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ABSTRACT

Since Azzalini (1985,1986) introduced the univariate skew-normal distribution, there

are many investigations about the skew distributions based on certain symmetric probabil-

ity density functions. Because these classes of the skew distributions include the original

symmetric distribution and have some properties like the original one and yet is skew,

hence it is more useful to handle related problems.

In this thesis, we consider three topics of the symmetric and skew distributions. In

Chapter 1, we will discuss the case Z = UV first, where U and V are assumed to be

independent. Under some conditions, we will show that if Z is symmetric, then at least

one of U and V is symmetrically distributed. Next for certain bivariate symmetric random

variables X and Y , we will find the distributions of M = aU + bV , where a and b are

constants, U = max{X, Y } and V = min{X,Y }. When X and Y are assumed or not

assumed to be identically distributed, we will present the distributions and skew properties

of M , respectively.

In Chapter 2, we will present the probability density function of the ratio of two gen-

eralized skew-normal distributed random variables. We also give necessary and sufficient

conditions when the ratio is skew-Cauchy distributed.

In Chapter 3, some formulas for the central inverse moments of a quadratic form and

of the ratio of two quadratic forms are established for multivariate skew normal random

variables. They relate the quadratic forms which are determined by positive definite

matrices to that defined by the inverse matrices.

Key words and phrases: Bivariate random variables, elliptical distribution, exchange-

able, generalized skew-normal, inverse matrix, linear combination, moments, normal dis-

tribution, positive definite matrix, product, quadratic forms, ratio, skew, skew-Cauchy,

skew-normal, skew-t, symmetric.
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Chapter 1

Symmetric and Skew Distributions

1.1 Introduction

It is known that symmetric distributions are not suitable for modeling all types of data.
Azzalini (1985, 1986) introduced the univariate skew-normal distribution having the probability
density function (p.d.f.) of the form

2φ(x)Φ(αx), x, α ∈ R, (1)

where φ and Φ are the p.d.f. and cumulative distribution function (c.d.f.) of the standard
normal distribution, respectively. For a random variable X, we write X ∼ SN (α), if X has the
p.d.f. as given in (1). This class of distributions includes the N (0, 1) distribution and has some
properties like the normal and yet is skew. Since then there are many investigating about skew
distributions, also more general definitions of skew distributions are given. Azzalini and Dalla
Valle (1996) extended the results to the multivariate setting with the p.d.f. of the form

2φp(x,Ω)Φ(α′x), x, α ∈ Rp, Ω > 0,

where φp(x,Ω) is the p-dimensional normal p.d.f. with zero mean vector and correlation matrix
Ω.

In some sense, skew distributions and symmetric distributions are closely related. For exam-
ple, it is an interesting problem to determine the distribution of V , by giving the distribution of
Z and U , where Z = UV , U and V are assumed to be independent. It turns out (see Hunag and
Su (2008)) that when U is symmetrically distributed, the distribution of V can be determined.
Furthermore, unless there is no solution, otherwise all distributions of V which satisfy Z = UV ,
form a so-called skew class (see the definition in Section 3).

On the other hand, as mentioned by Viana and Olkin (2000), “Observations between related
measurements, such as with eyes, ears, siblings, etc., possess intrinsic symmetries that may
be relevant for assessing an underlying physiological process,” bivariate exchangeable random
variables play an important role in modeling observation taken from both sides of the same in-
dividual. Nagarajah (1982) obtained the distribution of a linear combination of order statistics
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from a bivariate, exchangeable and normal random variables. Huang and Chen (2007) pointed
out that both the maximum and the minimum of two independent and identically distributed
(i.i.d.) symmetric distributed random variables X and Y , belong to the skew class of X. The
connections between order statistics and skew distributions of bivariate random variables, were
also investigated by authors such as Loperfido (2002), Azzalini and Captanio (2003), and Lop-
erfido (2008), etc.

In Section 2, let Z = UV , where U and V are assumed to be independent, under some con-
dition, we will show that if Z is symmetric, then at least one of U and V must be symmetric. In
Section 3, for certain bivariate exchangeable random variables X and Y , we find the distributions
of M = aU + bV , linear combinations of order statistics U = max{X,Y } and V = min{X, Y }.
It is interesting to know whether the sum of two random variables, which belong to the same
skew class, will also belong to the same skew class. Let T and S be independent, such that
T ∼ N (0, 1) and S ∼ SN (α), then

Z =
aT + bS√

a2 + b2
∼ SN

(
bα√

a2(1 + α2) + b2

)
,

where a2 + b2 6= 0. Also if T and S are i.i.d. N (0, 1) distributed, then for |δ| < 1,

Z = δ|T |+
√

1− δ2S ∼ SN
(

δ√
1− δ2

)
.

See, e.g., Azzalini (2005). Linear combinations of two non-independent skew normal distributed
random variables can also be skew normal distributed. An example can be found in Gupta and
Brown (2001). But usually for two random variables belonging to the same skew class, their
sum may not belong to the same skew class. Also it will be shown when (X, Y ) are exchangeable
elliptical and symmetric random variables, M has a skew distribution of ξX, for some suitable
constant ξ. For certain bivariate exchangeable distributions of (X, Y ), necessary and sufficient
conditions that M has skew distribution of X, will be given for each case. Finally, in Section
4, we investigate the situation that X and Y are not identically distributed. It turns out that
when the p.d.f. of (X, Y ) has an elliptical form, the distribution of M is the mixture of two
skew distributions of αX and βY for suitable constants α and β. Note that the p.d.f. of linear
combinations of order statistics for continuous random variable (X, Y ) with a general p.d.f. was
given by Gupta and Gupta (2009).

1.2 Symmetric property for product of independent random

variables

Let Z = UV , where U and V are assumed to be independent random variables. As −(UV ) =
(−U)V = U(−V ), Z is symmetric if one of U and V is symmetric. Conversely, it is interesting to
know if Z is symmetric, whether at least one of U and V is symmetric? The following theorem
provides some partial answer.

2



Theorem 1.1. Let Z = UV , where U and V are independent random variables, with con-
tinuous p.d.f.’s fU and fV , respectively. Let a = inf{u|fU (u) 6= fU (−u), u > 0}, and b =
inf{v|fV (v) 6= fV (−v), v > 0}. Assume a, b > 0. If Z is symmetric, then at least one of U and
V is symmetrically distributed.

Proof. Suppose the contrary that neither fU nor fV is symmetric. Then 0 < a, b < ∞. Without
loss of generality, assume a ≥ b.

The continuous assumption of fU and fV yield

fU (u) = fU (−u), ∀u ∈ [0, a], (2)

fV (v) = fV (−v), ∀v ∈ [0, b], (3)

also there exists an ε > 0, such that

fU (u) 6= fU (−u), ∀u ∈ (a, a + ε], (4)

and

fV (v) 6= fV (−v), ∀v ∈ (b, b + ε]. (5)

By changing of variables, it yields

fZ((a + ε)b) =
∫ ∞

−∞

∣∣∣∣
1
u

∣∣∣∣ fU (u)fV

(
(a + ε)b

u

)
du

=
∫ ∞

0

1
u

(
fU (u)fV

(
(a + ε)b

u

)
+ fU (−u)fV

(
−(a + ε)b

u

))
du

=
∫ ∞

0
(A(u) + B(u))du. (6)

Similarly

fZ(−(a + ε)b) =
∫ ∞

0
(C(u) + D(u))du, (7)

where for u > 0,

A(u) =
1
u

fU (u)fV

(
(a + ε)b

u

)
,

B(u) =
1
u

fU (−u)fV

(
−(a + ε)b

u

)
,

C(u) =
1
u

fU (u)fV

(
−(a + ε)b

u

)
,

and

D(u) =
1
u

fU (−u)fV

(
(a + ε)b

u

)
.
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(6) and (7) can be rewritten as

fZ((a + ε)b) =
∫ a

0
(A(u) + B(u))du +

∫ a+ε

a
(A(u) + B(u))du +

∫ ∞

a+ε
(A(u) + B(u))du, (8)

and

fZ(−(a + ε)b) =
∫ a

0
(C(u) + D(u))du +

∫ a+ε

a
(C(u) + D(u))du +

∫ ∞

a+ε
(C(u) + D(u))du. (9)

From (2), we have
∫ a

0
A(u)du =

∫ a

0
D(u)du, and

∫ a

0
B(u)du =

∫ a

0
C(u)du.

Hence
∫ a

0
(A(u) + B(u))du =

∫ a

0
(C(u) + D(u))du.

