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A study of some different concepts of
symmetry on the real line

Advisor: Wen-Jang Huang
Department of Applied Mathematics
National University of Kaohsiung

Student: Hui-Yi Teng
Institute of Statistics
National University of Kaohsiung

ABSTRACT

Recently, different concepts of symmetry on R* such as R-symmetry, log-symmetry,
and doubly symmetry are studied. Analogue concept and their properties of these sym-
metries on R will be studied in this work. Based on skewing representation and previous
studies, characterizations of doubly symmetry on R will be given. Among others, some
interesting examples of the so-called I-symmetry, that is the analogue of log-symmetry on
R, will also be presented.

Key words and phrases: R-symmetry; log-symmetry; I-symmetry; doubly symmetry;
skewing representation; characterization.
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1 Introduction

A random variable (r.v.) X is said to be symmetric about a constant pu, if X — p and p — X
have the same distribution, denote it by X — u 4 pw—X. If p =0, we simply say X is
symmetric. Recently, different concepts of symmetry on RT are introduced and investigated.
Mudholkar and Wang (2007) gave the definition of R-symmetric distribution on R*. According
to their definition, a positive r.v. X with probability density function (p.d.f.) fx is said to be
R-symmetric about the R-center 0, where 6 > 0, if fx(6z) = fx (0/x), x > 0. Earlier in 1965,
Seshadri studied another non-ordinary symmetry. He characterized those nonnegative r.v.’s X’s
on R* such that X < 1/X. Jones (2008) refered to this as log-symmetry since log X 4_ log X.
When X is defined on R™, Jones (2008) also studied R-symmetry and log-symmetry about &,
d > 0. The latter is, X/ L) /X, which is equivalent to ordinary symmetry about logd of the
r.v. log X. Among others, Jones (2008) pointed out that when X has a p.d.f. f, X/§ 4 0/X is
equivalent to 22 fx (dz) = fx (§/x), = > 0.

Jones and Arnold (2008) studied the r.v.’s defined on R which are both R-symmetry and
log-symmetry, the so-called doubly symmetry. An example of doubly symmetric distribution
is lognormal. They also characterized the class of absolutely continuous r.v.’s defined on R*
that are doubly symmetric, which turns out to be a proper subset of absolutely continuous and
moment-equivalent to the lognormal distribution.

In this work, we will investigate natural analogue of the concepts of R-symmetry, log-
symmetry, and doubly symmetry on R. More precisely, we call the analogue of log-symmetry on
R as I-symmetry. Here ‘I’ stands for ‘inverse’. Throughout this work, unless it is stated, every
r.v. is assumed to follow an absolutely continuous distribution. Also for an r.v., say X, let fx
denote the p.d.f. of X.

First, we give the definitions of those symmetries mentioned above.

Definition 1. An r.v. X defined on R is said to be R-symmetric about the R-center 6, where
0 >0, if

et = fx (1) o€ R0} 0

or equivalently, if

fx(@) = fx <02> , € R\{0}.

X

It can be shown easily from (1), if X is R-symmetric on R, then fx(0) = 0.

Definition 2. An r.v. X defined on R is said to be I-symmetric about 9§, where § > 0, if
X a 1)
5§ X’



or equivalently, if

22 fx(8) = fx <i> , x € R\{0}. (2)

Definition 3. An r.v. X defined on R is said to be doubly symmetric about (6, ), where
0,6 > 0, if X is both R-symmetric about 6 and I-symmetric about J.

In Section 2, based on mixture distribution, we investigate the relationship between doubly
symmetry on R and doubly symmetry on R. In Sections 3, 4, and 5, we give some propositions
of R-symmetry, [-symmetry, and doubly symmetry, respectively. Next, in Section 6, we discuss
the connection between mixture distribution representation and skewing representation. By the
skewing representation, we investigate and characterize doubly symmetry. Finally, in Section 7,
we give some interesting examples of I-symmetry.

2 Preliminary Results

Let X be an r.v. defined on R. Obviously fx can have the following mixture representation:

|} afi(x), x>0,
fx(@) = { (1—a)fol—2), z<0, 3)

where
a=P(X >0)= /000 fx(x)dx, (4)

and a € [0, 1]. Then both fi(z) = fx(z)/a and fo(z) = fx(—z)/(1—a) are p.d.f.’s on RT. Note
that f1 is defined to be 0 if a = 0, and f5 is defined to be 0 if @ = 1. It can be seen if a = 0,
then X is defined on R™; if a = 1, then X is defined on RT. Based on the above representation,
we have the following simple lemma.

