

的檢定方法，其中常見的為係數的乘積(the Product of Coefficients)，假設此乘積

服從常態性，以 Sobel 所提的一階標準誤較為被廣泛使用(First-Order Multivariate 

Delta Method)，但事實上此乘積並非為常態分佈，因此當樣本數不夠大時建議使

用 Bootstrap 方法。 

本文除了介紹中介效果模型和調節效果模型之外，我們延伸 Preacher 等人

在 2007 年所列舉的五種調節式中介效果模型，探討在不同係數組合與五種檢定

方法下，其檢定力之表現；更進一步提供研究者在研究調節式中介效果模型，決

定樣本數大小時，為達到適當檢定力所需樣本數大小，給予一個可參考的依據。 

 

關鍵字：中介變數、調節變數、調節式中介效果 
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ABSTRACT 

 

When researchers study social science, education, psychology and so on, they 

often study how and why variables are related. Hence, mediator and moderator are 

developed. Moderated mediation effect is one of the combinations of mediation and 

moderation effects. It refers to a mediator affecting the relation between an 

independent variable and a dependent variable, and then the mediation effect depends 

on the value of the moderator. There are many test methods of moderated mediation 

effects. Many researchers prefer to use regression-based tests. The most common 

method is the product of coefficients and is assumed the product is normally 

distributed. First-order multivariate delta method (Sobel, 1982, 1986) was commonly 

used. In fact, moderated mediation effect is not normally distributed. We recommend 

using the bootstrapping method when sample size is not large enough. 

Except for introducing mediation and moderation models, we extended five 

moderated mediation models which were studied by Preacher et al. (2007). Using five 

testing methods to detect how many sample size required for different coefficients 

combination with appropriate statistical power. Moreover, we provide guidelines for 

researchers to study moderated mediation model in determining sample size. 

 

Keywords: mediator, moderator, moderated mediation effect 
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1 Introduction 

Mediation effect is a causal effect which the effect of an independent variable (X) on a 

dependent variable (Y) is transmitted by a mediator (M). Sometimes a mediation 

effect is also called an indirect effect. Testing the mediation effect became popular in 

psychology after publications by Judd and Kenny (1981) and Baron and Kenny 

(1986). Then researchers were interested in whether the mediation effect depends on 

other variables, moderators. There were two kinds of effect combined by mediation 

and moderation. Baron and Kenny (1986) referred to those effects as mediated 

moderation or moderated mediation. Preacher et al. (2007) gathered such effects as 

the conditional indirect effect. They defined a conditional effect as “the magnitude of 

an indirect effect at a particular value of a moderator (or more than one moderator).” 

Mediation and moderation are commonly used in social science, health, psychological, 

educational, and sociological research. 

When researchers plan a study, they often think how many sample size they need. 

MacKinnon et al. (2002) studied empirical power for common sample size of 

mediation for many of testing methods. But it would more useful to know the sample 

size required for 0.8 power to detect an effect. Fritz and MacKinnon’s (2007) studied 

present the necessary sample size for six of the most common (according to the 

literature survey) and the most recommended tests of mediation for various 

combinations of parameters. The most common and the most recommended tests of 

mediation are Baron and Kenny’s causal-steps test, joint significance test, Sobel 

first-order test, PRODCLIN, percentile bootstrap, and bias-corrected bootstrap. They 

offered guidelines for researchers in determining sample size with statistical power 

0.8 to conduct mediation effect. 
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Preacher et al. (2007) listed five specific ways to think about moderated 

mediation effects and performed a simulation study to examine empirical power and 

Type I error rate to provide some guidance on approximately sample sizes. However, 

they only studied simple conditions. They also did not clearly point out how many 

sample size were necessary when detecting moderated mediation effect. Hence, we 

extend their study and then investigate other conditions. In other words, we will 

investigate empirical power for various combinations of relevant path coefficients and 

for different methods of testing moderated mediation effect. In attempt to find an 

approximate sample sizes with appropriate statistic power. To provide guidelines for 

researchers when detecting moderated mediation effect. 

At the beginning of this article, we reviewed the simple mediation model, 

moderation model and the moderated mediation model. In addition, this article’s 

purpose is about the sample size. We will briefly discuss why sample size is important 

and discuss the relation between sample size and statistical power. Second, we will 

introduce several methods of testing moderated mediation effect, including 

multivariate delta methods and bootstrapping methods. Those testing methods will be 

used in our simulation study. Thirdly, we study empirical power and Type I error rate 

for moderated mediation effects under unequal relevant path coefficients in each 

moderated mediation model. We attempt to find some information from this 

simulation. Further, we try to find an approximately sample size required for 0.8 

power to detect moderated mediation effect. At last, we provide guidelines of sample 

size for researchers to study moderated mediation model.  
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2 Literature Reviews 

Moderated mediation is one of the combinations of mediation and moderation. We 

will review mediation and moderation in advance. There were five possibility formal 

path models of moderated mediation model described by Preacher et al. (2007). We 

will introduce those moderated mediation models respectively. In addition, the 

purpose of this article is to provide guidelines for researchers in determining the 

sample size for statistical power 0.8. Many people often have an idea of the better the 

larger sample size because it is easily to reject null hypothesis. Hence, we will briefly 

discuss the relation between power and sample size. 

2.1 Mediation 

Mediation effect or indirect effect is a casual effect which the effect of an independent 

variable on a dependent variable is transmitted by mediator. Mediator is a variable 

which is intermediate in the relation between an independent variable and a dependent 

variable. In other words, the independent variable causes the mediator, and in turn, the 

mediator causes the dependent variable then the relation of these variables form a 

mediation model. Mediation model not only addresses the question of how two 

variables are related but also why two variables are related. Hence, mediation model 

is commonly used in social science, education, psychology and so on. For example, 

how do drug abuse prevention programs reduce drug offer? Researchers are not only 

interested in how drug abuse prevention programs reduced drug offer but interested in 

why these two variables were related. Because a drug abuse prevention program may 

cause a participant’s resistance to drugs, which in turn causes the outcome of a drug 

offer. And a drug abuse prevention program is the independent variable (treatment or 

control), resistance to drug use is the mediator and the outcome of a drug offer is the 
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dependent variable (acceptance or refusal) (MacKinnon, 2008; Preacher et al., 2007).  

 

 

 

 

 

 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

            

 

Figure 1  Simple Mediation path diagrams 

 

Figure 1 is the path diagram of the simple mediation model. At the top of figure 1, 

the independent variable (X) directly leads to the dependent variable (Y) without 

consideration of other variables and it represents an overall effect model (or total 

effect model). At the bottom of figure 1, it represents the mediation model, the 

independent variable causes the mediator (M) which in turn causes the dependent 

variable. In addition, there is a relation of X to Y that is not through M and that is the 

direct effect of X on Y. Following three regression equations are used to investigate 

mediation. 

Y = 𝑖1 + 𝑐𝑋 + 𝑟1                           (2.1) 

Mediator 

M 

Independent 

Variable 

X 

Dependent 

  Variable 

     Y 
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Y = 𝑖2 + 𝑐′𝑋 + 𝑏𝑀 + 𝑟2                       (2.2) 

M = 𝑖3 + 𝑎𝑋 + 𝑟3                          (2.3) 

where c is the overall effect of the independent variable on the dependent variable; c’ 

is the effect of the independent variable on the dependent variable controlling for the 

mediator; b is the effect of the mediator on the dependent variable controlling for the 

independent variable; a is the effect of the independent variable on the mediator; 𝑖1, 

𝑖2 and 𝑖3 are the intercepts; 𝑟1, 𝑟2 and 𝑟3 are the residuals.  

 There have been some assumptions of the mediation regression equations. Each 

mediation regression equation requires the usual assumptions for regression analysis. 

There are four assumptions: correct function form, no omitted influences, accurate 

measurement, and well-behaved residuals. Correct function form refers to each 

mediation regression assumes linear relations among variables. Another aspect of the 

correct function form assumption is that relations among variables are additive, in 

other words, variables do not interact. No omitted influences, it is assumed that the 

mediation regression equations reflect the correct underlying model. No important 

variables or other influences are omitted form the regression model. Accurate 

measurement is that X, M, and Y are reliable and valid measures. Well-behaved 

residuals, the residuals in each equation are independent of each other, and the 

residuals are assumed to have constant variance at each value of the predictor variable 

(MacKinnon, 2008). 

The coefficient relating the mediator to the dependent variable is estimated (�̂�) in 

equation 2.2. The coefficient relating the independent variable to the mediator is 

estimated (�̂�) in equation 2.3. The mediation effect or indirect effect equals the 

product of two estimates (�̂��̂�). The product of coefficients �̂� and �̂� are used to 

estimate mediation effect in simple mediation model and this method is most easily 
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applied to complex models. Under the assumptions of maximum likelihood and 

ordinary least squares, �̂�  and �̂�  are asymptotically independent and normally 

distributed. It is further assumed that the product �̂��̂� is normally distributed. Sobel 

(1982,1986) derived the asymptotic standard error of �̂��̂� product based on first 

derivatives using the multivariate delta method. This is the most commonly used 

formulas for the standard error of the mediation effect. 

        𝑆𝐸�̂��̂� = √�̂�2𝑠�̂�
2 + �̂�2𝑠�̂�

2,                     (2.4) 

where 𝑠�̂�
2  and 𝑠�̂�

2  correspond to the square standard error of �̂�  and �̂� , 

respectively. However, there are other standard error estimators for the mediation 

effect based on the product of coefficients. 

  𝑆𝐸�̂��̂� = √�̂�2𝑠�̂�
2 + �̂�2𝑠�̂�

2 + 𝑠�̂�
2𝑠�̂�

2              (2.5) 

The standard error (2.5) is based on the second-order derivatives, although it is 

negligible that using second-order standard error to improves accuracy. But both 

standard errors are routinely reported in literates on simple mediation. It was found 

evidence that the first- and second-order standard errors had the least bias of several 

formulas for the mediation effect. 

The null hypothesis is 𝑎𝑏 = 0, in other words, there is no mediation effect and 

the alternative hypothesis is 𝑎𝑏 ≠ 0. To test for significance, the product is divided 

by the standard error of the product then the resulting ratio is compared to the 

standard normal distribution. For example, using first-order standard error, the test 

statistic is 

                        Z ≈
�̂��̂�

√�̂�2𝑠�̂�
2+�̂�2𝑠�̂�

2
 .                      (2.6) 
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Then this statistic is compared to standard normal distribution. The 100(1 − α)% 

confidence limits for the indirect effect are  

�̂��̂� ± 𝑍𝛼
2⁄
𝑆𝐸�̂��̂� ,                      (2.7) 

where 𝑍𝛼
2⁄
 is the value on the standard normal distribution corresponding to the 

desired Type I error. The null hypothesis of no mediation effect is rejected at the 𝛼 

level of significance if the CI does not contain 0.  

In fact, using the product of coefficients method is required the assumption that 

�̂��̂� is normally distributed. Because �̂��̂� is usually positively skewed and kurtotic. 

MacKinnon et al. (2004) explained that using this method to test for significance of 

the indirect effect has low statistical power and Type I error rates. In addition, the 

confidence limits are imbalanced. If the product of coefficients method is used to test 

for significance and the total sample size is not large, bootstrapping is recommended. 

The alternative tests, the distribution of the product, have been shown to 

outperform traditional methods (MacKinnon et al. 2002; MacKinnon et al. 2004). A 

program called “PRODCLIN” (MacKinnon et al. 2007) used the product of two 

normally distributed variables to compute asymmetric confidence intervals for the 

mediation effect. In addition, there was the latest version of PRODCLIN program, 

REMEDIATION program (Tofighi and MacKinnon, 2011). It is an R package and 

solves several programs with the PRODCLIN package. 
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2.2 Moderation 

Moderation model is testing for the relation between an independent variable and a 

dependent variable whether depends on another variable, moderator. Figure 2 

represents the moderation model but most researchers prefer to use path diagram of 

Figure 3 now. Moderator is a variable that changes the form (direction) or strength of 

relation between two variables. For example, a researcher is not only interested in 

knowing whether a new instructional method leads to a better learning outcome but 

also interested in knowing whether the new instructional method is equally effective 

for students with low and high parental involvement (Wu and Zumbo, 2008). A new 

instructional method is the independent variable, learning outcome is the dependent 

variable and parental involvement is the moderator. A moderator variable can be 

continuous or categorical, although a categorical moderator variable will be easier to 

interpret (MacKinnon, 2008; Wu and Zumbo, 2008). A single regression equation 

forms the moderation model: 

Y = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑊 + 𝑎3𝑋𝑊 + 𝑟 ,                  (2.8) 

where W is the moderator; 𝑎0  is the intercept; 𝑎1  is the relation between the 

independent variable and the dependent variable; 𝑎2 is the relation between the 

moderator and the dependent variable; 𝑎3 is the relation between the independent 

variable by a moderator and the dependent variable; 𝑟 is the residual.  

The variables X and W are often centered before the product is formed to 

improve interpretation of effects in the interaction model and to reduce collinearity 

among the measures, thereby improving the estimation of model parameters. The 

main reason of centering is that, unless the moderator has a meaningful zero point, the 

interpretation of the main effects, 𝑎1  and 𝑎2 , are meaningless. The dependent 
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variable is not necessary centered (Fairchild and MacKinnon, 2009; MacKinnon, 

2008). 

 

 

 

 

 

 

Figure 2  Moderation path diagram-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Moderation path diagram-2 

  

The regression coefficient �̂�3  is used to estimate moderation effect. If �̂�3 

statistically different from zero, it is say that there is a significance moderation of the 

Independent 

Variable 

X 

Dependent 

Variable 

Y 

Moderator 

W 

Independent 

Variable 

X 

Dependent 

Variable 

Y 

a1 

r 

 

Moderator 

W 

 

XW 

a2 

a3 



10 
 

relation between X and Y. The coefficient �̂�1  or �̂�2  may be significant or 

nonsignificant, but this does not affect the test of moderation. In addition, in 

moderation, moderator is uncorrelated with independent variable or dependent 

variable. 

The moderation effect is commonly known as an interaction effect. It is important 

to distinction the difference between a moderation effect and an interaction effect. 

Interaction analysis has been extensively applied to correlational data and 

experimental data, therefore, the interaction term seems not necessarily casual in 

nature. But, the term of moderation effect needs to have causal hypotheses. In short, 

an interaction effect is not necessary causal hypothesis for models but a moderation 

effect is required the causal hypothesis. That is to say, a moderation effect is a special 

case of an interaction effect (Wu and Zumbo, 2008). 

2.3 Moderated Mediation 

There are two kinds of effects that combine mediation and moderation: mediated 

moderation and moderated mediation. Mediated moderation referred to the effect of 

an interaction on a dependent variable is mediated. Moderated mediation occurs when 

the strength of mediated effect depends on the level of a moderator. In other words, 

moderated mediation happens when a mediator is intermediate in the interaction 

between the independent variable and moderator to a dependent variable. However, 

we only limit our attention on moderated mediation. 

There are many conflicting definitions about moderated mediation. For example, 

Morgan-Lopze and MacKinnon (2006) defined moderated mediation as when “the 

effect of the independent variable on mediator is constant and the effect of the 

mediator on the dependent variable depends on the level of moderator”. Muller et al. 
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(2005) defined moderated mediation “happens if the mediating process that is 

responsible for producing the effect of the treatment on the outcome depending on the 

value of a moderator variable.” Hence, Preacher et al. (2007) discussed several 

specific ways to think about moderated mediation effects, which they refer to as 

Models 1 through 5. 

Model 1: When the Independent Variable is Also the Moderator 

In this model, the independent variable (X) functions as a moderator of the b path. 