As 0 < (a + ε)b/u < b, ∀ u ∈ [a + ε,∞), (3) implies
∫ ∞

a+ε
A(u)du =

∫ ∞

a+ε
C(u)du, and

∫ ∞

a+ε
B(u)du =

∫ ∞

a+ε
D(u)du.

Hence
∫ ∞

a+ε
(A(u) + B(u))du =

∫ ∞

a+ε
(C(u) + D(u))du.

As Z is assumed to be symmetric, fZ((a + ε)b) = fZ(−(a + ε)b), this in turn implies
∫ a+ε

a
(A(u) + B(u))du =

∫ a+ε

a
(C(u) + D(u))du,

which can be rewritten as
∫ a+ε

a

1
u

(fU (u)− fU (−u))
(

fV

(
(a + ε)b

u

)
− fV

(
−(a + ε)b

u

))
du = 0. (10)

In view of the mean-value theorem for integrals, (10) yields

ε

c
(fU (c)− fU (−c))

(
fV

(
(a + ε)b

c

)
− fV

(
−(a + ε)b

c

))
= 0, (11)

for some c ∈ (a, a + ε). Furthermore, the assumption a ≥ b implies (a + ε)b/c ∈ (b, b + ε], ∀c ∈
(a, a + ε). Hence

fU (c) 6= fU (−c) and fV

(
(a + ε)b

c

)
6= fV

(
−(a + ε)b

c

)
, ∀c ∈ (a, a + ε).
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Therefore (11) cannot hold for any c ∈ (a, a + ε), which contradicts to the assumption that Z is
symmetric. Hence at least one of a and b is infinity, or equivalently to say that at least one of
fU and fV is symmetric. This completes the proof.

1.3 Linear combinations of order statistics for bivariate exchange-

able and symmetric random variables

Throughout this section, for bivariate random variables(X, Y ), let U =max{X, Y }, V =min
{X,Y } and M = aU + bV , where a, b ∈ R, such that a2 + b2 6= 0. First we give a definition,
which can be found in Huang and Chen (2007).

Definition 1.1. Let f be a symmetric p.d.f. A random variable X, with p.d.f. fX , is said to
have a skew distribution of f, denote this by X ∼ S(f), and fX ∈ S(f), if

fX(x) = 2f(x)G(x), x ∈ R, (12)

where G is a skew function, that is

0 ≤ G(x) ≤ 1 and G(x) + G(−x) = 1, x ∈ R, (13)

and

S(f) = {h|h(x) = 2f(x)G(x), x ∈ R, for some skew function G}.

S(f) is said to be the skew class generated by f . When a p.d.f. g ∈ S(f), g is said to have a
skew p.d.f. of f .

Similarly we can define X ∼ S(Y ), and X ∼ S(F ), where Y and F are symmetric random
variable and symmetric distribution, respectively. Also if F is a common distribution, such as
C(0, 1) distribution, then X is said to have a skew-C(0, 1) distribution, denote this by X ∼ skew-
C(0, 1). Note that for every α ∈ R, SN (α) is also a skew-N (0, 1) distribution with G(x) =
Φ(αx). Also the random variable |T | in the Introduction is skew-N (0, 1) distributed with G(x) =
1, x ≥ 0, G(x) = 0, x < 0.

Theorem 1.2. Let the continuous function f(x, y) be the joint p.d.f. of (X, Y ). Also assume

f(x, y) = f(y, x), (x, y) ∈ R2, (14)

and

f(x, y) = f(−x,−y), (x, y) ∈ R2. (15)

Then we have
(i) X and Y are identically distributed ;
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(ii) X and Y are symmetrically distributed ;

(iii) both U and V ∼ S(fX).

Proof. (i)The assertion follows from

fX(x) =
∫ ∞

−∞
f(x, y)dy =

∫ ∞

−∞
f(y, x)dy = fY (x), x ∈ R.

(ii)By changing of variable and using (15), we have

fX(−x) =
∫ ∞

−∞
f(−x, y)dy =

∫ ∞

−∞
f(−x,−w)dw =

∫ ∞

−∞
f(x,w)dw = fX(x), x ∈ R,

and the assertion follows.
(iii)First (14) yields fU,V (u, v) = 2f(u, v), v < u. Hence fU (u) =

∫ u
−∞ 2f(u, v)dv = 2fX(u)G(u),

u ∈ R, where

G(u) =

{ R u
−∞ f(u,v)dv

fX(u) , fX(u) 6= 0,
1
2 , fX(u) = 0.

Obviously, 0 ≤ G(u) ≤ 1, u ∈ R, and if fX(u) 6= 0, then

G(−u) =
1

fX(−u)

∫ −u

−∞
f(−u, v)dv =

1
fX(u)

∫ ∞

u
f(−u,−v)dv =

1
fX(u)

∫ ∞

u
f(u, v)dv.

Hence G(u) + G(−u) = 1, u ∈ R, and G is a skew function follows. Consequently, U∼S(fX).
Similarly, we have fV (v) = 2fX(v)(1−G(v)), v ∈ R. This completes the proof.

The next theorem gives the distribution of the linear combinations of the order statistics
of bivariate random variables which satisfies the conditions in Theorem 1.2. The proof is easy
hence is omitted.

Theorem 1.3. Let (X, Y ) be defined as in Theorem 2. Then the p.d.f of M is

fM (m) =





2
|a|

∫ m/a
−∞ f(m/a, n)dn, b = 0,m ∈ R,

2
|b|

∫∞
m/b f(n,m/b)dn, a = 0,m ∈ R,

2
|ab|

∫ bm/(a+b)
−∞ f((m− n)/a, n/b)dn, a−1 + b−1 > 0,m ∈ R,

2
|ab|

∫∞
bm/(a+b) f((m− n)/a, n/b)dn, a−1 + b−1 < 0,m ∈ R,

2
a2

∫∞
−∞ f((m + n)/a, n/a)dn, a−1 + b−1 = 0,m/a > 0.

Obviously, if X and Y are i.i.d. with the common marginal distribution being symmetric
about zero, then the joint p.d.f. f of (X, Y ) satisfies the conditions in Theorem 1.2. The
following corollary indicates that when the joint p.d.f. of (X, Y ) has an exchangeable elliptical
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form, then the conditions in Theorem 1.2 are also satisfied. Throughout this work, (X, Y ) is
said to be elliptical distributed, if the p.d.f. of (X,Y ) has the following form:

f(x, y) = |A|−1/2g(z′A−1z), (16)

where z = (x, y)′, A is a positive definite 2 × 2 matrix, and g is a function from R+ to R+

satisfying
∫∞
0 g(y)dy = 1/π.

Corollary 1.1. Let (X, Y ) be exchangeable elliptical random variables with

A = c2

(
1 ρ

ρ 1

)
, (17)

where c > 0, and |ρ| < 1, that is the joint p.d.f. of (X,Y ) has the form

f(x, y) =
1

c2
√

1− ρ2
g

(
x2 + y2 − 2ρxy

c2(1− ρ2)

)
, x, y ∈ R. (18)

We have

(i) f(x, y) satisfies (14) and (15) ;

(ii) if a + b 6= 0, then the p.d.f. of M is

fM (m) =
2
cξ

∫ αm

−∞
g

(
r2 +

m2

c2ξ2

)
dr, m ∈ R, (19)

where

ξ =
√

a2 + b2 + 2abρ, α =
1
cξ

a− b

|a + b|

√
1− ρ

1 + ρ
; (20)

(iii) if a + b = 0, then the p.d.f. of M is

fM (m) =
2
cξ

∫ ∞

−∞
g

(
r2 +

m2

c2ξ2

)
dr, m/a > 0 ;

(iv) M ∼ S(ξX).