Lemma 1. Let X be an r.v. defined on R with 0 < a < 1, where a is defined in (4). Then
fx is doubly symmetric about (6,¢) if and only if both f; and fs are doubly symmetric about
(0,0), where f; and fy are given in (3).

By Lemma 1, we have the following two immediate consequences.

Corollary 1: Let X be an r.v. defined on R with 0 < a < 1, where a is defined in (4). Then

fx is R-symmetric about 6 if and only if both the f; and f; given in (3) are R-symmetric about
6.

Corollary 2: Let X be an r.v. defined on R with 0 < a < 1, where a is defined in (4). Then
fx is I-symmetric about ¢ if and only if both f; and fs given in (3) are log-symmetric about 9.



Remark 1: Suppose X is symmetric about 0. Clearly, the constant a in (3) is equal to 0.5 and
fi(z) = f2(x) = fix|(7), * > 0. Then according to Corollary 2, X is I-symmetric about § if and
only if | X| is log-symmetric about 0. Also according to Lemma 1, X is doubly symmetric about
(0,9) if and only if | X| is doubly symmetric about (6,0). Furthermore, according to Corollary
1, X is R-symmetric about 6 if and only if | X| is R-symmetric about 6.

3 R-Symmetry on R

In this section, we give some simple properties of R-symmetry. The first proposition gives the
mode of an R-symmetric distribution.

Proposition 1. Let the r.v. X defined on R be R-symmetric about . Then max,cr fx(x) =
max{fx(0), fx(—0)}.

Proof: Obviously we only need to prove the case 0 < a < 1, where a is defined in (4). According
to Mudholkar and Wang (2007), for an r.v. which is R-symmetric about # on R*, then 6 is the
mode. From Corollary 1, as X is R-symmetric about § on R, fx(z) = afi(x), a € [0,1], x > 0,
where f1 is R-symmetric about 6 on R*, then max,cp+ fx(z) = max,cp+ afi(z) = af1(0) =
fx(6). Note that as mentioned it before, being R-symmetric, fx(0) = 0. Similarly, we have
maxgecp- fx(z) = max,cp-(1 —a)fa(z) = (1 — a)fo(—0) = fx(—0), where fo is R-symmetric
about 6 on RT. Hence max,cp fx(x) = max{fx(0), fx(—60)}. This completes the proof.

Proposition 2. Let the r.v. X defined on R be R-symmetric about #. Then for every constant
a > 0, aX is R-symmetric about af.

Proof: Upon changing of variable, it yields

fax(x) = fX <§> é, z € R. (5)
Therefore,
faX(aex) = fX <(M25L‘) % = fX (Zz) 2 = faX (f) , T € R\{O}a

where the first and last equalities are by (5), and the second equality is by (1). This completes
the proof.

For independent r.v.’s X and Y defined on R* which are R-symmetric about #; and 6,
respectively, Mudholkar and Wang (2007) proved that XY is R-symmetric about 616,. The
next proposition shows that this property also holds for R-symmetry on R.

Proposition 3. Let the independent r.v.’s X and Y defined on R be R-symmetric about 6;
and 6o, respectively. Then XY is R-symmetric about 616-.



Proof: Let X; = X/6;, Y1 = Y/03, and W = X1Y7. Then both X; and Y7 are R-symmetric
about 1 and

frtw) = [ p, (Z’) Pty = [~ ewwnsy (1) "

o Tyl oo It]

_ / ﬁ‘ Fx, (wi) fy (1)dt, w € R, (6)

where the change of variable y = 1/t, and fy, (t) = fy;(1/t) are used. On the other hand, since
fx, (wt) = fx,(1/(wt)), from (6) we obtain
1 1 1 1
Iw w = . mel uTy fvi (y)dy = e mf)ﬁ (wy)fY1 (y)dya w e R\{O}

This proves W is R-symmetric about 1. Consequently, XY = 610oW is R-symmetric about
010>. This completes the proof.

Obviously, Proposition 3 can be easily extended to the situation of n r.v.’s. However, if X
is R-symmetric about #, 1/X may not be R-symmetric for any center ¢. Consequently, under
the conditions of Proposition 3, X/Y may not be R-symmetric about any center ¢. We give an
example in the following.