Figure 4 describes the case in which the effect of M on Y is moderated by the X. This 

model was described by Judd and Kenny (1981). And this model can also be 

understood as the effect of X on Y is moderated by M, that is the path of c’ is 

moderated by M. The relevant regression equations for Model 1 are: 

                        M = 𝑎0 + 𝑎1𝑋 + 𝑟1,                         (2.9) 

                   Y = 𝑏0 + 𝑐′𝑋 + 𝑏1𝑀 + 𝑏2𝑋𝑀 + 𝑟2.                 (2.10) 

Equation 10 can also be written as: 

                   Y = 𝑏0 + 𝑐′𝑋 + (𝑏1 + 𝑏2𝑋)𝑀 + 𝑟2.                 (2.11) 

Equation 11 explains the regression of M on Y depends on X. 

The point estimation of moderated mediation effect of Model 1 is 𝑓(�̂�|𝑋) =

�̂�1(�̂�1 + �̂�2𝑋). The method of obtained point estimation is described by Sobel (1986) 

and Bollen (1987, 1989). The point estimation may also be obtained by the chain rule 

from elementary calculus. The detail of point estimation was discussed in the 

Appendix C. 
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Figure 4  Model 1 path diagram 

 

Model 2: When the a Path is Moderated by W 

Figure 5 describes Model 2 of the a path is moderated by W. This model is the 

traditionally termed moderated mediation. The relevant regression equations for 

Model 2 are: 

M = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑊 + 𝑎3𝑋𝑊 + 𝑟1,               (2.12) 

Y = 𝑏0 + 𝑏1𝑀 + 𝑐1
′𝑋 + 𝑐2

′𝑊 + 𝑐3
′𝑋𝑊 + 𝑟2.           (2.13) 

This model can also be used to investigate another conditions, a moderated effect 

is mediated by M, mediated moderation. Although Model 2 can be used to discuss two 

types of effect, but different parameters are emphasized in each. Mediated moderation 

is addressed on the significance of the product �̂�3�̂�1 and moderated mediation is 

addressed on the point estimation 𝑓(�̂�|𝑊) = �̂�1(�̂�1 + �̂�3𝑊). We focus attention on 

moderated mediation: the effect of X on Y is mediated by M and whether mediation 

effect depends on the values of moderator W.  
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Figure 5  Model 2 path diagram 

 

Model 3: When the b path is moderated by W 

Figure 6 describes Model 3 of the b path is moderated by M. The relevant regression 

equations for Model 3 are: 

M = 𝑎0 + 𝑎1𝑋 + 𝑟1,                        (2.14) 

Y = 𝑏0 + 𝑏1𝑀 + 𝑏2𝑊 + 𝑏3𝑀𝑊 + 𝑐′𝑋 + 𝑟2 .            (2.15) 

The moderated mediation effect is expressed as 𝑓(�̂�|𝑊) = �̂�1(�̂�1 + �̂�3𝑊).  
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Figure 6  Model 3 path diagram 

 

Model 4: When the a Path is Moderated by W and the b Path is Moderated by Z 

This model is the extension of Model 2 and 3. The paths a and b are moderated by 

different moderators, W and Z. This model is described in figure 7. The relevant 

regression equations for Model 4 are: 

M = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑊 + 𝑎3𝑋𝑊 + 𝑟1,              (2.16) 

Y = 𝑏0 + 𝑏1𝑀 + 𝑏2𝑍 + 𝑏3𝑀𝑍 + 𝑐1
′𝑋 + 𝑐2

′𝑊 + 𝑐3
′𝑋𝑊 + 𝑟2.    (2.17) 

The moderated mediation effect is expressed as 𝑓(�̂�|𝑊, 𝑍) = (�̂�1 + �̂�3𝑊)(�̂�1 +

�̂�3𝑍). 
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Figure 7  Model 4 path diagram 

 

Model 5: When the a and b Paths are both Moderated by W 

The a and b paths are both moderated by the same moderator W. This model describes 

in figure 8 and this figure is the same as the one Baron and Kenny (1986) described 

when they discussed moderated mediation and is also the model suggested by Muller 

et al. (2005) to address both mediated moderation and moderated mediation. The 

relevant regression equations for Model 5 are: 

M = 𝑎0 + 𝑎1𝑋 + 𝑎2𝑊 + 𝑎3𝑋𝑊 + 𝑟1,              (2.18) 

            Y = 𝑏0 + 𝑏1𝑀 + 𝑏2𝑀𝑊 + 𝑐1
′𝑋 + 𝑐2

′𝑊 + 𝑐3
′𝑋𝑊 + 𝑟2.        (2.19) 
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The moderated mediation effect is expressed as 𝑓(�̂�|𝑊) = (�̂�1 + �̂�3𝑊)(�̂�1 + �̂�2𝑊). 

 

 

 

 

 

 

 

 

 

 

Figure 8  Model 5 path diagram 

 

2.4 Power and Sample Size 

When researchers plan a study, how many sample size are appropriate? Many people 

consider the better the larger sample size because it is easily to have a significant 

result for large sample size. But this idea is not true. The power of a statistical test 

depends on three parameters: the significance level, the reliability of the sample 

results and sample size, and the “effect size,” that is, the degree to which the effect 

exists. The relation between significance (α), power, sample size (n), and effect size 

(ES) are complementary. There are four types of power analysis; in each, one of these 

parameters is determined as a function of the other three (Cohen, 1988).  

The role of significance level represents “the standard of the proof that the 

phenomenon exists, or the risk of mistakenly rejecting the null hypothesis (Cohen, 
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1988).” The significance level α (Type I error) represents the rate of rejecting a true 

null hypothesis, it is taken as a relatively small value. The lower the value of α, the 

poorer the opportunities are that the sample will provide results which meet this 

standard, that is the lower the power. The power of a statistical test is the probability 

that it will lead to the significant of results. In other words, statistical power is the 

correct probability of correctly rejecting a false null hypothesis. Type II error is the 

complement of the power (1-power). It represents the error probability of failing to 

reject a false null hypothesis. Generally, we set Type I error equal to 0.05 and Type II 

error equal to 0.2, that is power equal to 0.8 by Cohen’s (1988) advices.  

Cohen (1988) defined effect size (ES) as “the degree to which the phenomenon is 

present in the population” or “the degree to which the null hypothesis is false.” For 

example, R
2 

effect size measures are presented to assess variance accounted for in 

mediation models. The measures offer a means to evaluate both component paths and 

the overall mediated effect in mediation models (Fairchild et al., 2009). Other effect 

size measures for mediation, such as the partial r
2
 and standardized regression 

coefficients. Cohen (1988) has suggested conventional values for “small”, “medium” 

and “large” effects in the social sciences. The larger the ES, other conditions 

(significance, sample size) being equal, the greater the power of the test. The larger 

the ES, other conditions (significance, power) being equal, the smaller the required 

sample size.  

In our first part of simulation, power as a function of Type I error (α), effect size 

(ES), and sample size (n). We may decide to change our specifications (effect size or 

sample size) to increase power when Type I error is fixed. The second part of our 

simulation, the types of power analysis is “n as a function of ES, α,and power.” We 

wishes to have power equal to 0.8 under a certain ES and Type I errorα. 
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3 Assessing Methods of Moderated Mediation 

Effects 

3.1 Product of Coefficients 

Normal-theory standard error is the most commonly used method of testing 

moderated mediation effect. Because it is most easily applied to complex models. 

Sobel (1982) and Bollen (1987, 1989) described the use of the first-order multivariate 

delta method in determining asymptotic SEs (standard errors) of a broad class of 

mediation effects. A second-order multivariate delta method can be used to yield the 

exact SE (Mood et al., 1974). By using these two methods can generate the first- and 

second-order variances of moderated mediation effect. The details of first- and 

second-order variance approximations for Models 1-5 were referred to appendix D. 

Table 1 describes first- and second-order variances of Models 1-5. 

For testing the significance of moderated mediation effect, we assume the point 

estimator normality. The point estimator is divided by the standard error of the point 

estimator then the resulting ratio is compared to the standard normal distribution. For 

example of Model 2: 

               𝑍 ≈
�̂�1(�̂�1+�̂�3𝑊)

√(�̂�1+�̂�3𝑊)
2
𝑠
�̂�1

2 +(�̂�1

2
+𝑠

�̂�1

2 )(𝑠�̂�1

2 +2𝑠�̂�1,�̂�3
𝑊+𝑠�̂�3

2 𝑊2)

          (3.1) 

and comparing Z to the standard normal distribution. 

This method is appropriate only if the sample size is large and the researcher has 

in mind a limited number of key conditional values of moderator(s). Because the test 

statistic is asymptotically normal, if the sample size is not large, bootstrapping is 

recommended (Preacher et al., 2007). 
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Table 1  First- and Second-Order Variances 

Model Second-order variance 

1 

 

2 

 

3 

 

4 

 

5 

 

Note. The first-order variance was omitted the part which second-order variance has 

been underline in each formula. 



20 
 

3.2 Percentile Bootstrap 

Bootstrapping is the most recommended method for testing moderated mediation 

effect. Using bootstrapping, no assumptions needed about the shape of the sampling 

distribution, no particular formula for the SE is required (MacKinnon et al., 2004).  

Take a sample size of n units from the original sample of n units. Using this 

resample, reestimate the point estimate. This process is repeated B times and then 

sorting the B bootstrap values of moderated mediation effect from low to high. The 

bootstrap confidence interval lower and upper bounds of a 100(1 − α)% CI for the 

population moderated mediation effect is defined as (𝛼 2⁄ )Bth and (1 − 𝛼 2⁄ )Bth 

values in this sorted distribution, where 𝛼 is the desired nominal Type I error rate. 

This confidence interval is called percentile bootstrap CI. For example, 𝛼 = 0.05, the 

95% CI with B=1,000, the lower and upper bounds of the interval would be the 25th 

and 975th values of the moderated mediation effect in the sorted distribution. The null 

hypothesis of no moderated mediation effect is rejected at the 𝛼 level of significance 

if the CI does not contain 0 (Preacher et al., 2007). 

The percentile bootstrap CIs can be asymmetrical because they are based on an 

empirical estimation of the sampling distribution of the moderated mediation effect. 

The percentile bootstrap CIs may be inappropriate and can be further improved 

through bias-corrected (BC) and bias-corrected and accelerated (BCa) intervals 

(Preacher et al., 2007; MacKinnon et al., 2004). 

3.3 Bias-Corrected Bootstrap 

The problem of the percentile bootstrap is the confidence interval possibly will not be 

centered on the true parameter value. The bias-corrected (BC) bootstrap is adjusted 
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for bias in the bootstrap distribution. In other words, the bias-corrected bootstrap 

contains a correction for the bias created by the central tendency of the estimate. It is 

just like the percentile intervals except that different percentiles of the bootstrap 

distribution are used. The correction is made under the assumption that there is a 

monotonically increasing function T such that 𝑇(𝜃) is normal distributed with 

    𝐸[𝑇(𝜃)] = 𝑇(𝜃) − �̂�0                       (3.2) 

𝑉𝑎𝑟[𝑇(𝜃)] = 1                         (3.3) 

where �̂�0 is the bias, which is the z score of the value obtained from the proportion of 

bootstrap estimate below the original estimate in the total number of bootstrap. Let 

𝜃∗
(𝛼) indicate the 100αth percentile of B bootstrap replications. The BC interval of 

intended coverage 1 −α is given by 

 

(𝜃𝑙𝑜 , 𝜃𝑢𝑝) = (𝜃∗
(𝛼1)  , 𝜃∗

(𝛼2)),                (3.4) 

where 

                          α1 =Φ(2�̂�0 + 𝑧𝛼 2⁄ )                      (3.5)       

α2 =Φ(2�̂�0 + 𝑧1−𝛼 2⁄ )                     (3.6) 

Here Φ(∙) is the standard normal cumulative distribution function and 𝑧(𝛼 2⁄ ) is the 

(100 𝛼
2⁄ )th percentile point of a standard normal distribution. For example, 

𝑧(0.975) = 1.96 andΦ(1.96) = .975. The null hypothesis of no moderated mediation 

effect is rejected at the 𝛼 level of significance if the CI does not contain 0 (Efron and 

Tibshirani, 1993; MacKinnon et al., 2004). 

 



22 
 

3.4 Bias-Corrected and Accelerated Bootstrap 

The percentile intervals are less erratic, but have less satisfactory coverage properties. 

The bias-corrected and accelerated (BCa) is an improved version of the percentile 

method. The BCa intervals are substantial improvement over the percentile method in 

both theory and practice. Same as in bias-corrected bootstrap, let 𝜃∗
(𝛼) indicate the 

100αth percentile of B bootstrap replications. The BCa interval endpoints are also 

given by percentiles of the bootstrap distribution. The percentiles used depends on 

two numbers �̂�  and �̂�0 , called the acceleration and bias-correction. The BCa 

interval of intended coverage 1 −α is given by 

(𝜃𝑙𝑜 , 𝜃𝑢𝑝) = (𝜃∗
(𝛼3)  , 𝜃∗

(𝛼4)),             (3.7) 

where 

                                                     α3 =Φ.�̂�0 +
�̂�0 + 𝑧(𝛼 2⁄ )

1 − â(�̂�0 + 𝑧(𝛼 2)⁄ )
/                            (3.8) 

                                                   α4 =Φ.�̂�0 +
�̂�0 + 𝑧(1−𝛼 2⁄ )

1 − â(�̂�0 + 𝑧(1−𝛼 2)⁄ )
/                          (3.9) 

Here Φ(∙) is the standard normal cumulative distribution function and 𝑧(𝛼 2⁄ ) is the 

(100 𝛼 2⁄ )th percentile point of a standard normal distribution.  

The value of the bias-correction �̂�0 is obtained directly from the proportion of 

bootstrap replications less than the original estimate 𝜃, 

                                                      �̂�0 =Φ
−1

.
∑ 𝐼𝐵

𝑖=1 (𝜃𝑏
∗
< 𝜃)

𝐵
/,                                 (3.10) 

Φ
−1

 indicating the inverse function of a standard normal cumulative distribution 

function, e.g., Φ
−1

(. 975) = 1.96. �̂�0 measures the median bias of 𝜃∗, that is, the 
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discrepancy between the median of 𝜃∗ and 𝜃, in normal units. 

 There are various ways to compute the acceleration �̂�. The easiest to explain is 

given in terms of the jackknife values of a statistic 𝜃 = s(𝒙). Let 𝒙𝑖 be the original 

sample with ith point 𝑥𝑖 deleted, let 𝜃(𝑖) = 𝑠(𝒙𝑖) and define 𝜃(∙) = ∑ 𝜃(𝑖) 𝑛⁄𝑛
𝑖=1 . A 

simple expression for the acceleration is 

                                                   �̂� =  
∑ (𝜃(∙) − 𝜃(𝑖))

3𝑛
𝑖=1

6 ,∑ (𝜃(∙) − 𝜃(𝑖))
2𝑛

𝑖=1 -
3 2⁄

                                     (3.11) 

The quantity �̂� is called the acceleration because it refers to the rate of change of the 

standard error of 𝜃 with respect to the true parameter value 𝜃, measured on a 

normalized scale (Efron and Tibshirani, 1993). 

 

 

 

 

 

 

 

 

 

 

 



24 
 

4 Simulation 

4.1 Empirical Power 

This simulation study was to examine the empirical power for the methods of testing 

moderated mediation effects across several conditions to provide some guidance on 

appropriate sample sizes. The data were simulated using moderated mediation models 

across five models. All variables were generated from a normal distribution with a 

mean of 0 and a variance of 1. There were five different sample sizes in simulation: 

50, 100, 200, 500, and 1,000. For each simulation, the values for relevant coefficients 

were varied and those relevant coefficients values included 0, 0.14, 0.39, and 0.59, 

corresponding to zero, small (2% of the variance), medium (13% of the variance), and 

large (26% of the variance) effect sizes as described in Cohen (1988). For all models, 

the direct effect (c’) was always set to 0 because previous simulation pointed out no 

difference in power calculations as the direct effect increased (MacKinnon et al., 2004) 

and other coefficients were also set to be equal to +1 in the population. In addition, all 

conditional values of moderator(s) were also set to be equal to +1. 