Proof. That (i) holds is obvious. We only prove (ii) and (iv), as (iii) can be obtained similarly
as (ii). First for the case b = 0, by Theorem 1.3, we have

fM (m) =
2

c2|a|
√

1− ρ2

∫ m/a

−∞
g

(
m2 + a2n2 − 2aρmn

c2a2(1− ρ2)

)
dn

=
2

c2|a|
√

1− ρ2

∫ m/a

−∞
g




(
an− ρm

ca
√

1− ρ2

)2

+
m2

c2a2


 dn

=
2

c|a|
∫ √

1−ρm
ca
√

1+ρ

−∞
g

(
r2 +

m2

c2a2

)
dr, m ∈ R, (21)

7



where we have used the change of variable r = (an − ρm)(ca
√

1− ρ2)−1. Obviously, (21)
coincides with b = 0 in (19). The proof of the case a = 0 is similar.

Next assume a 6= 0, b 6= 0. First consider a−1 + b−1 > 0. Again by Theorem 1.3, the result
follows by noting

fM (m) =
2

c2|ab|
√

1− ρ2

∫ bm
a+b

−∞
g

(
(m− n)2/a2 + n2/b2 − 2ρ(m− n)n/(ab)

c2(1− ρ2)

)
dn

=
2

c2|ab|
√

1− ρ2

∫ bm
a+b

−∞
g




(
ξn− (b2 + ab)ξm

cab
√

1− ρ2

)2

+
m2

c2ξ2


 dn

=
2
cξ

∫ αm

−∞
g

(
r2 +

m2

c2ξ2

)
dr, m ∈ R, (22)

where a change of variable is used again in the last step. Finally along the lines of the above
proof, the case a−1 + b−1 < 0 can be obtained easily. This completes the proof of (ii).

We now prove (iv). From (18), we obtain the following marginal p.d.f. of X

fX(m) =
1
c

∫ ∞

−∞
g

(
r2 +

m2

c2

)
dr, m ∈ R.

Consequently, the p.d.f. of X1 = ξX is

fX1(m) =
1
cξ

∫ ∞

−∞
g

(
r2 +

m2

c2ξ2

)
dr, m ∈ R.

Now for the case a + b 6= 0, fM (m) can be rewritten as

fM (m) = 2
1
cξ

∫ ∞

−∞
g

(
r2 +

m2

c2ξ2

)
dr

1
cξ

∫ αm
−∞ g

(
r2 + m2

c2ξ2

)
dr

1
cξ

∫∞
−∞ g

(
r2 + m2

c2ξ2

)
dr

= 2fX1(m)G1(m),

where

G1(m) =
1
cξ

∫ αm
−∞ g

(
r2 + m2

c2ξ2

)
dr

1
cξ

∫∞
−∞ g

(
r2 + m2

c2ξ2

)
dr

, m ∈ R,

is a skew function; and for the case a + b = 0, we get fM (m) = 2fX1(m)I{m/a>0}, where the
indicator function I{m/a>0} is a skew function. This completes the proof of (iv).

Result (ii) of Corollary 1.1 can also be found in Loperfido (2008) with a different proof.
Following the notation of Loperfido (2008), here M has a SE1 [0,A, α, g] distribution, where A
and α are given in (17) and (20), respectively. Yet the α given in (7) of Loperfido (2008) is in
error. Note that in general when X and Y are i.i.d. symmetrically distributed, fM (m) may
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not have a simple form and M may not be S(ξX) distributed, as the case when X and Y are
exchangeable elliptical distributed.

We give some corollaries in the following. Part (i) of the first corollary is due to Nagaraja
(1982), and part (ii) is obvious.

Corollary 1.2. Let (X, Y ) be bivariate normally distributed with the joint p.d.f.

f(x, y) =
1

2π
√

1− ρ2
e
−x2−2ρxy+y2

2(1−ρ2) , (x, y) ∈ R2, |ρ| < 1. (23)

(i) The p.d.f. of M is given by

fM (m) =





2
|a|φ(m/a)Φ(

√
1−ρ
1+ρm/a), b = 0,m ∈ R,

2
|b|φ(m/b)Φ(−

√
1−ρ
1+ρm/b), a = 0, m ∈ R,

2
ξ φ

(
m
ξ

)
Φ(−ηm), a−1 + b−1 > 0,m ∈ R,

2
ξ φ

(
m
ξ

)
Φ(ηm), a−1 + b−1 < 0,m ∈ R,

2

|a|
√

2(1−ρ)
φ

(
m

|a|
√

2(1−ρ)

)
, a−1 + b−1 = 0,m/a > 0,

(24)

where ξ is defined in (20) and

η =
√

1− ρ

1 + ρ

b− a

ξ(b + a)
;

(ii) M ∼ skew-N (0, 1) if and only if ξ = 1. In particular, if ρ = 0, that is X and Y are i.i.d.
N (0, 1) distributed, then M ∼ skew-N (0, 1) if and only if a2 + b2 = 1.

The above corollary indicates that when (X,Y ) has a bivariate normal distribution with p.d.f.
given in (23), and N (0, 1) being the common marginal distribution of X and Y , then M ∼skew-
N (0, ξ2) in each case. The next corollary consider bivariate Cauchy distributed random variables
where the common marginal distribution of X and Y is C(0, 1).

Corollary 1.3. Let (X, Y ) be bivariate Cauchy distributed with the joint p.d.f.

fX,Y (x, y) =
1

2π
√

1− ρ2
(
1 + x2+y2−2ρxy

1−ρ2

)3/2
, (x, y) ∈ R2, |ρ| < 1.

Then

(i) the p.d.f. of M is

fM (m) =





|a|
π(m2+a2)

(
1 +

√
1−ρm√

2m2+a2(1+ρ)

)
, b = 0,m ∈ R,

|b|
π(m2+b2)

(
1−

√
1−ρm√

2m2+b2(1+ρ)

)
, a = 0,m ∈ R,

ξ
π(m2+ξ2)

(1 + A), a−1 + b−1 > 0, m ∈ R,
ξ

π(m2+ξ2)
(1−A), a−1 + b−1 < 0, m ∈ R,

2|a|
√

2(1−ρ)

π(m2+2a2(1−ρ))
, a−1 + b−1 = 0, m/a > 0,

(25)
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where

A =
(b− a)

√
1− ρm

ξ
√

2m2 + (a + b)2(1 + ρ)
, (26)

and ξ is defined in (20) ;

(ii) M ∼ skew-C(0, 1) if and only if ξ = 1.

Proof. We only prove (i). Let b = 0, then M = aU . Following Theorem 1.3, we have

fM (m) =
2
|a|

∫ m/a

−∞

1

2π
√

1− ρ2
(
1 + m2/a2+n2−2ρmn/a

1−ρ2

)3/2
dn, m ∈ R,

and the result follows immediately. The case a = 0 can be obtained similarly.
Next consider the case a, b 6= 0. First assume a−1 + b−1 > 0. Then Theorem 1.3 implies

fM (m) =
2
|ab|

∫ bm/(a+b)

−∞

1

2π
√

1− ρ2
(
1 + (m−n)2/a2+n2/b2−2ρ(m−n)n/ab

1−ρ2

)3/2
dn

=
ξ2n− b2m− abρm

π(m2 + ξ2)
√

a2b2(1− ρ2) + b2(m− n)2 + a2n2 − 2abρ(m− n)n

∣∣∣
bm/(a+b)

−∞

=
ξ

π(m2 + ξ2)
(1 + A), m ∈ R,

where A is defined in (26), and the result follows. The case a−1+b−1 < 0 can be proved similarly.
For the last case a−1 + b−1 = 0, again Theorem 1.3 yields

fM (m) =
2
a2

∫ ∞

−∞

1

2π
√

1− ρ2
(
1 + (m+n)2+n2−2ρ(m+n)n

a2(1−ρ2)

)3/2
dn, m/a > 0,

and the conclusion follows by finishing the integration.