Example 1. Let X and Y be i.i.d. with the distribution of the root-reciprocal of IG(1,\) (IG
stands for inverse Gaussian). That is

I[x(z) = fy(x) = \/?GXP (—g— <i —x)2> , x>0.

Then as pointed out by Mudholkar and Wang (2007), both X and Y are R-symmetric in R
about 1. It can be found that the p.d.f’s of U= XY,V =1/X, and W = X/Y are given by

00 2
fu(u) :/0 i—iexp (—; (i — x) > exp <—;\ (% — z>2> dz, u >0,

and
2\ [ 1 2 1 2
fw(w) = )\/ T exp AL T exp AL TWw dz
T Jo 2 \z 2 \zw
\e2A [o© A 1
= exp|l—=|—4w]|—+y]| |dy, w>0,
Tw Jo 2 \w Y
respectively.



This proves U is R-symmetric about 1.
Next for v # 0,

o) RO g LY (20 )
T @)~ Zoaxp(-2(Z — pye o TP ) \gz " 2) )

which can be shown easily is a strictly monotone decreasing function of v. Also fi(v)/fy (6% /v) =
1 when v = . Hence for every § > 0, fi (v)/fy(0?/v) # 1, if v # 0. This proves V is not R-
symmetric about any center 6.

Finally,

Cfww) 6 foooexp(—%(ijLw) (%er))dy w0 (8)
fw (02/w) — w? Iy~ exp (—% (% + %) (% +y)> dy’ .

Clearly when 62 = 1, fy(w)/fw(c/w) #1 for w # 1. For §2 # 1, since (#2 +1/6%)/2 > 1, and
g(z) =e % z >0, is a strictly decreasing function of z, we have
00 1
Jo exp <—)\ (5 + y)) dy
Joe (<3 (02 + &) (+v)) dy
Hence if #% > 1, then 6%/w? > 1, and it yields fu/(1)/fw(0?/1) > 1. Now consider the case
6? < 1. Assume there exists a 0, 0 < § < 1, such that fy(w) = fw (0?/w), for w € R*. Then

from (8) we obtain

/Ooe ALY (L gy = [ A 92+w L d
xp | —= | — - = — xpl—=(—+= (- .
e (55 g ) ) =G | ew( (G tg)l,ty))w

By replacing w by w/6?, it yields

[on(3(Eew) Con)) o=t [Con (3 (%) (o))

02k

> 1.

Repeating this procedure, in the kth time replacing w by w/0<, we obtain

el Tty Jdv=wT | mEew o\t )\ Ty )

holds for every n > 1. Let

(y) ! e A 92n+ - 1+ n>1
n = ——exp|—= — 4+ — - , n>1.
I = ganz SP A T \ Ty T g Yy Y



Since for every y > 0,
lim g,(y) =0,
n—oo

also it can be shown easily that for every y > 0, g, (y) is decreasing in n for n large enough, by
Lebesgue’s monotone convergence theorem, we arrive at the following contradiction

&0 A1 1 >
/ exp|—=(—+w)|(-+y]|])dy= lim wQ”/ gn(y)dy =0, 0 < w < 1.
0 2 \w Y n—00 0

This completes the proof that W is not R-symmetric about any center 6.

4 I-Symmetry
We now give some simple properties of I-symmetry.

Proposition 4. Let the r.v. X defined on R be I-symmetric about 6. Then P(—6 < X <§) =
1/2.
Proof: From Corollary 2, for X being I-symmetric about 4, then f; and fs are log-symmetric

about §, where f; and fy are given in (3). According to Jones (2008), for an r.v. defined on R*
which is log-symmetric about §, then ¢ is the median. Hence

19
PO< X <J|X >0) = / fi(z)dz =1/2,
0
and
1)
PO<-X <X <0)= / folz)dz =1/2.
0
This completes the proof.

The proofs of the following three propositions are similar to those of the situation of log-
symmetry on RT, hence are omitted.

Proposition 5. Let the r.v. X defined on R be I-symmetric about §. Then for every constant
a > 0, aX is I-symmetric about ad.

Proposition 6. Let the independent r.v.’s X and Y defined on R be I-symmetric about d; and
09, respectively. Then XY is I-symmetric about d14s.