The four effect sizes for relevant coefficients, five sample sizes and five methods 

totally have 1,600 combinations for Models 1-3 and 6,400 combinations for Models 

4-5, respectively. The process of generating data sets for a specific combination, 

running regression analyses and then testing for significance was replicated a total of 

1,000 times for each combination. For the bootstrap methods, a total of 1,000 

resampled data sets of size N were taken from the original sample of size N with 

replacement. And the point estimate (moderated mediation effect) was calculated for 

each bootstrap sample. These 1,000 bootstrap point estimates were used to construct 

confidence intervals for the moderated mediation effect and these confidence intervals 
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were tested for significance by examining whether they contained zero. This process 

was done a total of 1,000 times for each combination. Then power for bootstrap 

methods was equal to the proportion of that the bootstrap confidence intervals 

detecting the moderated mediation effect. In addition, the Type I error α was set to 

be equal to 0.05. According to the literature survey, it would be more useful to know 

the sample size required for power 0.8 to detect an effect for researchers planning 

studies (Cohen, 1988).  

4.1.1 Results and Discussion 

Tables 2-6 represent the Type I error rates for Models 1-5, respectively. Tables 7-11 

are empirical power for Models 1-5, respectively. Because the results are too much to 

display all conditions, we only display some results here. We didn’t display the 

conditions of the product of relevant coefficients equal to zero and only display the 

results for sample sizes of power over 0.8. For example, in Model 1, we didn’t list the 

results when a1=0 or b1=b2=0. The cells values are represent proportions of 1,000 

trials found significant atα=0.05 in two-tailed z-tests. For example of Model 2 in 

Table 8, b1=0.39, a1=0.14 and a3=0.39, the empirical power is 0.934, 0.930, 0.951, 

0.966 and 0.966 for each methods when sample sizes equal to 100. 

Here, empirical power for using first-order delta method variances is slightly 

larger than using second-order variances method. That is, rejection rates using 

second-order delta method variances slightly lower than first-order variances method. 

Type I error rates and empirical power for using bootstrap method is larger than using 

z-tests (first and second-order variances); but Type I error rates still not well for using 

bootstrap methods; bias-corrected bootstrap and bias-corrected and accelerated 

bootstrap results showed high power; bias-corrected bootstrap and bias-corrected and 
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accelerated bootstrap showed almost have same empirical power. These results are the 

same as the simulations studied by Preacher et al. (2007) which they conduct simple 

condition. As the relevant coefficients increased, the power was increased; the larger 

the sample size the better the power. In addition, if the product of population relevant 

coefficients was equal to zero, the power was very low. 

Because Models 1-3 have one path are moderated by moderator and Models 4-5 

have two paths are moderated by moderator. We divide Models 1-5 into two groups. 

Models 1-3 are first group and Models 4-5 are second group. The results of Models 

1-3 are similar and Models 4-5 are similar. Statistical power for detecting moderated 

mediation effects was slight larger for Model 1 than Models 3, which in turn higher 

than Model 2; Model 5 are higher than Model 4. 

4.2 Sample Size Study 

From Tables 7-11, we can roughly guess how many sample size are needed to achieve 

adequate statistical power 0.8. For example, in Model 1, regression coefficients 

b1=0.14, empirical power is over 0.8 when sample size reached 500 except two 

conditions (a1=0, a3=0.14 and a1=0.14, a3=0). We could guess that the required sample 

size is 200 to 500 for adequate statistical power 0.8. In Model 2, Table 8, regression 

coefficients b1=0.39, we guess that it require 50 to 100 sample size for the most 

conditions. 

Because the simulation range of sample size is broad, for example, 500 to 1,000. 

We couldn’t clearly point out how many sample sizes were necessary when conducted 

moderated mediation effect for adequate statistical power. Using second-order 

standard errors has the smallest power and the required sample sizes is largest than 

other methods. To simplify, we refer to second-order standard errors as the baseline. 
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Hence, we try to find a smallest sample sizes for power 0.8 in each model.  

4.2.1 Results and Discussion 

Results are summaries in Tables 12 and 13. We know that statistical power for 

detecting moderated mediation effects was slight larger for Model 1 than Model 3, 

which in turn higher than Model 2 and Model 5 is higher than Model 4. Therefore, the 

required sample size was slight larger for Model 2 than Model 3, which in turn slight 

larger than Model 1 and Model 4 is slight larger than Model 5. Because we use 10 

samples as a unit, the results may be same for some conditions. 

For example, Table 12 (Models 1-3), if first regression coefficient is 0.14, the 

required sample size is around 400-470; regression coefficient combinations are (0.14, 

0, 0.14) and (0.14, 0.14, 0), the required sample size is around 1040-1070; and (0.14, 

0.14, 0.14) required sample size around 530-540. When first regression coefficient is 

0.59, the required sample size is smaller than when first regression coefficient is 0.39 

which in turn smaller than when first coefficient is 0.14. And this trend is same as in 

Models 4-5. 

We found some rules from the study. The form of point estimate for Models 1-3 

is a(b+c). If the product of this point estimate is the same and the required sample 

size is almost equal. For example, if regression coefficients are (0.14, 0.14, 0.39) and 

(0.14, 0.39, 0.14), they all need sample sizes around 440 to reach appropriate 

statistical power 0.8. This conclusion is also the same for Models 4-5. The form of 

point estimate for Models 4-5 is (a+b)(c+d). Therefore, if regression coefficients are 

(0.14, 0.39, 0.14, 0.39), (0.14, 0.39, 0.39, 0.14), (0.39, 0.14, 0.14, 0.39) and (0.39, 

0.14, 0.39, 0.14), these four combinations all need sample size around 100.  



28 
 

5 Conclusions 

Fritz and MacKinnon (2007) discussed the required sample size to detect the mediated 

effect. In their simulation, they had an initial sample sizes which were estimated using 

results from MacKinnon et al. (2002, 2004). First, they calculated empirical power for 

initial sample size compared to 0.8, and if the empirical power was larger than 0.8, the 

sample size for the next simulation was decreased, and if the empirical power was 

smaller than 0.8, the sample size was increased. This iterative process was repeated 

until the empirical power was within 0.001 of 0.8. 

 In our sample size study, the regression coefficients combinations are too many 

and we don’t know the initial sample size. We just could guess rough sample size for 

empirical power over 0.8 in empirical power estimation. Then we use 10 samples as a 

unit and try to find required sample size for empirical power of 0.8. Although the 

sample sizes we study are not very accurate but it could provide guidelines for 

researchers studying moderated mediation model in determining sample size.  
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Appendix A 

Table 2  Type I Error Rates for Model 1 

Sample Size Test 

first second boot bc bca 

50 0 0 0.007 0.013 0.013 

100 0 0 0.002 0.005 0.005 

200 0.001 0.001 0.003 0.006 0.006 

500 0 0 0.003 0.013 0.013 

1000 0 0 0.002 0.005 0.006 

Note. First refers to tests using first-order standard errors, second refers to using 

second-order standard errors, boot refers to rejection rates using percentile 

bootstrap confidence intervals, bc refers to rejection rates using bias-corrected 

bootstrap confidence intervals and bca refers to rejection rates using bias-corrected 

and accelerated bootstrap confidence intervals. 

 

Table 3  Type I Error Rates for Model 2 

Sample Size Test 

first second boot bc bca 

50 0 0 0.001 0.004 0.004 

100 0 0 0 0.007 0.007 

200 0 0 0.002 0.006 0.006 

500 0 0 0.002 0.005 0.005 

1000 0 0 0.001 0.004 0.004 

 

Table 4  Type I Error Rates for Model 3 

Sample Size Test 

first second boot bc bca 

50 0 0 0.002 0.006 0.007 

100 0 0 0.002 0.007 0.008 

200 0 0 0.001 0.004 0.004 

500 0 0 0.003 0.007 0.007 

1000 0 0 0 0.004 0.004 
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Table 5  Type I Error Rates for Model 4 

Sample Size Test 

first second boot bc bca 

50 0.001 0.001 0.003 0.004 0.005 

100 0 0 0 0.004 0.004 

200 0 0 0.003 0.011 0.012 

500 0 0 0 0.004 0.004 

1000 0 0 0 0.001 0.001 

 

 

Table 6  Type I Error Rates for Model 5 

Sample Size Test 

first second boot bc bca 

50 0 0 0.001 0.003 0.002 

100 0 0 0.002 0.006 0.006 

200 0 0 0.001 0.009 0.009 

500 0 0 0.002 0.011 0.01 

1000 0 0 0.002 0.004 0.004 
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Table 7  Empirical Power for Model 1 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

0.14 0 0.14 1000 0.768 0.748 0.849 0.879 0.879 

  0.39 500 0.851 0.848 0.866 0.885 0.885 

  0.59 500 0.870 0.868 0.879 0.883 0.883 

 0.14 0 1000 0.806 0.781 0.868 0.898 0.898 

  0.14 500 0.822 0.803 0.889 0.928 0.928 

  0.39 500 0.863 0.858 0.872 0.882 0.882 

  0.59 500 0.876 0.875 0.876 0.885 0.885 

 0.39 0 500 0.845 0.844 0.868 0.890 0.896 

  0.14 500 0.871 0.865 0.876 0.890 0.890 

  0.39 500 0.871 0.869 0.882 0.886 0.886 

  0.59 500 0.852 0.851 0.855 0.859 0.859 

 0.59 0 500 0.863 0.863 0.878 0.887 0.887 

  0.14 500 0.862 0.862 0.871 0.874 0.874 

  0.39 500 0.863 0.862 0.862 0.861 0.861 

  0.59 500 0.850 0.850 0.849 0.856 0.856 

0.39 0 0.14 1000 0.905 0.905 0.906 0.913 0.913 

  0.39 200 0.962 0.955 0.966 0.970 0.970 

  0.59 100 0.921 0.900 0.953 0.963 0.963 

 0.14 0 1000 0.913 0.913 0.920 0.919 0.919 

  0.14 200 0.787 0.773 0.822 0.850 0.850 

  0.39 100 0.846 0.830 0.912 0.939 0.939 

  0.59 100 0.952 0.945 0.966 0.978 0.978 

 0.39 0 200 0.969 0.964 0.979 0.981 0.981 

  0.14 100 0.847 0.831 0.902 0.943 0.943 

  0.39 100 0.952 0.950 0.969 0.976 0.976 

  0.59 100 0.959 0.958 0.963 0.964 0.964 

 0.59 0 100 0.892 0.886 0.931 0.950 0.950 

  0.14 100 0.942 0.934 0.955 0.969 0.969 

  0.39 50 0.701 0.681 0.756 0.805 0.805 

  0.59 50 0.724 0.711 0.775 0.804 0.804 

0.59 0 0.14 1000 0.939 0.939 0.941 0.941 0.941 

  0.39 100 0.798 0.794 0.811 0.846 0.846 

  0.59 50 0.860 0.844 0.882 0.920 0.920 

 0.14 0 1000 0.933 0.931 0.937 0.940 0.940 
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Table 7  Empirical Power for Model 1 (Continue) 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

  0.14 200 0.857 0.853 0.864 0.873 0.873 

  0.39 100 0.959 0.956 0.967 0.972 0.972 

  0.59 50 0.860 0.844 0.882 0.920 0.920 

 0.39 0 100 0.798 0.787 0.818 0.841 0.841 

  0.14 100 0.964 0.961 0.963 0.969 0.969 

  0.39 50 0.897 0.886 0.913 0.944 0.944 

  0.59 50 0.938 0.935 0.950 0.967 0.967 

 0.59 0 100 0.979 0.978 0.982 0.986 0.986 

  0.14 50 0.855 0.835 0.884 0.925 0.925 

  0.39 50 0.945 0.942 0.956 0.967 0.967 

  0.59 50 0.960 0.956 0.964 0.972 0.972 

 

 

 

Table 8  Empirical Power for Model 2 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

0.14 0 0.14 1000 0.817 0.801 0.883 0.915 0.915 

  0.39 500 0.869 0.864 0.895 0.909 0.909 

  0.59 500 0.858 0.856 0.867 0.867 0.867 

 0.14 0 1000 0.78 0.761 0.869 0.891 0.891 

  0.14 500 0.778 0.759 0.856 0.898 0.898 

  0.39 500 0.861 0.853 0.863 0.875 0.875 

  0.59 500 0.880 0.878 0.881 0.884 0.884 

 0.39 0 500 0.845 0.834 0.877 0.896 0.896 

  0.14 500 0.869 0.864 0.878 0.892 0.892 

  0.39 500 0.880 0.875 0.879 0.883 0.882 

  0.59 500 0.868 0.865 0.867 0.871 0.871 

 0.59 0 500 0.872 0.867 0.879 0.892 0.892 

  0.14 500 0.881 0.879 0.880 0.885 0.885 

  0.39 500 0.888 0.888 0.888 0.892 0.892 

  0.59 500 0.872 0.872 0.873 0.881 0.881 

0.39 0 0.14 1000 0.846 0.845 0.840 0.849 0.849 

  0.39 200 0.929 0.923 0.943 0.953 0.953 
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Table 8  Empirical Power for Model 2 (Continue) 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

  0.59 100 0.874 0.862 0.924 0.954 0.954 

 0.14 0 1000 0.875 0.873 0.879 0.886 0.886 

  0.14 500 0.984 0.984 0.988 0.988 0.988 

  0.39 100 0.826 0.798 0.886 0.921 0.921 

  0.59 100 0.934 0.925 0.954 0.971 0.971 

 0.39 0 200 0.958 0.953 0.966 0.971 0.971 

  0.14 100 0.819 0.796 0.885 0.941 0.941 

  0.39 100 0.934 0.930 0.951 0.966 0.966 

  0.59 100 0.944 0.943 0.959 0.959 0.959 

 0.59 0 100 0.869 0.856 0.927 0.950 0.950 

  0.14 100 0.941 0.932 0.955 0.967 0.967 

  0.39 100 0.952 0.949 0.963 0.966 0.966 

  0.59 100 0.962 0.960 0.957 0.964 0.964 

0.59 0 0.14 1000 0.869 0.869 0.871 0.873 0.873 

  0.39 200 0.958 0.957 0.959 0.966 0.966 

  0.59 100 0.970 0.965 0.961 0.973 0.973 

 0.14 0 1000 0.863 0.862 0.853 0.858 0.858 

  0.14 500 0.992 0.992 0.989 0.990 0.990 

  0.39 100 0.917 0.911 0.915 0.929 0.929 

  0.59 50 0.787 0.769 0.824 0.870 0.870 

 0.39 0 200 0.961 0.957 0.956 0.959 0.959 

  0.14 100 0.992 0.918 0.923 0.943 0.943 

  0.39 50 0.828 0.809 0.862 0.907 0.907 

  0.59 50 0.925 0.919 0.939 0.953 0.953 

 0.59 0 100 0.957 0.954 0.964 0.973 0.973 

  0.14 50 0.785 0.768 0.815 0.882 0.882 

  0.39 50 0.917 0.909 0.928 0.956 0.956 

  0.59 50 0.943 0.937 0.940 0.961 0.961 
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Table 9  Empirical Power for Model 3 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