According to Kotz and Nadarajah (2004), the general form of the joint p.d.f. of bivariate t
distribution has the following elliptical form

f(x, y) =
|A|−1/2

2π
(
1 + z ′A−1z/n

)(n+2)/2
, z ′ = (x, y) ∈ R2, n ∈ N ,

where A is given in (17) with c2 = 1. If n = 1, then this becomes bivariate Cauchy distribution
and has been discussed in Corollary 1.3. The next corollary considers the case n = 2, where
both X and Y have T2 as the marginal distribution. That is the p.d.f. of X is

fX(x) =
1

(x2 + 2)3/2
, x ∈ R.
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Again the proof is omitted.

Corollary 1.4. Let (X, Y ) be bivariate T2 distributed with the joint p.d.f.

f(x, y) =
1

2π
√

1− ρ2
(
1 + x2+y2−2ρxy

2(1−ρ2)

)2 , (x, y) ∈ R2, |ρ| < 1.

(i) Then the p.d.f. of M is

fM (m) =





a2

(m2+2a2)3/2 (1 + A), b = 0,m ∈ R,
b2

(m2+2b2)3/2 (1−B), a = 0,m ∈ R,
ξ2

(m2+2ξ2)3/2 (1 + C), a−1 + b−1 > 0,m ∈ R,
ξ2

(m2+2ξ2)3/2 (1− C), a−1 + b−1 < 0,m ∈ R,
4a2(1−ρ)

(m2+4a2(1−ρ))3/2 , a−1 + b−1 = 0,m/a > 0,

(27)

where

A =
m(m2 + 2a2)1/2

√
1− ρ2

π(m2 + (1 + ρ)a2)
+

2 arctan
(

m√
(m2+2a2)(1+ρ)

)

π
,

B =
m(m2 + 2b2)1/2

√
1− ρ2

π(m2 + (1 + ρ)b2)
+

2 arctan
(

m√
(m2+2b2)(1+ρ)

)

π
,

C =
m(b2 − a2)(m + 2ξ2)1/2

√
1− ρ2

πξ2(m2 + (a + b)2(1 + ρ))
+

2 arctan
(

(a−b)(1−ρ)m

(a+b)
√

(m2+2ξ2)(1−ρ2)

)

π
,

and ξ is defined in (20) ;

(ii) M ∼ skew-T2 if and only if ξ = 1.

The following corollary shows when X and Y are i.i.d. symmetrically distributed, M may
not be S(ξX) distributed. Note that when X and Y are i.i.d. N (0, 1) distributed, they are still
exchangeable elliptical distributed.

Corollary 1.5. Let X, Y be i.i.d. C(0, 1) distributed. Then

(i) the p.d.f. of M is

fM (m) =





|a|
π(m2+a2)

(
1 + 2 arctan(m/a)

π

)
, b = 0,m ∈ R,

|b|
π(m2+b2)

(
1− 2 arctan(m/b)

π

)
, a = 0,m ∈ R,

ε(m), a−1 + b−1 > 0,m ∈ R,

δ(m), a−1 + b−1 < 0,m ∈ R,
4|a|

π(m2+4a2)
, a−1 + b−1 = 0,m/a > 0,

(28)
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where

δ(m) =
πab(m2 + a2 − b2)sgn(b) + πb(m2 + b2 − a2)sgn(a) + 2a3bm(log(a2/b2))

π2(m4 + 2(a2 + b2)m2 + (a2 − b2)2)
− S,

ε(m) =
πab(m2 + a2 − b2)sgn(b) + πb(m2 + b2 − a2)sgn(a)− 2a3bm(log(a2/b2))

π2(m4 + 2(a2 + b2)m2 + (a2 − b2)2)
+ S,

S =
2((ab− b)m2 + a2b− ab3 − b3 + a3b) arctan (m/(a + b))

π2(m4 + 2(a2 + b2)m2 + (a2 − b2)2)
,

and for x 6= 0, sgn(x) = 1, x > 0, = −1, x < 0;

(ii) M ∼ skew-C(0, 1) if and only if a = 0 and |b| = 1, b = 0 and |a| = 1, or |a| = 1/2 and
b = −a.

For X and Y being i.i.d. U(−1, 1), or i.i.d. Pearson Type II distributed, that is X has the
p.d.f. fX(x) = (3/4)(1−x2), x ∈ (−1, 1), we have also obtained the p.d.f.’s of M in both cases.
As they are rather cumbersome, hence are omitted. Still M ∼ skew-U(−1, 1) and skew-Pearson
Type II, respectively, if and only if a = 0 and |b| = 1, or |a| = 1 and b = 0 for both of the two
distributions.

Finally, we give an corollary where although (14) and (15) for joint p.d.f. of (X, Y ) are
satisfied, yet not as in the above corollaries, neither (X, Y ) is exchangeable elliptical distributed
nor X and Y are i.i.d. Again the p.d.f. of M is very cumbersome hence is omitted.

Corollary 1.6. Let (X, Y ) have the following joint p.d.f.

f(x, y) =
21

56ρ2 + 24
(x6 + y6 + 2ρx3y + 2ρxy3 + ρ2x2 + ρ2y2), − 1 ≤ x, y ≤ 1, |ρ| < 1.

Then the marginal p.d.f. of X is given by

fX(x) =
21

28ρ2 + 12
(x6 + ρ2x2 +

ρ2

3
+

1
7
),−1 ≤ x ≤ 1.

Again it can be shown M ∼S(fX) if and only if a = 0 and |b| = 1, or |a| = 1 and b = 0.

Remark 1.1. As an illustration, in the above corollary, we give the p.d.f. of M for the case
a−1 + b−1 = 0 in the following.
(1)If 0 < m < 2|a|, then

fM (m) =
21(m(|a| −m)6 + 2(|a| −m)7/7 + m(|a| −m)4(5m2 + 2a2ρ))

a8(28ρ2 + 12)
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+
21((|a| −m)5(15m2 + 4a2ρ)/5 + m2(|a| −m)(m4 + a4ρ)− a6m + 2|a|7/7)

a8(28ρ2 + 12)

+
21(m(|a| −m)2(3m4 + a2m2ρ + a4ρ2) + (|a| −m)3(15m4 + 6a2m2ρ + 2a4ρ2)/3)

a8(28ρ2 + 12)

− 21(a4m(5m2 + 2a2ρ)− |a|5(15m2 + 4a2ρ)/5− |a|m2(m4 + a4ρ))
a8(28ρ2 + 12)

− 21(a2m(3m4 + a2m2ρ + a4ρ2)− |a|3(15m4 + 6a2m2ρ + 2a4ρ2)/3)
a8(28ρ2 + 12)

.

(2)If −2|a| < m < 0, then

fM (m) =
21(a6m + 2|a|7/7 + a4m(5m2 + 2a2ρ) + |a|5(15m2 + 4a2ρ)/5)

a8(28ρ2 + 12)

+
21(|a|m2(m4 + a4ρ)−m(|a|+ m)6 + 2(|a|+ m)7/7−m(|a|+ m)4(5m2 + 2a2ρ))

a8(28ρ2 + 12)

+
21((|a|+ m)5(15m2 + 4a2ρ)/5 + (|a|+ m)(m4 + a4ρ)m2)

a8(28ρ2 + 12)

+
21(a2m(3m4 + a2m2ρ + a4ρ2) + |a|3(15m4 + 6a2m2ρ + 2a4ρ2)/3)

a8(28ρ2 + 12)

− 21(m(|a|+ m)2(3m4 + a2m2ρ + a4ρ2)− (|a|+ m)3(15m4 + 6a2m2ρ + 2a4ρ2)/3)
a8(28ρ2 + 12)

.