Again the above proposition also holds for n r.v.’s as the situation of log-symmetric on R™
(see Jones (2008)). On the other hand, although X is R-symmetric may not imply 1/X is
R-symmetric, it can be seen easily that this is true for I-symmetric. We state this as follows.

Proposition 7. Let the independent r.v.’s X and Y defined on R be I-symmetric about ¢&;
and ds, respectively. Then X/Y is I-symmetric about d1/d2. In particular, 1/X is I-symmetric
about 1/4;.



5 Doubly-Symmetry in R
In this section we give some simple properties of doubly symmetry.

Proposition 8. Let the r.v. X defined on R be doubly symmetric about (6,d). Then for any
constant a > 0, aX is doubly symmetric about (a#, ad).

Proposition 9. Let the independent r.v.’s X and Y defined on R be doubly symmetric about
(62, 02) and (09, d2), respectively. Then XY is doubly symmetric about (61603, 0102).

The proofs of the above two propositions are trivial hence are omitted.

Although the ratio of two independent R-symmetric r.v.’s may not be R-symmetric about
any center, yet as pointed out in the following result, this is true if both X and Y are doubly

symmetric.

Proposition 10. Let the independent r.v.’s X and Y defined on R be doubly symmetric about
(61,61) and (02,d2), respectively. Then X/Y is doubly symmetric about (6162/2,61/02). In
particular, 1/X is doubly symmetric about (6;/6%,1/61).

Proof: Based on Proposition 7, we only need to prove the “R-symmetric part”. Since Y/d9 4
d2/Y if and only if 1/Y 4 Y/2, also by Proposition 2, Y/§3 is R-symmetric about 65/3, we
obtain 1/Y is also R-symmetric about /3. The proof now follows by Proposition 3.

6 Main Results

For a p.d.f. fx, except (3), it can also be represented as

fx(z) =2f(z)G(z), v € R, (9)
where
Ix@)+ fx(-2) [ Yah@) + Q- ap@), o0
flo) == — = { Hafi(—2) + (1 ) fa(—a)), @ <0, 1o

is a symmetric p.d.f., and

Gy — D@ [ ah@)/@h(@) + (1 -0 b)), 2200
@+ (=)~ | (- ah(-a)/(fi(~2) + 1= a)fo(~2)), @ <0,

is a skewing function. In this section, we will characterize doubly symmetry through skewing

representation.
When fx is represented as in (9), we are interested in knowing that is it possible that f is
not doubly symmetric, yet fx is doubly symmetric? The next lemma will answer this question.



Lemma 2. Let the r.v. X defined on R be doubly symmetric about (#,9). Then f is also
doubly symmetric about (#,0), where f is the symmetric p.d.f. given in (9). Consequently, | X|
is doubly symmetric about (6,d) on RT.

Proof: That X is doubly symmetric about (6, d) implies

F(0r) = fx(0x) +2fx(—995) _ fx(0/x) +2fX (=0/x) _ f <30;> z e R\{0),

and

_ 2 fx(07) + 2% fx(=0w) _ fx (8/2) + fx (=0/x) _ f (i) » @ € R\{0}.

22f (o) . .

This proves the first assertion. The second assertion follows immediately by noting | X| has the
p.d.f. 2f(x), > 0. This completes the proof.

Jones and Arnold (2008) characterized the doubly symmetry on R*. By using their char-
acterization and the skewing representation of a distribution as in (9), we can characterize the
doubly symmetry on R.

Theorem 1. Let the r.v. X defined on R be doubly symmetric about (¢,6). Let k = /6. Also
let fx be represented as in (9). Then f has the form

fla)oc > 07RO g2 w0 2K Va?) IOk < |2 < 0K, 2 € R\{0},  (12)

1=—00

where w is a nonnegative function on (k~%,1] and chosen to satisfy

1 —4
v = () <ozt (13)
where
Y(u) = uw(u), (14)
and G is chosen to satisfy
0 )
Glzr)=G ~ and G(6x) =G ~) z€ R\{0}. (15)
Proof: First from Lemma 2, we obtain X; = |X| is doubly symmetric. Now by Jones and

Arnold (2008),

le (ZE) o Z 9_2ik2i(i+1)l‘2i+1w(9_2]{34(i_1)1§2)1(0k_2i <x< 0](52_%), x> 0’
where the nonnegative function w defined on (k~*, 1] satisfying (13) and (14). Note that f(x) =
fx,(Jz|)/2, x € R, hence (12) is obtained immediately.