0.14 0 0.14 1000 0.799 0.776 0.877 0.902 0.902 

  0.39 500 0.841 0.828 0.860 0.876 0.876 

  0.59 500 0.871 0.869 0.876 0.886 0.886 

 0.14 0 1000 0.780 0.756 0.854 0.897 0.897 

  0.14 500 0.789 0.778 0.861 0.901 0.901 

  0.39 500 0.867 0.863 0.876 0.892 0.892 

  0.59 500 0.876 0.873 0.877 0.886 0.886 

 0.39 0 500 0.846 0.840 0.873 0.890 0.890 

  0.14 500 0.884 0.881 0.889 0.900 0.900 

  0.39 500 0.885 0.883 0.892 0.893 0.892 

  0.59 500 0.845 0.845 0.839 0.844 0.844 

 0.59 0 500 0.853 0.850 0.861 0.869 0.869 

  0.14 500 0.883 0.881 0.881 0.890 0.890 

  0.39 500 0.885 0.884 0.894 0.895 0.895 

  0.59 500 0.877 0.877 0.877 0.881 0.881 

0.39 0 0.14 1000 0.881 0.878 0.887 0.888 0.888 

  0.39 200 0.955 0.952 0.963 0.972 0.972 

  0.59 100 0.894 0.882 0.938 0.966 0.966 

 0.14 0 1000 0.881 0.879 0.881 0.885 0.885 

  0.14 200 0.745 0.730 0.793 0.826 0.826 

  0.39 100 0.822 0.808 0.885 0.921 0.921 

  0.59 100 0.924 0.917 0.950 0.963 0.963 

 0.39 0 200 0.949 0.946 0.962 0.972 0.972 

  0.14 100 0.850 0.830 0.890 0.929 0.929 

  0.39 100 0.947 0.942 0.966 0.975 0.975 

  0.59 100 0.959 0.958 0.964 0.973 0.973 

 0.59 0 100 0.899 0.889 0.936 0.955 0.955 

  0.14 100 0.936 0.931 0.951 0.965 0.965 

  0.39 100 0.959 0.955 0.960 0.964 0.964 

  0.59 50 0.735 0.725 0.771 0.808 0.808 

0.59 0 0.14 1000 0.923 0.923 0.921 0.923 0.923 

  0.39 100 0.774 0.764 0.784 0.815 0.815 

  0.59 50 0.696 0.678 0.750 0.801 0.801 

 0.14 0 1000 0.923 0.923 0.921 0.923 0.923 
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Table 9  Empirical Power for Model 3 (Continue) 

Regression Coefficients Sample 

Size 

Test 

b1 a1 a3 first second boot bc bca 

  0.14 200 0.835 0.828 0.831 0.850 0.850 

  0.39 100 0.924 0.920 0.938 0.950 0.950 

  0.59 50 0.835 0.819 0.860 0.907 0.907 

 0.39 0 200 0.974 0.972 0.978 0.979 0.979 

  0.14 100 0.934 0.931 0.931 0.947 0.947 

  0.39 50 0.849 0.835 0.878 0.911 0.911 

  0.59 50 0.941 0.935 0.959 0.974 0.974 

 0.59 0 100 0.981 0.980 0.981 0.987 0.987 

  0.14 50 0.847 0.833 0.880 0.911 0.911 

  0.39 50 0.940 0.932 0.947 0.961 0.961 

  0.59 50 0.956 0.955 0.968 0.981 0.981 
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Table 10  Empirical Power for Model 4 

    Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

0 0.14 0 0.14 1000 0.666 9,642 0.816 0.847 0.847 

   0.39 1000 0.869 0.867 0.871 0.878 0.878 

   0.59 1000 0.854 0.853 0.856 0.853 0.853 

  0.14 0 1000 0.673 0.647 0.801 0.862 0.862 

   0.14 1000 0.834 0.827 0.848 0.862 0.862 

   0.39 1000 0.870 0.869 0.879 0.879 0.879 

   0.59 1000 0.882 0.882 0.880 0.883 0.883 

  0.39 0 1000 0.883 0.878 0.875 0.886 0.886 

   0.14 1000 0.869 0.869 0.862 0.866 0.866 

   0.39 1000 0.867 0.866 0.873 0.874 0.874 

   0.59 1000 0.883 0.882 0.871 0.870 0.870 

  0.59 0 1000 0.868 0.866 0.865 0.875 0.875 

   0.14 1000 0.864 0.862 0.856 0.860 0.860 

   0.39 1000 0.898 0.898 0.899 0.901 0.901 

   0.59 1000 0.887 0.887 0.884 0.885 0.885 

 0.39 0 0.14 1000 0.944 0.944 0.952 0.960 0.906 

   0.39 200 0.894 0.876 0.929 0.947 0.947 

   0.59 200 0.963 0.958 0.958 0.967 0.967 

  0.14 0 1000 0.950 0.939 0.946 0.951 0.951 

   0.14 200 0.720 0.701 0.837 0.882 0.882 

   0.39 200 0.958 0.955 0.963 0.972 0.972 

   0.59 200 0.949 0.945 0.954 0.955 0.955 

  0.39 0 200 0.936 0.928 0.951 0.969 0.969 

   0.14 200 0.950 0.959 0.963 0.969 0.969 

   0.39 200 0.965 0.965 0.962 0.965 0.965 

   0.59 200 0.955 0.955 0.957 0.961 0.961 

  0.59 0 200 0.953 0.951 0.954 0.958 0.958 

   0.14 200 0.971 0.968 0.976 0.979 0.979 

   0.39 200 0.955 0.955 0.955 0.958 0.958 

   0.59 200 0.953 0.953 0.949 0.951 0.951 

 0.59 0 0.14 1000 0.947 0.947 0.950 0.954 0.954 

   0.39 100 0.729 0.705 0.807 0.858 0.858 

   0.59 100 0.928 0.911 0.952 0.963 0.963 

  0.14 0 1000 0.947 0.947 0.947 0.947 0.947 
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Table 10  Empirical Power for Model 4 (Continue) 

 Sample 

Size 

Test  Sample Size Test 

a1 a3 b1 b3 first second boot bc bca 

   0.14 200 0.866 0.858 0.887 0.910 0.910 

   0.39 100 0.904 0.891 0.928 0.956 0.956 

   0.59 100 0.962 0.960 0.966 0.979 0.979 

  0.39 0 100 0.727 0.700 0.809 0.861 0.861 

   0.14 100 0.921 0.912 0.956 0.964 0.964 

   0.39 100 0.967 0.962 0.963 0.976 0.976 

   0.59 100 0.972 0.971 0.967 0.977 0.977 

  0.59 0 100 0.944 0.938 0.967 0.977 0.977 

   0.14 100 0.946 0.942 0.951 0.967 0.967 

   0.39 100 0.963 0.961 0.957 0.963 0.963 

   0.59 100 0.964 0.964 0.959 0.962 0.962 

0.14 0 0 0.14 1000 0.684 0.658 0.818 0.869 0.869 

   0.39 1000 0.860 0.859 0.867 0.873 0.873 

   0.59 1000 0.877 0.877 0.877 0.877 0.877 

  0.14 0 1000 0.679 0.650 0.823 0.879 0.879 

   0.14 1000 0.850 0.846 0.859 0.874 0.874 

   0.39 1000 0.858 0.857 0.863 0.868 0.868 

   0.59 1000 0.880 0.880 0.883 0.883 0.883 

  0.39 0 1000 0.850 0.845 0.862 0.871 0.872 

   0.14 1000 0.872 0.869 0.972 0.880 0.880 

   0.39 1000 0.856 0.856 0.845 0.846 0.846 

   0.59 1000 0.864 0.864 0.862 0.863 0.863 

  0.59 0 1000 0.882 0.880 0.885 0.886 0.886 

   0.14 1000 0.881 0.881 0.880 0.875 0.875 

   0.39 1000 0.877 0.877 0.869 0.870 0.870 

   0.59 1000 0.876 0.876 0.873 0.873 0.873 

 0.14 0 0.14 1000 0.934 0.928 0.945 0.951 0.951 

   0.39 200 0.677 0.651 0.756 0.809 0.809 

   0.59 500 0.987 0.986 0.991 0.991 0.991 

  0.14 0 1000 0.931 0.929 0.945 0.956 0.956 

   0.14 500 0.981 0.978 0.985 0.992 0.992 

   0.39 500 0.991 0.991 0.988 0.990 0.990 

   0.59 500 0.993 0.993 0.991 0.991 0.991 

  0.39 0 500 0.983 0.983 0.985 0.986 0.986 

          



40 
 

 

Table 10  Empirical Power for Model 4 (Continue) 

 Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

   0.14 500 0.992 0.992 0.989 0.991 0.991 

   0.39 500 0.991 0.991 0.992 0.991 0.991 

   0.59 500 0.993 0.993 0.990 0.989 0.989 

  0.59 0 500 0.986 0.986 0.990 0.990 0.990 

   0.14 500 0.992 0.992 0.993 0.992 0.992 

   0.39 500 0.991 0.991 0.992 0.991 0.991 

   0.59 500 0.993 0.993 0.990 0.989 0.989 

 0.39 0 0.14 1000 0.959 0.958 0.956 0.961 0.961 

   0.39 200 0.986 0.983 0.985 0.988 0.988 

   0.59 100 0.889 0.876 0.920 0.941 0.941 

  0.14 0 1000 0.951 0.950 0.952 0.954 0.954 

   0.14 200 0.855 0.844 0.882 0.905 0.905 

   0.39 100 0.846 0.830 0.894 0.926 0.926 

   0.59 100 0.914 0.911 0.917 0.949 0.949 

  0.39 0 200 0.980 0.978 0.985 0.985 0.985 

   0.14 100 0.846 0.831 0.892 0.932 0.932 

   0.39 100 0.919 0.912 0.917 0.932 0.932 

   0.59 100 0.930 0.927 0.923 0.932 0.932 

  0.59 0 100 0.878 0.865 0.914 0.939 0.939 

   0.14 100 0.906 0.901 0.913 0.929 0.929 

   0.39 100 0.938 0.936 0.937 0.947 0.947 

   0.59 100 0.924 0.923 0.917 0.921 0.921 

 0.59 0 0.14 1000 0.954 0.954 0.952 0.953 0.953 

   0.39 100 0.792 0.779 0.833 0.855 0.855 

   0.59 100 0.982 0.974 0.986 0.992 0.992 

  0.14 0 1000 0.961 0.961 0.961 0.962 0.962 

   0.14 200 0.898 0.891 0.917 0.924 0.924 

   0.39 100 0.964 0.961 0.968 0.976 0.976 

   0.59 50 0.771 0.749 0.788 0.848 0.848 

  0.39 0 100 0.788 0.772 0.821 0.854 0.854 

   0.14 100 0.968 0.964 0.974 0.980 0.908 

   0.39 50 0.797 0.788 0.822 0.833 0.883 

   0.59 50 0.850 0.839 0.857 0.884 0.884 

  0.59 0 100 0.979 0.977 0.984 0.988 0.988 
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Table 10  Empirical Power for Model 4 (Continue) 

 Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

   0.14 50 0.767 0.749 0.791 0.853 0.853 

   0.39 50 0.840 0.835 0.846 0.893 0.892 

   0.59 50 0.865 0.861 0.849 0.871 0.871 

0.39 0 0 0.14 1000 0.952 0.949 0.952 0.954 0.954 

   0.39 200 0.906 0.895 0.945 0.965 0.965 

   0.59 200 0.939 0.935 0.942 0.953 0.953 

  0.14 0 1000 0.947 0.946 0.953 0.961 0.961 

   0.14 200 0.735 0.709 0.834 0.878 0.878 

   0.39 200 0.961 0.958 0.966 0.974 0.974 

   0.59 200 0.951 0.960 0.954 0.956 0.956 

  0.39 0 200 0.902 0.890 0.942 0.957 0.957 

   0.14 200 0.944 0.944 0.949 0.962 0.962 

   0.39 200 0.967 0.967 0.972 0.971 0.971 

   0.59 200 0.959 0.956 0.957 0.957 0.957 

  0.59 0 200 0.953 0.948 0.956 0.963 0.963 

   0.14 200 0.953 0.951 0.958 0.963 0.963 

   0.39 200 0.965 0.965 0.956 0.961 0.961 

   0.59 200 0.962 0.961 0.961 0.963 0.963 

 0.14 0 0.14 1000 0.950 0.948 0.953 0.956 0.956 

   0.39 200 0.989 0.985 0.990 0.996 0.996 

   0.59 100 0.900 0.889 0.925 0.949 0.949 

  0.14 0 1000 0.956 0.956 0.958 0.960 0.960 

   0.14 200 0.838 0.829 0.872 0.899 0.899 

   0.39 100 0.844 0.821 0.894 0.925 0.925 

   0.59 100 0.919 0.914 0.917 0.928 0.928 

  0.39 0 200 0.978 0.973 0.984 0.987 0.987 

   0.14 100 0.844 0.833 0.878 0.912 0.912 

   0.39 100 0.920 0.917 0.926 0.936 0.936 

   0.59 100 0.930 0.930 0.925 0.935 0.935 

  0.59 0 100 0.894 0.883 0.925 0.941 0.941 

   0.14 100 0.905 0.899 0.909 0.923 0.923 

   0.39 100 0.930 0.929 0.916 0.937 0.937 

   0.59 100 0.950 0.949 0.937 0.937 0.937 

 0.39 0 0.14 1000 0.955 0.955 0.956 0.955 0.955 
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Table 10  Empirical Power for Model 4 (Continue) 

Regression coefficients Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

   0.39 100 0.817 0.806 0.840 0.876 0.876 

   0.59 100 0.981 0.977 0.983 0.993 0.993 

  0.14 0 1000 0.962 0.962 0.959 0.960 0.960 

   0.14 200 0.888 0.883 0.888 0.898 0.898 

   0.39 100 0.973 0.967 0.979 0.979 0.979 

   0.59 50 0.795 0.769 0.822 0.875 0.875 

  0.39 0 100 0.824 0.811 0.840 0.877 0.877 

   0.14 100 0.970 0.967 0.968 0.974 0.974 

   0.39 50 0.820 0.798 0.849 0.889 0.889 

   0.59 50 0.884 0.874 0.873 0.906 0.905 

  0.59 0 100 0.981 0.978 0.984 0.988 0.988 

   0.14 50 0.826 0.815 0.824 0.886 0.886 

   0.39 50 0.893 0.883 0.875 0.910 0.910 

   0.59 50 0.892 0.889 0.879 0.901 0.901 

 0.59 0 0.14 1000 0.968 0.968 0.967 0.966 0.966 

   0.39 100 0.845 0.835 0.846 0.864 0.864 

   0.59 100 0.994 0.992 0.992 0.995 0.995 

  0.14 0 1000 0.966 0.966 0.963 0.960 0.960 

   0.14 200 0.887 0.886 0.887 0.939 0.939 

   0.39 100 0.979 0.978 0.978 0.981 0.981 

   0.59 50 0.903 0.896 0.900 0.928 0.928 

  0.39 0 100 0.825 0.822 0.830 0.855 0.855 

   0.14 100 0.980 0.980 0.975 0.975 0.975 

   0.39 50 0.917 0.906 0.922 0.945 0.945 

   0.59 50 0.966 0.960 0.956 0.971 0.971 

  0.59 0 50 0.771 0.761 0.796 0.846 0.846 

   0.14 50 0.888 0.876 0.894 0.925 0.925 

   0.39 50 0.967 0.963 0.956 0.970 0.970 

   0.59 50 0.974 0.974 0.970 0.978 0.978 

0.59 0 0 0.14 1000 0.957 0.957 0.953 0.955 0.955 

   0.39 200 0.988 0.985 0992 0.993 0.993 

   0.59 100 0.935 0.924 0.950 0.974 0.974 

  0.14 0 1000 0.959 0.958 0.957 0.961 0.961 

   0.14 200 0.875 0.863 0.897 0.915 0.915 
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Table 10  Empirical Power for Model 4 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