1.4 Non-exchangeable symmetric random variables

Let X and Y be two independent continuous random variables with symmetric p.d.f.’s fX

and fY , respectively, and distribution functions FX and FY , respectively. Then U = max{X, Y }
and V = min{X,Y } have p.d.f.’s

fU (u) = fX(u)FY (u) + fY (u)FX(u), u ∈ R,

and

fV (v) = fX(v)(1− FY (v)) + fY (v)(1− FX(v)), v ∈ R,

respectively. In other words, both U and V are mixture with equal weights of the two distri-
butions one in S(fX) and one in S(fY ). Inspired by this observation, in the section, we will
investigate the distributions of M , linear combinations of U and V , when X and Y are not
identically distributed. It turns out when the joint distribution of (X, Y ) has an elliptical form,
M is the mixture with equal weights of two skew distributions αX and βY , respectively, for
suitable constants α and β. Note that for bivariate normally distributed random variables, that
U and V have this property has been pointed out by Loperfido (2002).
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First, we give a theorem for the non-identically distributed situation, the proof is similar to
Corollary 1.1 hence is omitted.

Theorem 1.4. Let (X, Y ) be elliptical random variables with

A =

(
r k

k s

)
, (29)

where r, s > 0, k ∈ R, and rs > k2, that is the joint p.d.f. of (X, Y ) has the form

f(x, y) =
1√

rs− k2
g

(
sx2 + ry2 − 2kxy

rs− k2

)
, x, y ∈ R,

and g is a function from R+ to R+ satisfying
∫∞
0 g(y)dy = 1/π. We have

(i) if a + b 6= 0, then the p.d.f. of M is

fM (m) =
1
ξ1

∫ α1m

−∞
g

(
w2 +

m2

ξ2
1

)
dw +

1
ξ2

∫ α2m

−∞
g

(
w2 +

m2

ξ2
2

)
dw, m ∈ R,

where

ξ1 =
√

a2r + b2s + 2abk, ξ2 =
√

a2s + b2r + 2abk,

α1 =
(ar + bk − bs− ak)m

ξ1

√
rs− k2|a + b| , α2 =

(as + bk − br − ak)m
ξ2

√
rs− k2|a + b| ;

(ii) if a + b = 0, then ξ1 = ξ2 =
√

a2(r + s− 2k), and the p.d.f. of M is

fM (m) =
2
ξ1

∫ ∞

−∞
g

(
w2 +

m2

ξ2
1

)
dw, m/a > 0 ;

(iii) M is the mixture with equal weights of skew distributions of (ξ1/
√

r)X and (ξ2/
√

s)Y . In
particular for the case a + b = 0, M ∼ S((ξ1/

√
r)X).

The joint p.d.f. f of the following Corollary 1.7 corresponds to

A =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2,

)

in (16) and A is given in (29) for Corollaries 1.8 and 1.9.

Corollary 1.7. Let (X,Y ) be bivariate normally distributed with the joint p.d.f.

f(x, y) =
1

2πσ1σ2

√
1− ρ2

e−q/2, (x, y) ∈ R2, |ρ| < 1, σ1, σ2 > 0,
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where

q =
1

(1− ρ2)

(
x2

σ2
1

− 2ρxy

σ1σ2
+

y2

σ2
2

)
.

Then the p.d.f. of M is given by

fM (m) =





1
|a|σ1

φ
(

m
aσ1

)
Φ(A1m) + 1

|a|σ2
φ

(
m

aσ2

)
Φ(B1m) , b = 0,m ∈ R,

1
|b|σ1

φ
(

m
bσ1

)
Φ(A2m) + 1

|b|σ2
φ

(
m
bσ2

)
Φ(B2m) , a = 0, m ∈ R,

1
ξ1

φ
(

m
ξ1

)
Φ(A3m) + 1

ξ2
φ

(
m
ξ2

)
Φ(B3m) , a−1 + b−1 > 0,m ∈ R,

1
ξ1

φ
(

m
ξ1

)
Φ(−A3m) + 1

ξ2
φ

(
m
ξ2

)
Φ (−B3m) , a−1 + b−1 < 0,m ∈ R,

2

|a|
√

σ2
1−2ρσ1σ2+σ2

2

φ

(
m

|a|
√

σ2
1−2ρσ1σ2+σ2

2

)
a−1 + b−1 = 0,m/a > 0,

where

A1 =
(σ1 − ρσ2)

a
√

(1− ρ2)σ1σ2

, B1 =
(σ2 − ρσ1)

a
√

(1− ρ2)σ1σ2

,

A2 = − (σ1 − ρσ2)
b
√

(1− ρ2)σ1σ2

, B2 = − (σ2 − ρσ1)
b
√

(1− ρ2)σ1σ2

,

A3 =
aσ2

1 − ρσ1σ2(a− b)− bσ2
2

ξ1(a + b)σ1σ2

√
1− ρ2

, B3 =
aσ2

2 − ρσ1σ2(a− b)− bσ2
1

ξ2(a + b)σ1σ2

√
1− ρ2

,

ξ1 =
√

a2σ2
1 + 2abρσ1σ2 + b2σ2

2, ξ2 =
√

a2σ2
2 + 2abρσ1σ2 + b2σ2

1.

In the above corollary, it can be seen, M is the mixture with equal weights of skew distribu-
tions of (ξ1/σ1)X and (ξ2/σ2)Y , where X ∼ N (0, σ2

1) and Y ∼ N (0, σ2
2). In particular for the

case a−1 + b−1 = 0, M ∼ skew-N (0, a2(σ2
1 − 2ρσ1σ2 + σ2

2)).

Corollary 1.8. Let (X,Y ) be bivariate Cauchy distributed with the joint p.d.f.

fX,Y (x, y) =
1

2π
√

rs− k2
(
1 + sx2+ry2−2kxy

rs−k2

)3/2
, (x, y) ∈ R2.

Then X ∼ C(0,√r), Y ∼ C(0,
√

s), and the p.d.f. of M is

fM (m) =





|a|√r
2π(m2+a2r)

(1 + A1) + |a|√s
2π(m2+a2s)

(1 + B1), b = 0,m ∈ R,
|b|√r

2π(m2+b2r)
(1−A2) + |b|√s

2π(m2+b2s)
(1−B2), a = 0,m ∈ R,

ξ1
2π(m2+ξ2

1)
(1 + A3) + ξ2

2π(m2+ξ2
2)

(1 + B3) , a−1 + b−1 > 0,m ∈ R,
ξ1

2π(m2+ξ2
1)

(1−A3) + ξ2
2π(m2+ξ2

2)
(1−B3) , a−1 + b−1 < 0,m ∈ R,

2|a|√r+s−2k
π(m2+a2(r+s−2k))

, a−1 + b−1 = 0,m/a > 0,
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where

A1 =
(r − k)m√

r((r + s− 2k)m2 + a2(rs− k2))
,

B1 =
(s− k)m√

s((r + s− 2k)m2 + a2(rs− k2))
,

A2 =
(r − k)m√

r((r + s− 2k)m2 + b2(rs− k2))
,

B2 =
(s− k)m√

s((r + s− 2k)m2 + b2(rs− k2))
,

A3 =
(bs− ar + (b− a)k)m

ξ1

√
(r + s− 2k)m2 + (a + b)2(rs− k2)

,

B3 =
(br − as + (b− a)k)m

ξ2

√
(r + s− 2k)m2 + (a + b)2(rs− k2)

,

ξ1 =
√

a2r + b2s + 2abk, ξ2 =
√

a2s + b2r + 2abk.

In the above corollary, M is the mixture with equal weights of skew distributions of (ξ1/
√

r)X
and (ξ2/

√
s)Y . In particular if a−1 + b−1 = 0, then M ∼ skew-C(0, ξ1).