Next due to the doubly symmetric property of X, we have (1) and (2). Then by the
representation of (9), (1) and (2) in turn imply

2f(02)G(0z) = 2f <f;> G (i) , (16)
and
222 f(6x)G(0x) = 2f <i> G <i) : (17)

respectively. Again, from Lemma 2, we have f(0z) = f(0/x) and 2?f(6x) = f(§/x), these
together with (16) and (17), imply (15) immediately. This completes the proof.

Theorem 2. Let the p.d.f. of the r.v. X be written as in (9). Then X is doubly symmetric
about (6,0) if and only if

(i) f is doubly symmetric about (6, §),
(ii) G satisfies (15).

Proof: The “if” part is obvious. By Lemma 2 and Theorem 1, the “only if” follows immedi-
ately. This completes the proof.

We give an illustration of Theorem 2.

Example 2. Let the p.d.f. of the r.v. X be written as in (8), where

_ 1 _ (log |a] — p)?
J(w) = 2v/270|z| P ( 202 ) ’

and

1 2m(1 —
G(z) = 5T gsgn(x) cos (W) , lel < 1.

Note that X7 = |X| has LogNormal(u,o?) distribution, which is doubly symmetric about
(e#=°" eM). From Remark 1, f is doubly symmetric about (6, 8) = (e#~7°,e"). Also,

Gle™r's) = % + 5 sgn(a) cos (2”(105%(\; |- 02))
- % + %Sgn(ﬂ:) cos (27r(12525 ), )
- % + %Sgn(z) cos (2”(:2% E) 277)
= 5+ S sn(e) cos (%(—;gg ) >
-+ preyen (M) (7).



and

2 2 o2
- 2m(—log|z|)\ et
- 5 + 5 Sgn(l‘) COS <0_2 = G ; .

That is the conditions for G in (15) are satisfied. Therefore, X is doubly symmetric about
2
(el el).

G(ef'z) = L + < sgn(x) cos (W)M>

7 Some Interesting Examples of I-Symmetry

7.1 Characterization of I-Symmetry

First we give a characterization by Seshadri (1965) of the p.d.f. of an r.v. defined on R which
is log-symmetric about 1.

Lemma 3. Let X be an r.v. defined on R*. Then X < 1/X if and only if
1
[x(z) = ;g(logm), x>0, (18)
where ¢ is a symmetric p.d.f.

The next lemma is an extension of the above lemma, which concerns r.v.’s defined on R.
Lemma 4. Let X be an 1.v. defined on R. Then X < 1/X if and only if

fx(z) = ;‘gaog 2)G(z), = € R\{0}, (19)

where g is a symmetric p.d.f. and G is a skewing function which satisfies

G(z) =G(1/z), v € R\{0}. (20)
Proof: First we prove the “if” part. Suppose (19) holds. Let Z = 1/X. Then
L1\ 1 |z 1 1\ 1 B
) = £ (2) 22 = o (] 1] ) 6 (2) = Fyotox 06 = £x(2). = < ),

where the third equality is by the symmetry of g and (20). This proves the “if” part.

Next, assume X 49 /X. According to Corollary 2, both f; and fo are log-symmetric about
1, where f; and fo are given in (3). From Lemma 3, fi(z) = g1(logz)/z and fo(z) = g2(log z)/z,
where g1 and g9 are symmetric p.d.f.’s. By (9), (10), and (11),

riay - { Hontoga)/a + (1= agaliog ) /), r>0,
3(ag1(log(—2))/(—x) + (1 — a)ga2(log(—x)))/(=x), = <0,

_ zﬁﬂmglaog []) + (1 — a)ga(log |]))

— 2|1x|g<10g 2), = € R\{0}, (21)

10



and

_ [ agilloga)/(agi(log2) + (1 — a)ga(log ), v >0,
G(z) = { (1 —a)g2(log(—x))/(agi(log(—z)) + (1 — a)g2(log(—x))), x <0, (22)

where g(z) = agi(x) + (1 — a)g2(x), € R, which is a mixture p.d.f. of g1 and g2. Obviously g
is also symmetric since both g; and go are symmetric. Substituting (21) into (9), (19) follows
immediately. The rest to be proved is G satisfies (20). Now from (22),

o (1) _ ) agi(log1/z)/(agi(log1/x) + (1 — a)ga(log 1/x)), x>0,
z (1 —a)gz(log(—z))/(ag1(log(—1/x)) + (1 — a)g2(log(—1/x))), = <O.