   0.39 100 0.930 0.920 0.942 0.960 0.960 

   0.59 100 0.952 0.950 0.958 0.965 0.965 

  0.39 0 100 0.744 0.720 0.807 0.858 0.858 

   0.14 100 0.912 0.893 0.934 0.959 0.959 

   0.39 100 0.959 0.950 0.956 0.966 0.966 

   0.59 100 0.960 0.957 0.960 0.966 0.966 

  0.59 0 100 0.924 0.921 0.936 0.955 0.955 

   0.14 100 0.956 0.956 0.969 0.976 0.976 

   0.39 100 0.957 0.956 0.953 0.961 0.961 

   0.59 100 0.960 0.960 0.953 0.957 0.957 

 0.14 0 0.14 1000 0.955 0.955 0.957 0.955 0.955 

   0.39 100 0.828 0.816 0.854 0.893 0.893 

   0.59 100 0.975 0.972 0.981 0.985 0.985 

  0.14 0 1000 0.958 0.958 0.957 0.959 0.959 

   0.14 200 0.886 0.880 0.894 0.910 0.910 

   0.39 100 0.957 0.954 0.973 0.972 0.972 

   0.59 100 0.994 0.993 0.993 0.997 0.997 

  0.39 0 100 0.790 0.770 0.829 0.875 0.875 

   0.14 100 0.967 0.962 0.970 0.980 0.980 

   0.39 50 0.787 0.779 0.815 0.867 0.867 

   0.59 50 0.836 0.829 0.826 0.865 0.865 

  0.59 0 100 0.976 0.976 0.979 0.984 0.984 

   0.14 50 0.759 0.736 0.776 0.852 0.852 

   0.39 50 0.842 0.831 0.840 0.871 0.871 

   0.59 50 0.863 0.857 0.846 0.881 0.881 

 0.39 0 0.14 1000 0.963 0.963 0.957 0.958 0.958 

   0.39 100 0.845 0.837 0.857 0.871 0.871 

   0.59 100 0.990 0.990 0.996 0.997 0.997 

  0.14 0 1000 0.958 0.958 0.959 0.956 0.956 

   0.14 200 0.885 0.885 0.882 0.891 0.891 

   0.39 100 0.976 0.976 0.975 0.983 0.983 

   0.59 50 0.893 0.885 0.888 0.923 0.923 

  0.39 0 100 0.835 0.830 0.844 0.859 0.859 

   0.14 100 0.979 0.977 0.984 0.986 0.986 
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Table 10  Empirical Power for Model 4 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b3 first second boot bc bca 

   0.39 50 0.936 0.931 0.929 0.956 0.956 

   0.59 50 0.957 0.950 0.947 0.972 0.972 

  0.59 0 100 0.992 0.992 0.992 0.994 0.994 

   0.14 50 0.901 0.886 0.894 0.933 0.933 

   0.39 50 0.952 0.947 0.946 0.966 0.965 

   0.59 50 0.977 0.976 0.971 0.974 0.974 

 0.59 0 0.14 1000 0.962 0.962 0.961 0.954 0.954 

   0.39 100 0.870 0.866 0.863 0.882 0.882 

   0.59 50 0.892 0.820 0.806 0.854 0.854 

  0.14 0 1000 0.995 0.995 0.956 0.956 0.956 

   0.14 200 0.914 0.914 0.905 0.910 0.910 

   0.39 100 0.978 0.977 0.975 0.975 0.975 

   0.59 50 0.892 0.820 0.806 0.854 0.854 

  0.39 0 100 0.880 0.876 0.886 0.892 0.892 

   0.14 100 0.973 0.972 0.972 0.978 0.978 

   0.39 50 0.946 0.941 0.942 0.961 0.961 

   0.59 50 0.988 0.988 0.984 0.987 0.987 

  0.59 0 50 0.835 0.824 0.831 0.860 0.860 

   0.14 50 0.927 0.921 0.923 0.937 0.937 

   0.39 50 0.978 0.975 0.979 0.981 0.981 

   0.59 50 0.998 0.997 0.995 0.996 0.996 
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Table 11  Empirical Power for Model 5 

 Sample 

Size 

Test 

a1 a3 b1 b2 first second boot bc bca 

0 0.14 0 0.14 1000 0.713 0.685 0.826 0.864 0.864 

   0.39 1000 0.846 0.841 0.856 0.854 0.854 

   0.59 1000 0.858 0.858 0.854 0.860 0.860 

  0.14 0 1000 0.738 0.706 0.859 0.898 0.898 

   0.14 1000 0.855 0.840 0.872 0.886 0.886 

   0.39 1000 0.871 0.868 0.868 0.872 0.872 

   0.59 1000 0.886 0.886 0.879 0.874 0.874 

  0.39 0 1000 0.880 0.877 0.887 0.896 0.896 

   0.14 1000 0.875 0.873 0.878 0.880 0.880 

   0.39 1000 0.861 0.860 0.871 0.869 0.869 

   0.59 1000 0.871 0.870 0.862 0.867 0.867 

  0.59 0 1000 0.871 0.870 0.875 0.876 0.876 

   0.14 1000 0.857 0.857 0.858 0.862 0.862 

   0.39 1000 0.870 0.870 0.863 0.866 0.866 

   0.59 1000 0.886 0.886 0.880 0.882 0.882 

 0.39 0 0.14 1000 0.969 0.967 0.969 0.972 0.972 

   0.39 200 0.918 0.907 0.951 0.964 0.964 

   0.59 200 0.944 0.941 0.954 0.959 0.959 

  0.14 0 1000 0.964 0.964 0.967 0.970 0.970 

   0.14 200 0.798 0.776 0.870 0.911 0.911 

   0.39 200 0.950 0.946 0.958 0.967 0.967 

   0.59 200 0.948 0.948 0.939 0.943 0.943 

  0.39 0 200 0.916 0.907 0.941 0.958 0.958 

   0.14 200 0.975 0.973 0.978 0.983 0.983 

   0.39 200 0.956 0.955 0.954 0.956 0.956 

   0.59 200 0.951 0.951 0.945 0.949 0.949 

  0.59 0 200 0.957 0.956 0.956 0.966 0.966 

   0.14 200 0.954 0.953 0.949 0.951 0.951 

   0.39 200 0.951 0.950 0.940 0.956 0.956 

   0.59 200 0.965 0.964 0.960 0.956 0.956 

 0.59 0 0.14 1000 0.964 0.964 0.968 0.970 0.970 

   0.39 100 0.789 0.763 0.860 0.904 0.904 

   0.59 100 0.931 0.925 0.949 0.962 0.962 

  0.14 0 1000 0.976 0.976 0.970 0.975 0.975 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

SIze 

Test 

a1 a3 b1 b2 first second boot bc bca 

   0.14 200 0.908 0.903 0.919 0.934 0.934 

   0.39 100 0.933 0.924 0.949 0.966 0.966 

   0.59 100 0.952 0.949 0.958 0.973 0.973 

  0.39 0 100 0.766 0.749 0.834 0.877 0.877 

   0.14 100 0.923 0.913 0.947 0.970 0.970 

   0.39 100 0.959 0.955 0.960 0.967 0.967 

   0.59 100 0.953 0.952 0.955 0.960 0.960 

  0.59 0 100 0.953 0.951 0.949 0.973 0.973 

   0.14 100 0.956 0.955 0.961 0.969 0.969 

   0.39 100 0.966 0.965 0.967 0.971 0.971 

   0.59 100 0.960 0.959 0.957 0.963 0.963 

0.14 0 0 0.14 1000 0.713 0.687 0.817 0.869 0.869 

   0.39 1000 0.867 0.865 0.869 0.871 0.871 

   0.59 1000 0.861 0.861 0.860 0.870 0.870 

  0.14 0 1000 0.717 0.690 0.828 0.876 0.876 

   0.14 1000 0.850 0.847 0.864 0.881 0.881 

   0.39 1000 0.864 0.862 0.866 0.866 0.866 

   0.59 1000 0.887 0.887 0.875 0.878 0.878 

  0.39 0 1000 0.863 0.860 0.874 0.879 0.879 

   0.14 1000 0.876 0.876 0.874 0.879 0.879 

   0.39 1000 0.874 0.873 0.970 0.968 0.968 

   0.59 1000 0.889 0.889 0.884 0.884 0.884 

  0.59 0 1000 0.865 0.863 0.866 0.867 0.867 

   0.14 1000 0.859 0.858 0.858 0.858 0.858 

   0.39 1000 0.884 0.884 0.880 0.879 0.879 

   0.59 1000 0.870 0.870 0.869 0.872 0.872 

 0.14 0 0.14 1000 0.969 0.968 0.976 0.979 0.979 

   0.39 500 0.993 0.993 0.989 0.991 0.991 

   0.59 500 0.989 0.989 0.989 0.990 0.990 

  0.14 0 500 0.654 0.622 0.753 0.800 0.800 

   0.14 500 0.986 0.986 0.987 0.992 0.992 

   0.39 500 0.986 0.985 0.987 0.987 0.987 

   0.59 500 0.84 0.984 0.983 0.984 0.984 

  0.39 0 500 0.990 0.989 0.993 0.993 0.993 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b2 first second boot bc bca 

   0.14 500 0.991 0.991 0.991 0.992 0.992 

   0.39 500 0.990 0.990 0.989 0.986 0.986 

   0.59 500 0.994 0.994 0.994 0.993 0.993 

  0.59 0 500 0.998 0.998 0.997 0.998 0.998 

   0.14 500 0.990 0.990 0.986 0.988 0.988 

   0.39 500 0.991 0.991 0.991 0.991 0.991 

   0.59 500 0.995 0.995 0.996 0.994 0.994 

 0.39 0 0.14 1000 0.972 0.972 0.970 0.975 0.975 

   0.39 100 0.703 0.684 0.807 0.866 0.866 

   0.59 100 0.893 0.882 0.906 0.942 0.942 

  0.14 0 1000 0.977 0.977 0.981 0.979 0.979 

   0.14 200 0.905 0.897 0.926 0.946 0.946 

   0.39 100 0.882 0.868 0.914 0.943 0.943 

   0.59 100 0.888 0.886 0.899 0.924 0.924 

  0.39 0 200 0.994 0.992 0.998 0.998 0.998 

   0.14 100 0.886 0.869 0.919 0.944 0.944 

   0.39 100 0.917 0.914 0.916 0.944 0.944 

   0.59 100 0.917 0.915 0.921 0.933 0.933 

  0.59 0 100 0.888 0.877 0.910 0.939 0.939 

   0.14 100 0.928 0.926 0.927 0.946 0.946 

   0.39 100 0.922 0.921 0.925 0.935 0.935 

   0.59 100 0.938 0.936 0.936 0.937 0.937 

 0.59 0 0.14 1000 0.967 0.967 0.964 0.966 0.966 

   0.39 100 0.842 0.826 0.874 0.903 0.903 

   0.59 100 0.986 0.984 0.989 0.994 0.994 

  0.14 0 1000 0.974 0.974 0.970 0.969 0.969 

   0.14 200 0.912 0.909 0.915 0.926 0.926 

   0.39 100 0.977 0.976 0.974 0.986 0.986 

   0.59 100 0.997 0.997 0.996 0.998 0.998 

  0.39 0 100 0.841 0.823 0.873 0.904 0.904 

   0.14 100 0.900 0.968 0.974 0.977 0.977 

   0.39 50 0.992 0.991 0.993 0.995 0.995 

   0.59 50 0.993 0.993 0.990 0.990 0.990 

  0.59 0 100 0.988 0.984 0.991 0.993 0.993 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b2 first second boot bc bca 

   0.14 50 0.991 0.990 0.990 0.993 0.993 

   0.39 50 0.991 0.989 0.993 0.992 0.992 

   0.59 50 0.993 0.993 0.990 0.990 0.990 

0.39 0 0 0.14 1000 0.975 0.972 0.973 0.977 0.977 

   0.39 200 0.919 0.913 0.948 0.959 0.959 

   0.59 200 0.963 0.961 0.966 0.972 0.972 

  0.14 0 1000 0.968 0.967 0.970 0.976 0.976 

   0.14 200 0.779 0.746 0.858 0.916 0.916 

   0.39 200 0.963 0.960 0.967 0.971 0.971 

   0.59 200 0.956 0.964 0.951 0.957 0.957 

  0.39 0 200 0.911 0.898 0.943 0.961 0.961 

   0.14 200 0.938 0.934 0.952 0.959 0.959 

   0.39 200 0.959 0.958 0.956 0.961 0.961 

   0.59 200 0.960 0.959 0.953 0.960 0.960 

  0.59 0 200 0.951 0.948 0.947 0.954 0.954 

   0.14 200 0.963 0.962 0.959 0.964 0.964 

   0.39 200 0.961 0.961 0.960 0.960 0.960 

   0.59 200 0.953 0.952 0.947 0.947 0.947 

 0.14 0 0.14 1000 0.970 0.970 0.969 0.972 0.972 

   0.39 200 0.985 0.984 0.989 0.994 0.994 

   0.59 100 0.895 0.890 0.917 0.933 0.933 

  0.14 0 1000 0.969 0.969 0.967 0.969 0.969 

   0.14 200 0.877 0.868 0.904 0.924 0.924 

   0.39 100 0.868 0.847 0.893 0.924 0.924 

   0.59 100 0.927 0.921 0.924 0.947 0.947 

  0.39 0 200 0.987 0.986 0.993 0.994 0.994 

   0.14 100 0.876 0.856 0.912 0.935 0.935 

   0.39 100 0.930 0.925 0.927 0.939 0.939 

   0.59 100 0.915 0.913 0.908 0.917 0.917 

  0.59 0 100 0.891 0.884 0.913 0.933 0.933 

   0.14 100 0.918 0.914 0.927 0.939 0.939 

   0.39 100 0.928 0.924 0.919 0.936 0.936 

   0.59 100 0.927 0.926 0.914 0.919 0.919 

 0.39 0 0.14 1000 0.973 0.973 0.976 0.976 0.976 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b2 first second boot ba bca 

   0.39 100 0.845 0.832 0.865 0.899 0.899 

   0.59 100 0.985 0.984 0.985 0.991 0.991 

  0.14 0 1000 0.966 0.964 0.966 0.966 0.966 

   0.14 200 0.904 0.902 0.912 0.925 0.925 

   0.39 100 0.972 0.969 0.979 0.981 0.981 

   0.59 50 0.825 0.807 0.834 0.886 0.886 

  0.39 0 100 0.860 0.854 0.871 0.904 0.904 

   0.14 100 0.966 0.965 0.971 0.978 0.978 

   0.39 50 0.843 0.830 0.838 0.893 0.893 

   0.59 50 0.893 0.883 0.884 0.912 0.912 

  0.59 0 100 0.992 0.992 0.988 0.994 0.994 

   0.14 50 0.817 0.808 0.832 0.881 0.881 

   0.39 50 0.906 0.897 0.872 0.908 0.908 

   0.59 50 0.898 0.888 0.874 0.902 0.902 

 0.59 0 0.14 1000 0.976 0.976 0.974 0.974 0.974 

   0.39 100 0.860 0.857 0.861 0.880 0.880 

   0.59 50 0.995 0.994 0.995 0.996 0.996 

  0.14 0 1000 0.978 0.978 0.977 0.975 0.975 

   0.14 200 0.893 0.893 0.901 0.909 0.909 

   0.39 100 0.983 0.983 0.985 0.986 0.986 

   0.59 50 0.915 0.908 0.925 0.952 0.952 

  0.39 0 100 0.861 0.856 0.864 0.883 0.883 

   0.14 100 0.984 0.982 0.985 0.984 0.984 

   0.39 50 0.932 0.927 0.927 0.952 0.952 

   0.59 50 0.971 0.969 0.966 0.979 0.979 

  0.59 0 50 0.820 0.806 0.813 0.862 0.862 

   0.14 50 0.912 0.906 0.904 0.933 0.933 

   0.39 50 0.960 0.955 0.957 0.970 0.970 

   0.59 50 0.975 0.975 0.968 0.978 0.978 

0.59 0 0 0.14 1000 0.978 0.976 0.974 0.978 0.978 

   0.39 100 0.754 0.738 0.825 0.869 0.869 

   0.59 100 0.939 0.931 0.958 0.968 0.968 

  0.14 0 1000 0.972 0.972 0.970 0.973 0.973 

   0.14 200 0.883 0.877 0.909 0.921 0.921 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b2 first second boot bc bca 