According to Johnson and Kotz (1970), the p.d.f. of Pearson Type VII distribution can be
expressed in the following form

fX(x) =
Γ(m)√

πΓ(m− 1/2)
c2m−1

((x− λ)2 + c2)m
, m > 0, c > 0, x ∈ R. (30)

In the next corollary, both X and Y have Pearson Type VII as their distributions with m = 3/2,
λ = 0, and c = r and s, respectively. That is

fX(x) =
r

(x2 + 2r)3/2
, fY (y) =

s

(y2 + 2s)3/2
, r, s > 0, x, y ∈ R. (31)

Corollary 1.9. Let (X,Y ) be bivariate distributed with the joint p.d.f.

fX,Y (x, y) =
1

2π
√

rs− k2
(
1 + sx2+ry2−2kxy

2(rs−k2)

)2 , (x, y) ∈ R2,

Then the p.d.f. of M is

fM (m) =





a2r
2(m2+2a2r)3/2 (1 + A1) + a2s

2(m2+2a2s)3/2 (1 + B1), b = 0,m ∈ R,
b2r

2(m2+2b2r)3/2 (1−A2) + b2s
2(m2+2b2s)3/2 (1−B2), a = 0,m ∈ R,

ξ2
1

2(m2+2ξ2
1)3/2 (1 + A3) + ξ2

2

2(m2+2ξ2
2)3/2 (1 + B3), a−1 + b−1 > 0,m ∈ R,

ξ2
1

2(m2+2ξ2
1)3/2 (1−A3) + ξ2

2

2(m2+2ξ2
2)3/2 (1−B3), a−1 + b−1 < 0,m ∈ R,

2a2(r+s−2k)

(m2+2a2(r+s−2k))3/2 , a−1 + b−1 = 0,m/a > 0,
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where

A1 =
2m(r − k)(m2 + 2a2r)1/2

√
rs− k2

πr((r + s− 2k)m2 + 2(rs− k2)a2)
+

2 arctan
(

(r−k)m√
(m2+2a2r)(rs−k2)

)

π
,

B1 =
2m(s− k)(m2 + 2a2s)1/2

√
rs− k2

πs((r + s− 2k)m2 + 2(rs− k2)a2)
+

2 arctan
(

(s−k)m√
(m2+2a2s)(rs−k2)

)

π
,

A2 =
2m(r − k)(m2 + 2a2r)1/2

√
rs− k2

πr((r + s− 2k)m2 + 2(rs− k2)a2)
+

2 arctan
(

(r−k)m√
(m2+2b2r)(rs−k2)

)

π
,

B2 =
2m(s− k)(m2 + 2a2s)1/2

√
rs− k2

πs((r + s− 2k)m2 + 2(rs− k2)a2)
+

2 arctan
(

(s−k)m√
(m2+2b2s)(rs−k2)

)

π
,

A3 =
2m(bs(a + b)− ar(a + b)− (b2 − a2)k)(m2 + 2ξ2

1)
1/2
√

rs− k2

πξ2
1((r + s− 2k)m2 + 2(a + b)2(rs− k2))

+
2 arctan

(
(ar−bs−(a−b)k)m

(a+b)
√

(m2+2ξ2
1)(rs−k2)

)

π
,

B3 =
2m(br(a + b)− as(a + b)− (b2 − a2)k)(m2 + 2ξ2

2)
1/2
√

rs− k2

πξ2
2((r + s− 2k)m2 + 2(a + b)2(rs− k2))

+
2 arctan

(
(as−br−(a−b)k)m

(a+b)
√

(m2+2ξ2
2)(rs−k2)

)

π
,

ξ1 =
√

a2r + b2s + 2abk, ξ2 =
√

a2s + b2r + 2abk.

Again, in the above corollary, M is the mixture with equal weights of skew distributions of
(ξ1/

√
r)X and (ξ2/

√
s)Y . In particular for the case a−1 + b−1 = 0, M ∼ S((ξ1/

√
r)X).
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Chapter 2

Ratio of generalized skew-normal

and skew-t random variables

2.1 Introduction

It is known that for a bivariate random vector (X, Y ), the distribution of the ratio X/Y is of
interest in many areas. For different bivariate distributions, recently, there are many investiga-
tions to find the distributions of X/Y and XY . See, for example, Chamayou (2004), Nadarajah
and Ali (2005, 2006), Nadarajah and El (2005), Nadarajah (2005, 2006), Gupta and Nadarajah
(2006a, 2006b), Nadarajah and Kibria (2006), Nadarajah and Kotz (2006, 2007), Nadarajah and
Gupta (2006, 2007), Coelho and Mexia (2007), and Sharafi et al. (2008), etc.

In this work, we will study the distribution of the ratio of two independent GSN (b1, b2)
distributed random variables. Here following Jamalizadeha, et al. (2008), a random variable X

is said to have a GSN (b1, b2) distribution, the so-called two-parameter generalized skew-normal
distribution, if its p.d.f. is

ϕ(x; b1, b2) = c(b1, b2)φ(x)Φ(b1x)Φ(b2x), x ∈ R, (1)

where φ and Φ are the probability density function (p.d.f.) and cumulative distribution function
(c.d.f.) of N (0, 1) distribution, respectively, b1, b2 ∈ R, and

c(b1, b2) =

(
1
4

+
1
2π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

, (2)

According to Huang and Chen (2007), for a symmetric p.d.f f , X is said to have a skew
distribution of f , if the p.d.f. of X is

fX(x) = 2f(x)G(x), x ∈ R, (3)

where G is a skew function, that is

0 ≤ G(x) ≤ 1 and G(x) + G(−x) = 1, x ∈ R. (4)
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For a common symmetric distribution, such as N (0, 1) distribution, skew-N (0, 1) distribu-
tion can be defined in a similar way.

Note that when b2 = 0, then ϕ(x; b1, 0) = 2φ(x)Φ(b1x). Hence GSN (b1, 0) is the usual
SN (b1) distribution. That is a distribution with the p.d.f. 2φ(x)Φ(λx), x ∈ R, where λ ∈ R.
Similarly, GSN (0, b2) is just SN (b2). Except b1 = 0 or b2 = 0, GSN (b1, b2) distribution is not
skew-N (0, 1) distribution in the above sense. The following is an application of the p.d.f. given
in (1). Let X|Y = y be SN (λy) distributed, Y be SN (η) distributed. Then

fX(x|λ, η) = 4φ(x)
∫ ∞

−∞
φ(y)Φ(λxy)Φ(ηy)dy

= 4φ(x)

(
1
4

+
1
2π

arctan
ληx√

1 + λ2x2 + η2

)

= 2φ(x)

(
1
2

+
1
π

arctan
ληx√

1 + λ2x2 + η2

)
= 2φ(x)G(x), x ∈ R,

where

G(x) =

(
1
2

+
1
π

arctan
ληx√

1 + λ2x2 + η2

)
, x ∈ R,

is a skew function. Hence X has a skew-N (0, 1) distribution. When λ = 0 or η = 0, X is N (0, 1)
distributed, and as η →∞,

fX(x|λ, η) → 2φ(x)ψ(λx),

where the skew function

ψ(x) =
1
2

+
1
π

arctanx, x ∈ R,

is the distribution function of C(0, 1).
We are also interested in knowing when the distribution of the ratio of two GSN (b1, b2)

distributed random variables will be skew-C(0, 1) distributed.

2.2 The ratio of two GSN(b1, b2) distributions

In this section, we will find the distributions of the ratio of two generalized skew-normal
distributed random variables U and V . The special case that both U and V are skew-normal
distributed has been treated by Huang and Chen (2007). We give the result in the following.

Theorem 2.1. Let U and V be independent random variables distributed as SN (b1) and
SN (b3), respectively, b1, b3 ∈ R. Then W ≡ X(b1, b3) = U/V has a skew-C(0, 1) distribution
with p.d.f.

fW (w) =
2

π(1 + w2)
G(x), (5)
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where

G(x) =


1

2
+

b3 arctan
(
b1w/

√
1 + b2

3 + w2
)

π
√

1 + b2
3 + w2

+
b1w arctan

(
b3/

√
1 + (1 + b2

1)w2
)

π
√

1 + (1 + b2
1)w2


 ,

w, b1, b3 ∈ R, is a skew function.

For the ratio of two GSN distributed random variables, the general case is too cumbersome.
But when one of the four parameters is zero, the p.d.f. of U/V can be obtained.