_ agi(logx)/(agi(logx) + (1 — a)ga(log z)), x>0,

(1 —a)gz(log(—z))/(agi1(log(—x)) + (1 — a)g2(log(—z))), =z <O0.

= G(z), x € R\{0},

where the second equality follows by the symmetry of g1 and go. This completes the proof.

Remark 2. If the G in (20) is G(z) =0, z < 0 and G(z) =1, z > 0, then X > 0 and fx is
given as in (18).

Consider an r.v. X which is I-symmetric about §. Then by Proposition 5 and Lemma 4, the
consequence given below follows immediately.

Theorem 3. Let X be an r.v. defined on R. Then X/6 4 d/X, 0 >0, if and only if

fxla) = oo (1og ’f;') ¢ (%) e B\, (23)

where g is a symmetric p.d.f. and G is a skewing function which satisfies (20).

We now give some examples.

Example 3. The function defined below is a skewing function satisfying (20),

G(x) = {

where |h(z)] <1, |z| <1, is an odd function. In particular when h(z) = cz™, where |¢| < 1 and

(14 h(x), 0<l|z| <1,

(L+nr(3), |2 >1, (24)

N[ N[ =

n is 0 or odd number, then

G(x) = {

Moreover G(x) = 1/2, = € R, is a skewing function satisfying (20).

(I4+ecx™), 0<]z|<1,

(1+cx™), |z|>1. (25)

N[ N[ =

The following are examples to illustrate Theorem 3.

11



Example 4. Let X be C(0, 1) distributed with p.d.f.

fx(z) = M, z € R.

Obviously X 49 /X . By choosing
2e*
g(x) =

R 26
Tty €8 (26)
and G(x) = 1/2, x € R, then

Fi@) =~ = opoor )Gla). = € R0,
On the other hand, if
2
fx () = mG(ﬂﬁ% r€R,

where G is given in (24), then it is still true that X 4 1/X.

Example 5. Let g(z) = %e“””', r € R, the p.d.f. of a Laplace distribution, and

0, z<0
G — M )
() {1, x>0,

a skewing function which satisfies (20). Then

1 250 V= agmi,
= — l = 22 d
(@) = rollog)Gla) { A\ 4
This is the p.d.f. of U/V, where U and V" are i.i.d. #(0,1) r.v.’s. Note that if X 4 U/V, where
U and V are i.i.d. r.v.’s, then X is [-symmetric about 1.

Although the ratio of two i.i.d. r.v.’s has a distribution of I-symmetric about 1, conversely,
for an r.v. Z which is log-symmetric about 1, we will show below that there may not exist two
iid. rv’s X and Y such that Z < X/Y. As log Z is symmetric, if there is a symmetric r.v.
which is not distributed as the difference of two i.i.d. r.v.’s, then this offers an example that a
log-symmetric r.v. cannot be distributed as the ratio of two i.i.d. r.v.’s.

Throughout the rest of this section, for an r.v. Z, let 1z(t), t € R, denote the characteristic
function (ch.f.) of Z. First we give a lemma.

Lemma 5. Let the r.v. Z defined on R' be log-symmetric about 1. Also let Z; = log Z. If
there exist two ii.d. r.v.’s X and Y such that Z < X/Y, then ¢z (t) > 0 for t € R.

Proof: That Z < X/Y implies Z; 4 log X — logY. Obviously, log X and logY are also

Lid. ConsequentIY7 77bZ1 (t) = wlogX(t)wlogY(_t) = wlogX(t)wlogX(_t) = ‘wlogX(t)‘Q > 0. This
completes the proof.
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For a symmetric r.v. Zi, let Z = e?'. Then Z is log-symmetric about 1. According to
Lemma 5, if ¢z, (t) < 0 for some t € R, then there do not exist two i.i.d. r.v.’s X and Y such

that Z £ X /Y. The following example was given by Seshadri (1965).
Example 6. Let the p.d.f. of the r.v. Z; mentioned above be

1 —z
fz,(2) = EZ% 2 2 eR.

Then

Vg, (t) = 2(1 —¥)e 2 teR.
7'['

That there do not exist two ii.d. r.v.’s X and Y such that Z < X/Y follows by noting ¢z, (t) < 0
when |¢| > 1.