   0.39 100 0.907 0.901 0.942 0.957 0.957 

   0.59 100 0.966 0.964 0.961 0.969 0.969 

  0.39 0 200 0.991 0.989 0.990 0.994 0.994 

   0.14 100 0.915 0.899 0.930 0.953 0.953 

   0.39 100 0.964 0.962 0.964 0.968 0.968 

   0.59 100 0.964 0.964 0.967 0.972 0.972 

  0.59 0 100 0.950 0.942 0.948 0.960 0.960 

   0.14 100 0.946 0.943 0.948 0.960 0.960 

   0.39 100 0.965 0.92 0.959 0.965 0.965 

   0.59 100 0.965 0.963 0.966 0.965 0.965 

 0.14 0 0.14 1000 0.970 0.970 0.969 0.968 0.968 

   0.39 100 0.834 0.823 0.869 0.903 0.903 

   0.59 100 0.975 0.974 0.984 0.989 0.989 

  0.14 0 1000 0.971 0.971 0.973 0.973 0.973 

   0.14 200 0.895 0.891 0.899 0.912 0.912 

   0.39 100 0.961 0.957 0.971 0.980 0.980 

   0.59 100 0.995 0.994 0.994 0.995 0.995 

  0.39 0 100 0.849 0.836 0.874 0.895 0.895 

   0.14 100 0.975 0.972 0.980 0.988 0.988 

   0.39 50 0.803 0.792 0.817 0.867 0.867 

   0.59 50 0.861 0.854 0.867 0.885 0.885 

  0.59 0 100 0.984 0.982 0.982 0.987 0.987 

   0.14 100 0.992 0.992 0.992 0.996 0.996 

   0.39 50 0.851 0.840 0.856 0.880 0.880 

   0.59 50 0.883 0.878 0.860 0.890 0.890 

 0.39 0 0.14 1000 0.966 0.966 0.968 0.965 0.965 

   0.39 100 0.885 9,877 0.878 0.903 0.903 

   0.59 100 0.996 0.995 0.995 0.996 0.996 

  0.14 0 1000 0.972 0.971 0.971 0.972 0.972 

   0.14 200 0.909 0.908 0.914 0.927 0.927 

   0.39 100 0.980 0.979 0.976 0.983 0.983 

   0.59 50 0.918 0.907 0.989 0.942 0.942 

  0.39 0 100 0.879 0.875 0.881 0.899 0.899 

   0.14 100 0.979 0.979 0.980 0.985 0.985 
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Table 11  Empirical Power for Model 5 (Continue) 

Regression Coefficients Sample 

Size 

Test 

a1 a3 b1 b2 first second boot bc bca 

   0.39 50 0.920 0.914 0.921 0.947 0.947 

   0.59 50 0.966 0.965 0.963 0.976 0.976 

  0.59 0 100 0.993 0.993 0.992 0.994 0.994 

   0.14 50 0.924 0.915 0.919 0.942 0.941 

   0.39 50 0.962 0.956 0.953 0.967 0.967 

   0.59 50 0.969 0.967 0.968 0.977 0.977 

 0.59 0 0.14 1000 0.969 0.969 0.969 0.971 0.971 

   0.39 100 0.872 0.870 0.859 0.880 0.880 

   0.59 50 0.854 0.848 0.844 0.871 0.871 

  0.14 0 1000 0.977 0.977 0.975 0.971 0.971 

   0.14 200 0.90 0.905 0.905 0.915 0.915 

   0.39 100 0.980 0.9778 0.980 0.978 0.978 

   0.59 50 0.947 0.942 0.937 0.954 0.954 

  0.39 0 100 0.891 0.889 0.887 0.901 0.901 

   0.14 100 0.982 0.981 0.983 0.985 0.985 

   0.39 50 0.967 0.963 0.965 0.972 0.972 

   0.59 50 0.990 0.989 0.979 0.988 0.988 

  0.59 0 50 0.841 0.831 0.826 0.879 0.879 

   0.14 50 0.936 0.931 0.936 0.955 0.955 

   0.39 50 0.984 0.981 0.981 0.988 0.988 

   0.59 50 0.994 0.994 0.987 0.992 0.992 
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Table 12  Required Sample Sizes with 0.8 Empirical Power for Models 1-3 

Regression Coefficients Model 1 Model 2 Model 3 

Sample Size 

0.14 0 0.14 1040 1070 1040 

  0.39 460 460 460 

  0.59 440 430 440 

 0.14 0 1040 1060 1050 

  0.14 530 540 530 

  0.39 430 440 440 

  0.59 420 420 420 

 0.39 0 460 470 460 

  0.14 440 430 440 

  0.39 420 420 420 

  0.59 420 420 420 

 0.59 0 410 440 430 

  0.14 410 420 430 

  0.39 410 420 410 

  0.59 400 420 410 

0.39 0 0.14 750 850 800 

  0.39 130 150 140 

  0.59 90 100 90 

 0.14 0 740 840 780 

  0.14 220 240 230 

  0.39 100 110 100 

  0.59 80 80 80 

 0.39 0 130 150 140 

  0.14 100 110 100 

  0.39 80 80 80 

  0.59 70 70 70 

 0.59 0 90 100 90 

  0.14 80 80 80 

  0.39 70 70 70 

  0.59 60 70 70 

0.59 0 0.14 660 820 740 

  0.39 110 130 110 

  0.59 60 70 70 

 0.14 0 660 830 730 

      



53 
 

Table 12  Required Sample Sizes with 0.8 Empirical Power for Models 1-3 

(Continue) 

Regression Coefficients Model 1 Model 2 Model 3 

Sample Size 

  0.14 180 230 200 

      

  0.39 70 80 80 

  0.59 50 60 50 

 0.39 0 110 130 120 

  0.14 70 80 80 

  0.39 50 60 50 

  0.59 40 50 40 

 0.59 0 70 70 70 

  0.14 50 60 50 

  0.39 40 50 40 

   0.59 40 40 40 

Note. First column of regression coefficients is a1 in Model 1, b1 in Model 2 and a1 in 

Model 3; second column: b1 in Model 1, a1 in Model 2 and b1 in Model 3; third 

column: b2 in Model 1, a3 in Model 2 and b3 in Model 3. 
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Table 13 Required Sample Sizes with 0.8 Statistical Power for Models 4-5 

Regression Coefficients Model 

4 

Model  

5 

Regression Coefficients Model 

4 

Model 

5 

0 0.14 0 0.14 1220 1180 0.39 0 0.39 0 170 160 

   0.39 850 850    0.14 140 140 

   0.59 840 840    0.39 120 130 

  0.14 0 1240 1170    0.59 120 130 

   0.14 900 880   0.59 0 130 130 

   0.39 850 860    0.14 130 130 

   0.59 830 830    0.39 130 130 

  0.39 0 880 850    0.59 120 120 

   0.14 860 830  0.14 0 0.14 650 570 

   0.39 840 820    0.39 130 120 

   0.59 820 820    0.59 90 90 

  0.59 0 850 830   0.14 0 610 580 

   0.14 840 820    0.14 190 180 

   0.39 830 830    0.39 100 100 

   0.59 830 810    0.59 80 80 

 0.39 0 0.14 670 600   0.39 0 130 120 

   0.39 170 160    0.14 100 100 

   0.59 140 130    0.39 80 80 

  0.14 0 640 590    0.59 70 70 

   0.14 230 220   0.59 0 90 90 

   0.39 140 140    0.14 80 80 

   0.59 130 130    0.39 80 70 

  0.39 0 170 170    0.59 70 70 

   0.14 140 140  0.39 0 0.14 620 550 

   0.39 130 130    0.39 100 100 

   0.59 120 120    0.59 70 60 

  0.59 0 130 130   0.14 0 590 560 

   0.14 130 130    0.14 170 160 

   0.39 120 120    0.39 70 70 

   0.59 120 120    0.59 60 50 

 0.59 0 0.14 560 560   0.39 0 100 100 

   0.39 110 110    0.14 70 70 

   0.59 80 80    0.39 50 50 

  0.14 0 550 550    0.59 50 50 
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Table 13  Required Sample Sizes with 0.8 Statistical Power for Models 4-5  

(Continue) 

Regression Coefficients Model 

4 

Model  

5 

Regression Coefficients Model 

4 

Model 

5 

   0.14 170 170   0.59 0 70 60 

   0.39 90 90    0.14 60 50 

   0.59 70 70    0.39 50 50 

  0.39 0 120 110    0.59 50 40 

   0.14 90 90  0.59 0 0.14 580 530 

   0.39 70 70    0.39 100 90 

   0.59 60 60    0.59 60 50 

  0.59 0 80 80   0.14 0 580 520 

   0.14 70 70    0.14 160 150 

   0.39 70 60    0.39 70 60 

   0.59 60 60    0.59 50 50 

0.14 0 0 0.14 1220 1180   0.39 0 100 90 

   0.39 870 860    0.14 70 60 

   0.59 840 830    0.39 50 40 

  0.14 0 1230 1170    0.59 40 40 

   0.14 910 880   0.59 0 60 60 

   0.39 850 840    0.14 50 50 

   0.59 820 810    0.39 40 40 

  0.39 0 860 830    0.59 40 40 

   0.14 830 820  0 0 0.14 620 580 

   0.39 820 820    0.39 120 110 

   0.59 810 810    0.59 80 80 

  0.59 0 840 830   0.14 0 610 580 

   0.14 830 810    0.14 180 170 

   0.39 830 810    0.39 90 90 

   0.59 830 810    0.59 70 70 

 0.14 0 0.14 720 670 0.59  0.39 0 120 120 

   0.39 260 250    0.14 90 90 

   0.59 240 230    0.39 70 70 

  0.14 0 720 670    0.59 60 70 

   0.14 320 300   0.59 0 80 80 

   0.39 230 230    0.14 70 70 

   0.59 230 220    0.39 60 70 

  0.39 0 260 250    0.59 60 60 
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Table 13  Required Sample Sizes with 0.8 Statistical Power for Models 4-5 

 (Continue) 

Regression Coefficients Model 

4 

Model  

5 

Regression Coefficients Model 

4 

Model 

5 

   0.14 230 230  0.14 0 0.14 610 570 

   0.39 220 220    0.39 110 100 

   0.59 210 210    0.59 70 70 

  0.59 0 230 230   0.14 0 600 560 

   0.14 230 220    0.14 170 160 

   0.39 220 210    0.39 80 70 

   0.59 220 210    0.59 60 60 

 0.39 0 0.14 630 560   0.39 0 110 100 

   0.39 130 120    0.14 80 70 

   0.59 90 90    0.39 60 60 

  0.14 0 630 560    0.59 50 50 

   0.14 200 180   0.59 0 70 70 

   0.39 100 90    0.14 60 60 

   0.59 80 80    0.39 50 50 

  0.39 0 130 120    0.59 50 50 

   0.14 100 100  0.39 0 0.14 590 540 

   0.39 80 80    0.39 100 90 

   0.59 80 80    0.59 60 60 

  0.59 0 90 90   0.14 0 600 550 

   0.14 80 80    0.14 160 150 

   0.39 70 70    0.39 0 60 

   0.59 70 70    0.59 50 50 

 0.59 0 0.14 600 540   0.39 0 100 90 

   0.39 110 100    0.14 60 60 

   0.59 70 70    0.39 50 40 

  0.14 0 610 540    0.59 40 40 

   0.14 170 160   0.59 0 60 60 

   0.39 80 70    0.14 50 50 

   0.59 60 60    0.39 40 40 

  0.39 0 110 100    0.59 40 40 

   0.14 80 70  0.59 0 0.14 580 550 

   0.39 60 60    0.39 90 90 

   0.59 50 50    0.59 50 50 

  0.59 0 70 70   0.14 0 570 540 
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Table 13  Required Sample Sizes with 0.8 Statistical Power for Models 4-5  

(Continue) 

Regression Coefficients Model 

4 

Model  

5 

Regression Coefficients Model 

4 

Model 

5 

   0.14 60 60    0.14 160 150 

   0.39 50 50    0.39 60 60 

   0.59 50 50    0.59 40 40 

0.39 0 0 0.14 650 600   0.39 0 90 90 

   0.39 170 160    0.14 60 60 

   0.59 130 130    0.39 40 40 

  0.14 0 650 600    0.59 30 30 

   0.14 240 220   0.59 0 50 50 

   0.39 140 140    0.14 40 40 

   0.59 130 130    0.39 40 30 

         0.59 30 50 

Note. First and 7th columns is coefficient a1, second and 8th is coefficient a3 , third 

and 9th is coefficient b1 in Models 4-5; 4th and 10th is coefficient b3 and b2 for Model 

4 and 5, respectively. 
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Appendix B 

R code of Model 1 

sample.size=c(50,100,200,500,1000);  

[2] c=0; 

[3] a1=0.14;     

[4] b1=0.14; 

[5] b2=0.14; 

[6] x=1;         

alpha=0.05;           

nrep=1000;     

nboot=1000; 

p1= rep(0,nrep); 

p2=rep(0,nrep); 

Z1= rep(0,nrep); 

Z2=rep(0,nrep); 

percent= rep(0,nboot); 

bc= rep(0,nboot); 

bca=rep(0,nboot); 

output=array(rep(0),c(5,5)); 

for(t in 1:5) 

{  

n=sample.size[t]; 

for(i in 1:nrep) 

{  

[23] X=rnorm(n,0,1); 

r1=rnorm(n,0,1); 

r2=rnorm(n,0,1); 

[26] M=a1*X+r1; 

[27] Y=b1*M+b2*X*M+c*X+r2;     

[28] MVmodel=lm(M~X); 

[29] fit.a1=summary(MVmodel)$coefficients[2,1]; 

[30] SEa1=summary(MVmodel)$coefficients[2,2]; 

[31] DVmodel=lm(Y~M+X+X*M); 

[32] fit.b1=summary(DVmodel)$coefficients[2,1]; 

[33] SEb1=summary(DVmodel)$coefficients[2,2]; 
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[34] fit.b2=summary(DVmodel)$coefficients[4,1]; 

[35] SEb2=summary(DVmodel)$coefficients[4,2]; 

[36] co=vcov(DVmodel); 

[37] SEb12=co[2,4]; 

[38] PE=fit.a1*(fit.b1+fit.b2*x);   # Point Estaimtor 

[39]se1=sqrt(((fit.b1+fit.b2*x)^2)*SEa1^2+(fit.a1^2)* 

(SEb1^2+2*SEb12*x+(SEb2^2)*(x^2)));   # first-order delta method    

[40]se2=sqrt(((fit.b1+fit.b2*x)^2)*SEa1^2+(fit.a1^2+SEa1^2)* 

(SEb1^2+2*SEb12*x+(SEb2^2)*(x^2)));   # second-order delta method 

 

z1=PE/se1; 

z2=PE/se2; 