Theorem 2.2. Let U and V be independent random variables distributed as GSN (b1, b2) and
GSN (b3, 0), respectively, b1, b2, b3 ∈ R. Then X ≡ X(b1, b2, b3, 0) = U/V has the following
p.d.f.

fX(x) =
1

π(1 + x2)

(
1
2

+
1
π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

G1(x), x ∈ R, (6)

where

G1(x) =
1
2

+
b1x

[
arctan

(
b3/

√
1 + (1 + b2

1)x2
)

+ arctan
(
b2x/

√
1 + (1 + b2

1)x2
)]

π
√

1 + (1 + b2
1)x2

+
b2x

[
arctan

(
b3/

√
1 + (1 + b2

2)x2
)

+ arctan
(
b1x/

√
1 + (1 + b2

2)x2
)]

π
√

1 + (1 + b2
2)x2

+
b3

[
arctan

(
b1x/

√
1 + b2

3 + x2
)

+ arctan
(
b2x/

√
1 + b2

3 + x2
)]

π
√

1 + b2
3 + x2

. (7)

The proof of Theorem 2.2 will be given in the Appendix. It can be seen easily that when
b2 = 0, (6) coincides with (5). Furthermore, we have

Theorem 2.3. In Theorem 2.2, U/V is skew-C(0, 1) distributed if and only if b1 or b2 is zero.

Proof. Obviously, we only need to prove the “only if”part. In (6), by letting

K(x) =

(
1 +

2
π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

G1(x),

fX(x) can be rewritten as

fX(x) =
2

π(1 + x2)
K(x) x ∈ R.

Hence U/V is Skew-C(0, 1) distributed if and only if K(x) is a skew function. In particular,

2K(0) =

(
1 +

2
π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

= 1,
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Since G1(0) = 1/2. This in turn implies b1 = 0 or b2 = 0, and the proof follows.

The following theorem is a parallel result of Theorem 2.2. The proof is similar hence is
omitted.

Theorem 2.4. Let S and T be independent random variables distributed as GSN (b1, 0) and
GSN (b3, b4), respectively, b1, b3, b4 ∈ R. Then the p.d.f. of Y ≡ X(b1, 0, b3, b4) = S/T is given
by

fY (y) =
1

π(1 + y2)

(
1
2

+
1
π

arctan

(
b3b4√

1 + b2
3 + b2

4

))−1

G2(y), y ∈ R,

where

G2(y) =
1
2

+
b1y

[
arctan

(
b3/

√
1 + (1 + b2

1)y2
)

+ arctan
(
b4/

√
1 + (1 + b2

1)y2
)]

π
√

1 + (1 + b2
1)y2

+
b3

[
arctan

(
b1y/

√
1 + b2

3 + y2
)

+ arctan
(
b4/

√
1 + b2

3 + y2
)]

π
√

1 + b2
3 + y2

+
b4

[
arctan

(
b1y/

√
1 + b2

4 + y2
)

+ arctan
(
b3/

√
1 + b2

4 + y2
)]

π
√

1 + b2
4 + y2

.

With regard to the moments, we have the following result.

Corollary 2.1. In Theorem 2.2, E(|X|s) exists if and only if |s| < 1.

Proof. First it is known that
∫ ∞

−∞
|x|s 1

π(1 + x2)
dx < ∞,

if and only if |s| < 1. As 0 ≤ G1(x) < 4, ∀x ∈ R,

fX(x) <
1

π(1 + x2)

(
1
8

+
1
4π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

, x ∈ R.

Hence E(|X|s) < ∞ for |s| < 1. Next by using limit comparison test,

lim
x→∞

fX(x)
1

π(1+x2)

=

(
1
2

+
1
π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

·




1
2

+
b1 arctan

(
b2√
1+b21

)

π
√

1 + b2
2

+
b2 arctan

(
b1√
1+b22

)

π
√

1 + b2
2


 < ∞,
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consequently, E(|X|s) = ∞ if s > 1. That E(|X|s) = ∞ for s < −1 can be proved similarly.
This completes the proof.

Corollary 2.1 has a version for the random variable Y in Theorem 2.4, as it is similar, we
omit the statement of this result.

According to Sharafi and Behboodian (2008), a random variable X is said to have a SNBn(b)
distribution, if the p.d.f. of X is

fn(x;λ) = cn(b)φ(x)Φn(bx), x ∈ R, b ∈ R, (8)

where

cn(b) =
1∫∞

−∞ φ(x)Φn(bx)dx
, n ≥ 1. (9)

As SNB2(b1) is exactly a GSN (b1, b1) distribution, we have the following immediate conse-
quence of Theorem 2.2.

Corollary 2.2. Let P and Q be independent random variables distributed as SNB2(b1) and
GSN (b3, 0), respectively, b1, b3 ∈ R. Then Z ≡ Z(b1, b3) = P/Q has the following p.d.f.

fZ(z) =
1

π(1 + z2)

(
1
2

+
1
π

arctan

(
b2
1√

1 + 2b2
1

))−1

H(z), z ∈ R,

where

H(z) =
1
2

+
2b1z

[(
arctan

(
b3/

√
1 + (1 + b2

1)z2
))]

π
√

1 + (1 + b2
1)z2

+
2b1z

[(
arctan

(
b1z/

√
1 + (1 + b2

1)z2
))]

π
√

1 + (1 + b2
1)z2

+
2b3

[(
arctan

(
b1z/

√
1 + b2

3 + z2
))]

π
√

1 + b2
3 + z2

.

Finally we present some limiting results for the X(b1, b2, b3, 0) distribution.

Corollary 2.3. The following are the limiting p.d.f.’s of X(b1, b2, b3, 0) distribution.

1
π(1+x2)

(1 + g4(x))I(x ≥ 0), b1, b2 →∞,
1

π(1+x2)
(1− g4(x))I(x < 0), b1, b2 → −∞,

λ1
π(1+x2)

(1 + g5(x))I(x ≥ 0), b1, b3 →∞,
λ2

π(1+x2)
(1− g5(x))I(x < 0), b1, b3 → −∞,

λ3
π(1+x2)

(1 + g6(x))I(x ≥ 0), b2, b3 →∞,
λ4

π(1+x2)
(1− g6(x))I(x < 0), b2, b3 → −∞,

2
π(1+x2)

I(x ≥ 0), b1, b2, b3 →∞,
2

π(1+x2)
I(x < 0), b1, b2, b3 → −∞,
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1
π(1+x2)

g1(x)I(x ≥ 0), b1 →∞,
1

π(1+x2)
g11(x)I(x < 0), b1 → −∞,

1
π(1+x2)

g2(x)I(x ≥ 0), b2 →∞,
1

π(1+x2)
g21(x)I(x < 0), b2 → −∞,

1
π(1+x2)

g3(x)I(x ≥ 0), b3 →∞,
1

π(1+x2)
g31(x)I(x < 0), b3 → −∞,

where

λ1 =
π

arccos
(
− b2√

1+b22

) , λ2 =
π

arccos
(

b2√
1+b22

) , λ3 =
π

arccos
(
− b1√

1+b21

) , λ4 =
π

arccos
(

b1√
1+b21

) ,

g1(x) =
1
π


π +

b2x

(
π + 2 arctan

(
b3√

1+(1+b22)x2

))

√
1 + (1 + b2

2)x2
+

b3

(
π + 2 arctan

(
b2x√

1+b23+x2

))

√
1 + b2

3 + x2


 ,

g11(x) =
1
π


π +

−b2x

(
π + 2 arctan

(
−b3√

1+(1+b22)x2

))

√
1 + (1 + b2

2)x2
+
−b3

(
π + 2 arctan

(
−b2x√

1+b23+x2

))

√
1 + b2

3 + x2


 ,

g2(x) =
1
π


π +

b1x

(
π + 2 arctan

(
b3√

1+(1+b21)x2

))

√
1 + (1 + b2

1)x2
+

b3

(
π + 2 arctan

(
b1x√

1+b23+x2

))

√
1 + b2

3 + x2


 ,

g21(x) =
1
π


π +

−b1x

(
π + 2 arctan

(
−b3√

1+(1+b21)x2

))

√
1 + (1 + b2

1)x2
+
−b3

(
π + 2 arctan

(
−b1x√

1+b23+x2

))

√
1 + b2

3 + x2


 ,

g3(x) =

[
π + b1x(π+2arctan(b2x/

√
1+(1+b21)x2))√

1+(1+b21)x2
+ b2x(π+2 arctan(b1x/

√
1+(1+b22)x2))√

1+(1+b22)x2

]

π + 2 arctan
(

b1b2√
1+b21+b22

) ,

g31(x) =

[
π + −b1x(π+2arctan(−b2x/

√
1+(1+b21)x2))√

1+(1+b21)x2
+ −b2x(π+2arctan(−b1x/

√
1+(1+b22)x2))√

1+(1+b22)x2

]

π + 2 arctan
(

b1b2√
1+b21+b22

) ,
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and

g4(x) =
b3√

1 + b2
3 + x2

, g5(x) =
b2x√

1 + (1 + b2
2)x2

, g6(x) =
b1x√

1 + (1 + b2
2)x2

.