Next we give a sufficient condition for the distribution of Z defined on R™ which can be
represented as X/Y, where X and Y are i.i.d. r.v.’s.

Theorem 4. Let the r.v. Z defined on R* be log-symmetric about 1, and let Z; = log Z. If
\/Vz, is also a ch.f., then there exist two i.i.d. r.v.’s X and Y such that Z £ X/Y.

Proof: That Z is log symmetric about 1 implies ¢z, is real and even. Hence /17, is also even.
Let ii.d. r.v.’s X; and Y7 have ch.f. /97 . Then

Ux,-v; (t) = lele(_t) = \/¢Z1 (t)\/1/}zl(—t) = (\/¢Z1 (t))2 =1z (t)v teR.

Consequently, Z; 4 X1 — Y7, which in turn implies Z < /x /Y, where X = %1 and Y = e¥1.
This completes the proof.

Theorem 4 has an immediate consequence.

Corollary 3. Let the r.v. Z defined on R" be log-symmetric about 1. Also let Z; = log Z. If
1z, is infinitely divisible, then there exist two i.i.d. r.v.’s X and Y such that Z < X/Y.

Proof: That vz, is infinitely divisible implies /17, is also a ch.f. By Theorem 1, there exist
two i.i.d. r.v.’s X and Y such that Z < X/Y. This completes the proof.

The following is the Pélya type criterion for ch.f.’s, which can be found in Chung (2001),
p.191.

Theorem 5. Let the function ¥ on R satisfy

P(0) =1, P(t) 20, ¥(t) =¢(—t), t € R, (27)

and 1) is decreasing and continuous convex on RT. Then 1 is a ch.f.

13



If a ch.f. v satisfies the sufficient condition of Theorem 5, then it is said to be a Pdélya type
ch.f. Theorems 4 and 5 yield the following consequence.

Corollary 4. Let the r.v. Z defined on R" be log-symmetric about 1. Also let Z; = log Z. If
Yz, is a Pdélya type ch.f. satisfying

V2, (6) > 0, 0, (00 (8) — 5 (Wi ()2 2 0, £ 0, (28)

then there exist two i.i.d. r.v.’s X and Y such that Z < X/V.

Proof: Firstly, we show that /17, is also a Pélya type ch.f. Obviously, /17, satisfies (27).
Also, since 1z, is decreasing and continuous on R™, so is 1/t z,. Now

_ V5 0z, (1) — (9, (1)%/2 -
2¢Zl (t) ¢Z1 (t) B

by (28). Consequently, /17, is convex on RT. Therefore, \/1z, is also a Pélya type ch.f. By
Theorem 4, there exist two i.i.d. r.v.’s X and Y such that Z 4 X/Y. This completes the proof.

(Vz (1)" (29)

It is known that both C(0,1) and N(0,1) distributions are infinitely divisible. We now
present some examples to illustrate Corollary 3.

Example 7. Let the p.d.f. of the r.v. Z be
1
pu— 0-
T2 = i g o) 7

Then Z is log symmetric about 1, and Z; is C(0, 1) distributed, where Z; =log Z. Since C(0,1)
distribution is infinitely divisible, according to Corollary 3, there exist two i.i.d. r.v.’s X and Y
such that Z < X/Y. As can be seen below, if the common p.d.f. of X and Y is

1/2
mx(1/4 + (logz)?2)’
then this can be served as an example. Let W = X/Y. Then

fx(z) =

x>0,

fuv (w) = /O "ty (wy) fx (y)dy
1/2 1/2

= /0 yyrwy(l/4 + (logwy)?) my(1/4 + (log y)?)
1

dy

Example 8. Let the r.v. Z have LogNormal(0,1) distribution. Also let Z; =log Z. Then Z is
log-symmetric about 1, and Z; is AV/(0,1) distributed, which is infinitely divisible. Hence there

exist two L.i.d. 1.v.’s X and Y such that Z < X/Y. Ther.v.s X and Y with LogNormal(0,1/2)

being their common distribution is an example.
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Example 9. Let the r.v. Z; have the following Pdlya type ch.f.

1

le (t) - W?