Z1[i]=z1; 

Z2[i]=z2;   

 

# first 

if(Z1[i]<qnorm(alpha/2)|Z1[i]>qnorm(1-(alpha/2))) 

{ 

p1[i]=1; 

} 

else 

{ 

p1[i]=0; 

} 

 

# second 

if(Z2[i]<qnorm(alpha/2)|Z2[i]>qnorm(1-(alpha/2))) 

{    

p2[i]=1; 

} 

else 

{ 

p2[i]=0; 

} 

 

# bootstrap 

boot.PE=rep(0,nrep); 

for(j in 1:nboot) 
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{ 

r=sample(1:n,n,replace=T); 

Xnew=X[r]; 

Mnew=M[r]; 

Ynew=Y[r]; 

boot.MVmodel=lm(Mnew~Xnew); 

boot.a1=summary(boot.MVmodel)$coefficients[2,1]; 

boot.DVmodel=lm(Ynew~Mnew+Xnew+Xnew*Mnew); 

boot.b1=summary(boot.DVmodel)$coefficients[2,1]; 

boot.b2=summary(boot.DVmodel)$coefficients[4,1]; 

boot.PE[j]=boot.a1*(boot.b1+boot.b2*x);           

}   

 

# Percentile Bootstrap 

sorting=sort(boot.PE); 

lower=round((alpha/2)*nboot); 

upper=round((1-(alpha/2))*nboot); 

if(lower==0) 

{ 

lower=1; 

} 

else 

{ 

lower=lower; 

} 

boot.lower=sorting[lower];  

boot.upper=sorting[upper]; 

if(boot.lower<=0 && boot.upper>=0)      

{ 

percent[i]=0; 

} 

else 

{      

percent[i]=1; 

} 

 

 

# Bias Corrected 
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bias=rep(0,nboot); 

for(k in 1:nboot) 

{ 

if(boot.PE[k]<=PE) 

{ 

bias[k]=1; 

} 

else 

{ 

bias[k]=0; 

} 

} 

z0=mean(bias); 

lower.limit=round((pnorm(2*qnorm(z0)+qnorm(alpha/2)))*nboot); 

upper.limit=round((pnorm(2*qnorm(z0)+qnorm(1-(alpha/2))))*nboot); 

if(lower.limit==0) 

{ 

lower.limit=1; 

} 

else 

{ 

lower.limit=lower.limit; 

} 

bias.lower=sorting[lower.limit]; 

bias.upper=sorting[upper.limit]; 

if(bias.lower<=0 && bias.upper>=0) 

{ 

bc[i]=0; 

} 

else 

{ 

bc[i]=1; 

} 

# Bias-Corrected Acceleration    

bca.PE=rep(0,n); 

for(q in 1:n) 

{ 

bca.X=X[-q]; 
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bca.M=M[-q]; 

bca.Y=Y[-q]; 

bca.MVmodel=lm(bca.M~bca.X); 

bca.a1=summary(bca.MVmodel)$coefficients[2,1];  

bca.DVmodel=lm(bca.Y~bca.M+bca.X+bca.X*bca.M); 

bca.b1=summary(bca.DVmodel)$coefficients[2,1]; 

bca.b2=summary(bca.DVmodel)$coefficients[4,1]; 

bca.PE[q]=bca.a1*(bca.b1+bca.b2*x);    

}     

mean.bca.PE=mean(bca.PE);  

a=mean.bca.PE-bca.PE; 

acce=sum(a^3)/(6*((sum(a^2))^(3/2)));    

bca.lower.limit=round((pnorm(qnorm(z0)+(qnorm(z0)+qnorm(alpha/2))/(1-acce*(qn

orm(z0)+qnorm(alpha/2)))))*nboot);    

bca.upper.limit=round((pnorm(qnorm(z0)+(qnorm(z0)+qnorm(1-alpha/2))/(1-acce*(

qnorm(z0)+qnorm(1-alpha/2)))))*nboot); 

if(bca.lower.limit==0) 

{ 

bca.lower.limit=1; 

} 

else 

{ 

bca.lower.limit=lower.limit; 

} 

bca.lower=sorting[bca.lower.limit]; 

bca.upper=sorting[bca.upper.limit]; 

if(bca.lower<=0 && bca.upper>=0) 

{ 

bca[i]=0; 

} 

else 

{ 

bca[i]=1; 

} 

} 

output[1,t]=mean(p1); 

output[2,t]=mean(p2); 

output[3,t]=mean(percent); 
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output[4,t]=mean(bc); 

output[5,t]=mean(bca);  

} 

output; 

 

Note. The values for relevant coefficients were varied and those relevant coefficients 

values included 0, 0.14, 0.39, and 0.59. Other models we just change some parts that 

we mark. 

 

Model 2 

[2] a2=1; 

c1=0; 

c2=0; 

c3=0;  

[3] b1=0.14;     

[4] a1=0.14; 

[5] a3=0.14; 

[6] w=1; 

[23] X=rnorm(n,0,1); 

W=rnorm(n,0,1); 

[26] M=a1*X+a2*W+a3*X*W+r1; 

[27] Y=b1*M+c1*X+c2*W+c3*X*W+r2;     

[28] MVmodel=lm(M~X+W+X*W); 

[29] fit.a1=summary(MVmodel)$coefficients[2,1]; 

[30] SEa1=summary(MVmodel)$coefficients[2,2]; 

[31] fit.a3=summary(MVmodel)$coefficients[4,1]; 

[32] SEa3=summary(MVmodel)$coefficients[4,2]; 

[33] co=vcov(MVmodel); 

[34] SEa13=co[2,4];  

[35] DVmodel=lm(Y~M+X+W+X*W); 

[36] fit.b1=summary(DVmodel)$coefficients[2,1]; 

[37] SEb1=summary(DVmodel)$coefficients[2,2]; 

[38] PE=(fit.a1+fit.a3*w)*fit.b1;  # Point Estimate 

[39] se1=sqrt(((fit.a1+fit.a3*w)^2)*SEb1^2+(fit.b1^2)*(SEa1^2+2*SEa13*w 

+(SEa3^2)*(w^2)));   

[40]se2=sqrt(((fit.a1+fit.a3*w)^2)*SEb1^2+(fit.b1^2+SEb1^2)* 

(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2)));    
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Model 3 

[2] b2=1; 

c =0;  

[3] a1=0.14;     

[4] b1=0.14; 

[5] b3=0.14; 

[6] w=1; 

[23] X=rnorm(n,0,1); 

W=rnorm(n,0,1); 

[26] M=a1*X+r1; 

[27] Y=b1*M+b2*W+b3*M*W+c*X+r2;    

[28] MVmodel=lm(M~X); 

[29] fit.a1=summary(MVmodel)$coefficients[2,1]; 

[30] SEa1=summary(MVmodel)$coefficients[2,2]; 

[31] DVmodel=lm(Y~M+W+X+M*W); 

[32] fit.b1=summary(DVmodel)$coefficients[2,1];  

[33] SEb1=summary(DVmodel)$coefficients[2,2]; 

[34] fit.b3=summary(DVmodel)$coefficients[5,1];;  

[35] SEb3=summary(DVmodel)$coefficients[5,2]; 

[36] co=vcov(DVmodel); 

[37] SEb13=co[2,5]; 

[38] PE=fit.a1*(fit.b1+fit.b3*w);   

[39] se1=sqrt(((fit.b1+fit.b3*w)^2)*(SEa1^2)+(fit.a1^2)* 

(SEb1^2+2*SEb13*w+(SEb3^2)*(w^2)));    

[40] se2=sqrt(((fit.b1+fit.b3*w)^2)*(SEa1^2) 

+(fit.a1^2+SEa1^2)*(SEb1^2+2*SEb13*w+(SEb3^2)*(w^2)));   
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Model 4 

[2] a2=1; 

b2=1; 

c1=0; 

c2=0; 

c3=0; 

[3] a1=0.14;     

[4] a3=0.14; 

[5] b1=0.14; 

   b3=0.14 

[6] w=1; 

   z=1; 

[23] X=rnorm(n,0,1); 

W=rnorm(n,0,1); 

Z=rnorm(n,0,1); 

[26] M=a1*X+a2*W+a3*X*W+r1; 

[27] Y=b1*M+b2*Z+b3*M*Z+c1*X+c2*W+c3*X*W+r2;    

[28] MVmodel=lm(M~X+W+X*W); 

[29] fit.a1=summary(MVmodel)$coefficients[2,1]; 

[30] SEa1=summary(MVmodel)$coefficients[2,2]; 

[31] fit.a3=summary(MVmodel)$coefficients[4,1]; 

[32] SEa3=summary(MVmodel)$coefficients[4,2];  

[33] a13=vcov(MVmodel);  

[34] SEa13=a13[2,4]; 

[35] DVmodel=lm(Y~M+Z+X+W+M*Z+X*W); 

[36] fit.b1=summary(DVmodel)$coefficients[2,1]; 

[37] SEb1=summary(DVmodel)$coefficients[2,2]; 

    fit.b3=summary(DVmodel)$coefficients[6,1]; 

    SEb3=summary(DVmodel)$coefficients[6,2]; 

    b13=vcov(DVmodel); 

    SEb13=b13[2,6]; 

[38] PE=(fit.a1+fit.a3*w)*(fit.b1+fit.b3*z);   

[39] se1=sqrt(((fit.a1+fit.a3*w)^2)*(SEb1^2+2*SEb13*z+(SEb3^2)*(z^2)) 

+((fit.b1+fit.b3*z)^2)*(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2)));     

[40] se2=sqrt(((fit.a1+fit.a3*w)^2)*(SEb1^2+2*SEb13*z+(SEb3^2)*(z^2)) 

+((fit.b1+fit.b3*z)^2)*(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2)) 

+(SEb1^2+2*SEb13*z+(SEb3^2)*(z^2))*(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2))); 
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Model 5 

[2] a2 =1; 

c1=0; 

c2=0; 

c3=0; 

[3] a1=0.14;     

[4] a3=0.14; 

[5] b1=0.14; 

   b2=0.14 

[6] w=1; 

[23] X=rnorm(n,0,1); 

W=rnorm(n,0,1); 

[26] M=a1*X+a2*W+a3*X*W+r1; 

[27] Y=b1*M+b2*M*W+c1*X+c2*W+c3*X*W+r2;  

[28] MVmodel=lm(M~X+W+X*W); 

[29] fit.a1=summary(MVmodel)$coefficients[2,1]; 

[30] SEa1=summary(MVmodel)$coefficients[2,2]; 

[31] fit.a3=summary(MVmodel)$coefficients[4,1]; 

[32] SEa3=summary(MVmodel)$coefficients[4,2];  

[33] a13=vcov(MVmodel);  

[34] SEa13=a13[2,4]; 

[35] DVmodel=lm(Y~M+X+W+M*W+X*W); 

[36] fit.b1=summary(DVmodel)$coefficients[2,1]; 

[37] SEb1=summary(DVmodel)$coefficients[2,2]; 

    fit.b2=summary(DVmodel)$coefficients[5,1]; 

    SEb2=summary(DVmodel)$coefficients[5,2]; 

    b12=vcov(DVmodel); 

    SEb12=b13[2,5]; 

[38] PE=(fit.a1+fit.a3*w)*(fit.b1+fit.b2*w);  

[39] se1=sqrt((fit.b1+fit.b2*w)^2*(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2)) 

+((fit.a1+fit.a3*w)^2)*(SEb1^2+2*SEb12*w+(SEb2^2)*(w^2)));    

[40] se2=sqrt((fit.b1+fit.b2*w)^2*(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2)) 

+((fit.a1+fit.a3*w)^2)*(SEb1^2+2*SEb12*w+(SEb2^2)*(w^2)) 

+(SEa1^2+2*SEa13*w+(SEa3^2)*(w^2))*(SEb1^2+2*SEb12*w+(SEb2^2)*(w^2)))

;    
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Appendix C  

Point Estimates of Moderated Mediation Effects 

The indirect effect of X on Y in Models 1-5 can be easily derived using a matrix 

algebra approach described by Sobel (1986) and Bollen (1987, 1989). Let B is a 

matrix which the rows and columns are correspond to all the variables in the 

regression equations. This B matrix may be collapsed by nothing that interaction term 

is an exact function of variables already represented, B*. The indirect effects of X on 

Y can be obtained using the formula: 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗ 

The indirect effects may also be obtained by the chain rule from elementary calculus 

(Stolzenberg, 1980; Preacher et al., 2007). 

Model 1 

(a) Using a matrix algebra approach, 

𝐁 =

𝑋
𝑋𝑀
𝑀
𝑌

[

0 0 0 0
0 0 0 0
𝑎1 0 0 0

𝑐′ 𝑏2 𝑏1 0

] 

𝐁∗ =
𝑋
𝑀
𝑌

[

0 0 0
𝑎1 0 0

𝑐′ + 𝑏2𝑀 𝑏1 + 𝑏2𝑋 0
] 

(𝐈 − 𝐁∗)−𝟏 = [
1 0 0

−𝑎 1 0
𝑎1(𝑏1 + 𝑏2𝑋) − (𝑐′ + 𝑏2𝑀) 𝑏1 + 𝑏2𝑋 0

] 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗ = [
0 0 0
0 0 0

𝑎1(𝑏1 + 𝑏2𝑋) 0 0
] 



68 
 

The point estimate of the indirect effect of X on Y is 𝑓(�̂�|𝑋) = �̂�1(�̂�1 + �̂�2𝑋). 