Also let Z = e”'. Then Z is log-symmetric about 1. Since

3

+
mZO,tER,

1
V7, (0% (1) = 5 (W, ()" =
according to Corollary 4, there exist two i.i.d. r.v.’s X and Y such that Z 4 X/Y.

7.2 I-Symmetry Arising From Trigonometric Formulas

Let Z = X/Y. Although Z is I-symmetry about 1 if X and Y are i.i.d., the converse is not true.
That the joint p.d.f. of X, Y satisfies

fX,Y(x7y) = fX,Y(y’x)7 T,y < Ra (30)

is sufficient to imply Z is I-symmetric about 1. See also the following example by Jones (1999).

Example 10. Let (X,Y) have the polar representation
X =Rcos® and Y = Rsin 0, (31)

where © is U(0, 27) distributed, and R is a positive r.v. independent with ©. Then

1

fX,Y z,y :7!}0}2 1’2+112 > x,yGR, 32
@:9) = G I E ) 3
which satisfies (30). Hence tan® (= Y/X) is I-symmetric about 1. In fact, tan® is C(0,1)
distributed.

Example 9 shows that there exists an I-symmetric distribution about 1 arising from trigono-
metric functions. Jones (1999) also pointed out if the © given in (31) is U(a, b) distributed, where
b—a = mm, m is a positive integer, then tan © has a C(0, 1) distribution. It follows immediately
that for S being an r.v. independent of ©, where © is U (—n /2, 7/2) distributed, then tan(n©+5)
is also C(0, 1) distributed, where n is a positive integer. Furthermore Jones (1999) gave some
multiple angle and angle sum formulas for tangent functions, which remain C(0,1) distributed.
For example, the double angle formula for tangent function yields (tan©® —1/tan©)/2 is C(0, 1)
distributed. Also the multiple angle and angle sum formulas for sine and cosine functions yield
some functions of X and Y have the same distribution as X and some functions of X and Y
have a C(0,1) distribution. For example, 2XY/v X2 + Y2 £ X and 2XY/(Y2 — X2) is C(0,1)
distributed (see Jones (1999)).

Inspired by Jones (1999), we present some related results in the following. Let

fu(u) = %G(tanu), u € (—g, g) , (33)
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where G is a skewing function satisfying (20). Let 7' = tan U. Then it can be shown easily that
T is I-symmetric about 1 with p.d.f.
2
t) = ———~
fr(t) 7(1+2)
The following theorem points out that some of the results presented by Jones (1999) still hold
for the r.v.’s U and T given above.

G(t), t € R. (34)

Theorem 6. Let 7" have the p.d.f. given in (34). Then

(i
(ii) tan(2U) is C(0,1) distributed,;

71T

)
)

(iii) (T"—1/T)/2 is C(0, 1) distributed;

(iv) tan(2U + S) is C(0,1) distributed, where S is an r.v. independent with U;
)

(v) 2XY/(Y? - X?) is C(0,1) distributed, where X = RcosU, Y = RsinU, and R is a
positive r.v. independent with U;

(vi) let V =sin(4U), then

1
fv(v) = ﬁv lv| < 1.

The proof of the above theorem is standard hence is omitted.

Remark 3. If G(z) = 1/2, x € R, that is U is U(—n/2,7/2) distributed, then 2U in (ii) and
(iv) can be replaced by U, and 4U in (vi) can be replaced by U.

References

[1] K.L. Chung (2001). A Course in Probability Theory, 3rd ed. Academic Press, New York.

[2] M.C. Jones (1999). Distributional relationships arising from simple trigonometric formulas.
Amer. Statist. 53, 99-102.

[3] M.C. Jones (2008). On reciprocal symmetry. J. Statist. Planning and Inference 138, 3039-
3043.

[4] M.C. Jones and B.C. Arnold (2008). Distributions that are both log-symmetric and R-
symmetric. Flectron. J. Stat. 2, 1300-1308.

[5] G.S. Mudholkar, H. Wang, (2007). IG-symmetry and R-symmetry: Interrelations and appli-
cations to the inverse Gaussian theory. J. Statist. Planning and Inference 137, 3655-3671.

[6] V. Seshadri (1965). On random variables which have the same distribution as their recipro-
cals. Canad. Math. Bull. 8, 819-824.

16



%

. S ook ar 4 4—\ 3 ,ﬁi“’

BEBARBTISFOA 1R A S 4, RESFOR ELAR L FERELGHE A
PSS e AR s s o) e e a2k 2%

- BIERE RPN EXF P T

17



	01論文封面.doc
	上傳.pdf
	Untitled