(b) Using chain rule, 

𝜕𝑌

𝜕𝑋
=

𝜕𝑌

𝜕𝑀
∙
𝜕𝑀

𝜕𝑋
= (𝑏1 + 𝑏2X) ∙ 𝑎1 

 

Model 2 

(a) Using a matrix algebra approach, 

𝐁 =

𝑋
𝑊
𝑋𝑊
𝑀
𝑌 [

 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
𝑎1 𝑎2 𝑎3 0 0

𝑐1
′ 𝑐2

′ 𝑐3
′ 𝑏1 0]

 
 
 
 

 

𝐁∗ =

𝑋
𝑊
𝑀
𝑌

[

0 0 0 0
0 0 0 0

𝑎1 + 𝑎3𝑊 𝑎2 + 𝑎3𝑋 0 0

𝑐1
′ + 𝑐3

′𝑊 𝑐2
′ + 𝑐3

′𝑋 𝑏1 0

] 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗ = [

0 0 0 0
0 0 0 0
0 0 0 0

𝑏1(𝑎1 + 𝑎3𝑊) 𝑏1(𝑎2 + 𝑎3𝑋) 0 0

] 

The point estimate of Model 2 is 𝑓(�̂�|𝑊) = 𝑏1(𝑎1 + 𝑎3𝑊) 

(b) Using chain rule, 

𝜕𝑌

𝜕𝑋
=

𝜕𝑌

𝜕𝑀
∙
𝜕𝑀

𝜕𝑋
= (𝑎1 + 𝑎3W) ∙ 𝑏1 
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Model 3 

(a) Using a matrix algebra approach, 

𝐁 =

𝑋
𝑀
𝑊

𝑀𝑊
𝑌 [

 
 
 
 
0 0 0 0 0
𝑎1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
𝑐′ 𝑏1 𝑏2 𝑏3 0]

 
 
 
 

 

𝐁∗ =

𝑋
𝑀
𝑊
𝑌

[

0 0 0 0
𝑎1 0 0 0
0 0 0 0
𝑐′ 𝑏1 + 𝑏3𝑊 𝑏2 + 𝑏3𝑀 0

] 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗ = [

0 0 0 0
0 0 0 0
0 0 0 0

𝑎1(𝑏1 + 𝑏3𝑊) 0 0 0

] 

The point estimate of Model 2 is 𝑓(�̂�|𝑊) = 𝑎1(𝑏1 + 𝑏3𝑊) 

(b) Using chain rule, 

𝜕𝑌

𝜕𝑋
=

𝜕𝑌

𝜕𝑀
∙
𝜕𝑀

𝜕𝑋
= (𝑏1 + 𝑏3W) ∙ 𝑎1 
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Model 4 

(a) Using a matrix algebra approach, 

𝐁 =

𝑋
𝑊
𝑋𝑊
𝑀
𝑍

𝑀𝑍
𝑌 [

 
 
 
 
 
 
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
𝑎1 𝑎2 𝑎3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
𝑐1

′ 𝑐2
′ 𝑐3

′ 𝑏1 𝑏2 𝑏3 0]
 
 
 
 
 
 

 

 

𝐁∗ =

𝑋
𝑊
𝑀
𝑍
𝑌 [

 
 
 
 

0 0 0 0 0
0 0 0 0 0

𝑎1 + 𝑎3W 𝑎2 + 𝑎3X 0 0 0
0 0 0 0 0

𝑐1
′ + 𝑐3

′𝑊 𝑐2
′ + 𝑐3

′𝑋 𝑏1 + 𝑏3Z 𝑏2 + 𝑏3M 0]
 
 
 
 

 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗

=

[
 
 
 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(𝑎1 + 𝑎3W)(𝑏1 + 𝑏3Z) (𝑎2 + 𝑎3X)(𝑏1 + 𝑏3Z) 0 0 0]
 
 
 
 

 

 

The point estimate of Model 2 is 𝑓(�̂�|𝑊, 𝑍) = (𝑎1 + 𝑎3W)(𝑏1 + 𝑏3Z) 

(b) Using chain rule, 

𝜕𝑌

𝜕𝑋
=

𝜕𝑌

𝜕𝑀
∙
𝜕𝑀

𝜕𝑋
= (𝑏1 + 𝑏3Z) ∙ (𝑎1 + 𝑎3W) 
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Model 5 

(a) Using a matrix algebra approach, 

𝐁 =

𝑋
𝑊
𝑋𝑊
𝑀

𝑀𝑊
𝑌 [

 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑎1 𝑎2 𝑎3 0 0 0
0 0 0 0 0 0
𝑐1

′ 𝑐2
′ 𝑐3

′ 𝑏1 𝑏2 0]
 
 
 
 
 

 

 

𝐁∗ =

𝑋
𝑊
𝑀
𝑌

[

0 0 0 0
0 0 0 0

𝑎1 + 𝑎3W 𝑎2 + 𝑎3X 0 0

𝑐1
′ + 𝑐3

′𝑊 𝑐2
′ + 𝑐3

′𝑋 + 𝑏2𝑀 𝑏1 + 𝑏2W 0

] 

 

𝐅 = (𝐈 − 𝐁∗)−1 − 𝐈 − 𝐁∗

=

[
 
 
 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

(𝑎1 + 𝑎3W)(𝑏1 + 𝑏2W) (𝑎2 + 𝑎3X)(𝑏1 + 𝑏2W) 0 0 0]
 
 
 
 

 

 

The point estimate of Model 2 is 𝑓(�̂�|𝑊) = (𝑎1 + 𝑎3W)(𝑏1 + 𝑏3W) 

(b) Using chain rule, 

𝜕𝑌

𝜕𝑋
=

𝜕𝑌

𝜕𝑀
∙
𝜕𝑀

𝜕𝑋
= (𝑏1 + 𝑏2W) ∙ (𝑎1 + 𝑎3W) 
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Appendix D 

First- and Second-Order Variance Approximations 

Let �̂� is a column vector of the sample coefficients involved in an indirect effect. 

Let 𝛍 is a column vector of the means of the regression coefficients, i.e., 𝛍 = E[�̂�]. 

Let 𝑓(�̂�) is the effect of interest, a differentiable function of the coefficients in �̂�. 

Let �̂�(�̂�) is the covariance matrix of �̂�. 

Let 𝐃 = 𝜕𝜽𝑓(�̂�) is the gradient of 𝑓(�̂�) evaluated at 𝛍. 

Let 𝐇 = 𝜕2
𝜽𝑓(�̂�) is the Hessian of 𝑓(�̂�) evaluated at 𝛍. 

The gradient and Hessian are, respectively, matrices of first and second partial 

derivatives of 𝑓(�̂�) with respect to all relevant free parameters. 

Because var[𝑓(�̂�)] = E[𝑓2(�̂�)] − E2[𝑓(�̂�)], 

𝑓(�̂�) ≈ 𝑓(𝛍) + 𝐃′(�̂� − 𝛍) +
1

2
(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)  (by Taylor’s theorem) 

E[𝑓(�̂�)] ≈ E [𝑓(𝛍) + 𝐃′(�̂� − 𝛍) +
1

2
(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)] 

= 𝑓(𝛍) +
1

2
E *(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)+ 

= 𝑓(𝛍) +
1

2
𝑡𝑟{𝐇�̂�(�̂�)} 

𝑓2(�̂�) ≈  .𝑓(𝛍) + 𝐃′(�̂� − 𝛍) +
1

2
(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)/

2

 

= 𝑓2(𝛍) + 𝐃′(�̂� − 𝛍)(�̂� − 𝛍)
′
𝐃 +

𝟏

𝟒
(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍) 

+ 2𝑓(𝛍)𝐃′(�̂� − 𝛍) + 𝑓(𝛍)(�̂� − 𝛍)
′
𝐇(�̂� − 𝛍) 

+ 𝐃′(�̂� − 𝛍)(�̂� − 𝛍)
′
𝐇(�̂� − 𝛍) 
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E[𝑓2(�̂�)] ≈ E[𝑓2(𝛍) + 𝐃′(�̂� − 𝛍)(�̂� − 𝛍)
′
𝐃

+
1

4
(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍) + 2𝑓(𝛍)𝐃′(�̂� − 𝛍)

+ 𝑓(𝛍)(�̂� − 𝛍)
′
𝐇(�̂� − 𝛍) + 𝐃′(�̂� − 𝛍)(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)] 

         = 𝑓2(𝛍) + 𝐃′�̂�(�̂�)𝐃 +
1

4
E *(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)(�̂� − 𝛍)

′
𝐇(�̂� − 𝛍)+ 

+ 𝑓(𝛍)𝑡𝑟{𝐇�̂�(�̂�)} 

= 𝑓2(𝛍) + 𝐃′�̂�(�̂�)𝐃 +
1

4
(𝑡𝑟{𝐇�̂�(�̂�)})

2
+

1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

+ 𝑓(𝛍)𝑡𝑟{𝐇�̂�(�̂�)} 

 

var[𝑓(�̂�)] = E[𝑓2(�̂�)] − E2[𝑓(�̂�)]  

= 𝑓2(𝛍) + 𝐃′�̂�(�̂�)𝐃 +
1

4
(𝑡𝑟{𝐇�̂�(�̂�)})

2
+

1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} +  𝑓(𝛍)𝑡𝑟{𝐇�̂�(�̂�)} 

−( 𝑓(𝛍) +
1

2
𝑡𝑟{𝐇�̂�(�̂�)})

2

 

= 𝑓2(𝛍) + 𝐃′�̂�(�̂�)𝐃 +
1

4
(𝑡𝑟{𝐇�̂�(�̂�)})

2
+

1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} +  𝑓(𝛍)𝑡𝑟{𝐇�̂�(�̂�)} 

   −𝑓2(𝛍) − 𝑓(𝛍)𝑡𝑟{𝐇�̂�(�̂�)} −
1

4
(𝑡𝑟{𝐇�̂�(�̂�)})

2
 

= 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

𝐃′�̂�(�̂�)𝐃 is the first-order part and 
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} is the second-order part. 
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Simple Mediation 

�̂� = [𝑎 𝑏]′   𝑓(�̂�) = �̂��̂�    D′ = [�̂� �̂�] 

H = *
0 1
1 0

+   �̂�(�̂�) = [
𝑠�̂�

2 0

0 𝑠�̂�
2] 

var[𝑓(�̂�)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= [�̂� �̂�] [
𝑠�̂�

2 0

0 𝑠�̂�
2] [�̂�

�̂�
] +

1

2
(2𝑠�̂�

2𝑠�̂�
2) 

= �̂�2𝑠�̂�
2 + �̂�𝑠�̂�

2 + 𝑠�̂�
2𝑠�̂�

2 

 

 

Model 1 

�̂� = [�̂�1 �̂�1 �̂�2]
′   𝑓(�̂�|𝑋) = �̂�1(�̂�1 + �̂�2𝑋)   D′ = [�̂�1 + �̂�2𝑋 �̂�1 �̂�1𝑋] 

H = [
0 1 𝑋
1 0 0
𝑋 0 0

]     �̂�(�̂�) = [

𝑠�̂�1

2 0 0

0 𝑠�̂�1

2 𝑠�̂�1,�̂�2

0 𝑠�̂�1,�̂�2
𝑠�̂�2

2

] 

var[𝑓(�̂�|𝑋)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= [(�̂�1 + �̂�2𝑋)𝑠�̂�1

2 �̂�1𝑠�̂�1

2 + �̂�1𝑠�̂�1,�̂�2
𝑋 �̂�1𝑠�̂�1,�̂�2

+ �̂�1𝑠�̂�2

2
] [

�̂�1 + �̂�2𝑋
�̂�1

�̂�1𝑋

] 

+ 𝑠�̂�1

2 𝑠�̂�1

2 + 2𝑠�̂�1

2 𝑠�̂�1,�̂�2
𝑋 + 𝑠�̂�1

2 𝑠�̂�2

2 𝑋2 

= (�̂�1 + �̂�2𝑋)2𝑠�̂�1

2 + �̂�1
2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�2
𝑋 + 𝑠�̂�2

2 𝑋2) 

+ 𝑠�̂�1

2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�2
𝑋 + 𝑠�̂�2

2 𝑋2) 

= (�̂�1 + �̂�2𝑋)2𝑠�̂�1

2 + (�̂�1
2 + 𝑠�̂�1

2 )(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�2
𝑋 + 𝑠�̂�2

2 𝑋2) 
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Model 2 

�̂� = [�̂�1 �̂�3 �̂�1]
′   𝑓(�̂�|𝑊) = �̂�1(�̂�1 + �̂�3𝑊)   D′ = [�̂�1 �̂�1𝑊 �̂�1 + �̂�3𝑊] 

H = [
0 0 1
0 0 𝑊
1 𝑊 0

]    �̂�(�̂�) = [

𝑠�̂�1

2 𝑠�̂�1,�̂�3
0

𝑠�̂�1,�̂�3
𝑠�̂�3

2 0

0 0 𝑠�̂�1

2

] 

var[𝑓(�̂�|𝑋)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= [�̂�1𝑠�̂�1

2 + �̂�1𝑠�̂�1,�̂�3
𝑊 �̂�1𝑠�̂�1,�̂�3

+ �̂�1𝑠�̂�3

2 𝑊 𝑠�̂�1

2 (�̂�1 + �̂�3𝑊)] [

�̂�1

�̂�1𝑊
�̂�1 + �̂�3𝑊

] 

+𝑠�̂�1

2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

= (�̂�1 + �̂�3𝑊)2𝑠�̂�1

2 + �̂�1
2
(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

+𝑠�̂�1

2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

= (�̂�1 + �̂�3𝑊)2𝑠�̂�1

2 + (�̂�1
2
+ 𝑠�̂�1

2 )(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

 

Model 3 

�̂� = [�̂�1 �̂�1 �̂�3]
′    𝑓(�̂�|𝑊) = �̂�1(�̂�1 + �̂�3𝑊)   D′ = [�̂�1 + �̂�3𝑊 �̂�1 �̂�1𝑊] 

H = [
0 1 𝑊
1 0 0
𝑊 0 0

]     �̂�(�̂�) = [

𝑠�̂�1

2 0 0

0 𝑠�̂�1

2 𝑠�̂�1,�̂�3

0 𝑠�̂�1,�̂�3
𝑠�̂�3

2

] 

var[𝑓(�̂�|𝑋)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= [𝑠�̂�1

2 (�̂�1 + �̂�3𝑊) �̂�1𝑠�̂�1

2 + �̂�1𝑠�̂�1,�̂�3
𝑊 �̂�1𝑠�̂�1,�̂�3

+ �̂�1𝑠�̂�3

2 𝑊] 

+ 𝑠�̂�1

2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 
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= (�̂�1 + �̂�3𝑊)2𝑠�̂�1

2 + �̂�1
2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

+𝑠�̂�1

2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

= (�̂�1 + �̂�3𝑊)2𝑠�̂�1

2 + (�̂�1
2 + 𝑠�̂�1

2 )(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

 

 

Model 4 

�̂� = [�̂�1 �̂�3 �̂�1 �̂�3]
′   𝑓(�̂�|𝑊, 𝑍) = (�̂�1 + �̂�3𝑊)(�̂�1 + �̂�3𝑍) 

D′ = [�̂�1 + �̂�3𝑍 �̂�1𝑊 + �̂�3𝑊𝑍 �̂�1 + �̂�3𝑊 �̂�1𝑍 + �̂�3𝑊𝑍] 

H = [

0 0 1 𝑍
0 0 𝑊 𝑊𝑍
1 𝑊 0 0
𝑍 𝑊𝑍 0 0

]   �̂�(�̂�) =

[
 
 
 
 
 

𝑠�̂�1

2 𝑠�̂�1,�̂�3
0 0

𝑠�̂�1,�̂�3
𝑠�̂�3

2 0 0

0 0 𝑠�̂�1

2 𝑠�̂�1,�̂�3

0 0 𝑠�̂�1,�̂�3
𝑠�̂�3

2
]
 
 
 
 
 

 

var[𝑓(�̂�|𝑋)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= (�̂�1 + �̂�3𝑊)2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑍 + 𝑠�̂�3

2 𝑍2) 

+(�̂�1 + �̂�3𝑍)
2
(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

+ (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑍 + 𝑠�̂�3

2 𝑍2) (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 
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Model 5 

�̂� = [�̂�1 �̂�3 �̂�1 �̂�2]
′   𝑓(�̂�|𝑊) = (�̂�1 + �̂�3𝑊)(�̂�1 + �̂�2𝑊) 

D′ = [�̂�1 + �̂�2𝑊 �̂�1𝑊 + �̂�2𝑊
2 �̂�1 + �̂�3𝑊 �̂�1𝑊 + �̂�3𝑊

2] 

H = [

0 0 1 𝑊
0 0 𝑊 𝑊2

1 𝑊 0 0
𝑊 𝑊2 0 0

]   �̂�(�̂�) =

[
 
 
 
 
 

𝑠�̂�1

2 𝑠�̂�1,�̂�3
0 0

𝑠�̂�1,�̂�3
𝑠�̂�3

2 0 0

0 0 𝑠�̂�1

2 𝑠�̂�1,�̂�2

0 0 𝑠�̂�1,�̂�2
𝑠�̂�2

2
]
 
 
 
 
 

 

var[𝑓(�̂�|𝑋)] ≈ 𝐃′�̂�(�̂�)𝐃 +
1

2
𝑡𝑟 {(𝐇�̂�(�̂�))

𝟐

} 

= (�̂�1 + �̂�2𝑊)
2
(𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) 

+ (�̂�1 + �̂�3𝑊)2 (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�2
𝑊 + 𝑠�̂�2

2 𝑊2) 

+ (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�3
𝑊 + 𝑠�̂�3

2 𝑊2) (𝑠�̂�1

2 + 2𝑠�̂�1,�̂�2
𝑊 + 𝑠�̂�2

2 𝑊2) 

 