2.3 Some figures of p.d.f. in Theorem 2.2

In this section, in Figure 2, we give some illustrations of the possible forms of the p.d.f. of
the random variable X(b1, b2, b3, 0) in Theorem 2.2 under various choices of (b1, b2, b3). It can
be shown that the p.d.f. of the X(b1, b2, b3, 0) distribution may have one side heavier tail and
one side thinner tail than the C(0, 1) distribution.

Note that X(b1, b2, b3, 0) may not be unimodal. As an example, X(50, 4,−1, 0) is bimodal
and has three inflection points, see Figure 1.
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Figure 1. Three inflection points of the p.d.f. of X(50, 4,−1, 0).
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Figure 2. Probability density function of X(b1, b2, b3, 0) for several values of (b1, b2, b3)
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2.4 Appendix.

We prove Theorem 2.2 in the following. First we give two lemmas which can be found in Huang
and Su (2008).

Lemma 2.1.Let FTr be the c.d.f. of Tr distributions. Then

FTr(t) =





1
2 + 1

π arctan t√
r

+ 1
2
√

π

∑(r−1)/2
i=1

Γ(i)ri−1/2

Γ(i+1/2)
t

(r+t2)i , if r is odd,

1
2 + 1

2
√

π

∑r/2
i=1

Γ(i−1/2)ri−1

Γ(i)
t

(r+t2)i−1/2 , if r is even.
(10)

Lemma 2.2. Let a, b1, b2 ∈ R, q ∈ N . If a 6= 0 and q is odd, we have

∫ ∞

0
vqφ(av)Φ(b1v)Φ(b2v)dv =

2q/2

4πaq+1
Γ(

q + 1
2

)
(q+1)/2∑

0

Γ(i− 1/2)
Γ(i)

[
b1/|a|

(1 + b2
1/a2)i−1/2

FT2i−1

(
b2

√
2i− 1

|a|
√

1 + b2
1/a2

)
+

b2/|a|
(1 + b2

2/a2)i−1/2
FT2i−1

(
b1

√
2i− 1

|a|
√

1 + b2
2/a2

)]
+

2q/2−3

√
π

Γ(
q + 1

2
).

If a 6= 0 and q is even, we have

∫ ∞

0
vqφ(av)Φ(b1v)Φ(b2v)dv =

2q/2

4π|a|q+1
Γ(

q + 1
2

)
q/2∑

0

Γ(i)
Γ(i + 1/2)

[
b1/|a|

(1 + b2
1/a2)i

FT2i

(
b2

√
2i

|a|
√

1 + b2
1/a2

)
+

b2/|a|
(1 + b2

2/a2)i
FT2i

(
b1

√
2i− 1

|a|
√

1 + b2
2/a2

)]

+
2q/2

|a|q+1
√

π
Γ(

q + 1
2

)

(
1
8

+
1
4π

(arctan
b1

|a| + arctan
b2

|a| + arctan
b1b2

|a|
√

a2 + b2
1 + b2

2

)

)
.

For the case a = 0 and b1, b2 are not both positive, we have
∫ ∞

0
vq 1√

2π
Φ(b1v)Φ(b2v)dv

=
2(q+1)/2−1Γ((q + 2)/2)

2π3/2(q + 1)

( −b1

|b1|q+1
FTq+2(

b2
√

q + 2
|b1| ) +

−b2

|b2|q+1
FTq+2(

b1
√

q + 2
|b2| )

)
.

In particularly, if a 6= 0, q = 0, then we have
∫ ∞

0
φ(av)Φ(b1v)Φ(b2v)dt

=
1

8|a| +
1

4π|a|(arctan(b1/|a|) + arctan (b2/|a|) + arctan(b1b2/(|a|(a2 + b2
1 + b2

2)
1/2))). (11)
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Lemma 2.3. Let a, b1, b2, b3 ∈ R. If a 6= 0,
∫ ∞

0
vφ(av)Φ(b1v)Φ(b2v)Φ(b3v)dv =

1
8(2π)1/2a2

+
b1√
2πa2

[
1

4π
√

a2 + b2
1

(
arctan

(
b3√

a2 + b2
1

)
+ arctan

(
b2b3√

(a2 + b2
1 + b2

2 + b2
3)(a2 + b2

1)

))

+
1

8
√

a2 + b2
1

+
1

4π
√

a2 + b2
1

arctan

(
b2√

a2 + b2
1

)]

+
b2√
2πa2

[
1

4π
√

a2 + b2
2

(
arctan

(
b3√

a2 + b2
2

)
+ arctan

(
b1b3√

(a2 + b2
1 + b2

2 + b2
3)(a2 + b2

2)

))

+
1

8
√

a2 + b2
2

+
1

4π
√

a2 + b2
2

arctan

(
b1√

a2 + b2
2

)]

+
b3√
2πa2

[
1

4π
√

a2 + b2
3

(
arctan

(
b1√

a2 + b2
3

)
+ arctan

(
b1b2√

(a2 + b2
1 + b2

2 + b2
3)(a2 + b2

3)

))

+
1

8
√

a2 + b2
3

+
1

4π
√

a2 + b2
3

arctan

(
b2√

a2 + b2
3

)]
. (12)

For the case a = 0, we have

∫ ∞

0
v

1√
2π

Φ(b1v)Φ(b2v)Φ(b3v)dv =





∞, b1 ≥ 0, b2 ≥ 0, b3 ≥ 0,
1

16
√

2πb2i
, bi < 0, i = 1, 2, 3, bj = bk = 0,

θ, otherwise,

(13)

where

θ = −

[
1

4π|b1|(arctan(b2/|b1|) + arctan (b3/|b1|) + arctan(b2b3/(|b1|(b2
1 + b2

2 + b2
3)

1/2)))
]

2
√

2πb1

−

((
b2

b21+b22

(
1 + b3√

b21+b22+b23

))
+

(
b3

b21+b23

(
1 + b2√

b21+b22+b23

)))

4(2π)3/2b1

−

[
1

4π|b2|(arctan(b1/|b2|) + arctan (b3/|b2|) + arctan(b1b3/(|b2|(b2
1 + b2

2 + b2
3)

1/2)))
]

2
√

2πb2

− 1
2
√

2πb1

1
8|b1| −

1
2
√

2πb2

1
8|b2| −

1
2
√

2πb3

1
8|b3|

−

((
b1

b21+b22

(
1 + b3√

b21+b22+b23

))
+

(
b3

b22+b23

(
1 + b1√

b21+b22+b23

)))

4(2π)3/2b2

−

[
1

4π|b3|(arctan(b1/|b3|) + arctan (b2/|b3|) + arctan(b1b2/(|b3|(b2
1 + b2

2 + b2
3)

1/2)))
]

2
√

2πb3
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−

((
b1

b21+b23

(
1 + b2√

b21+b22+b23

))
+

(
b2

b22+b23

(
1 + b1√

b21+b22+b23

)))

4(2π)3/2b3
. (14)

Proof. We only prove the case a 6= 0. By the integration by parts, we have
∫ ∞

0
vφ(av)Φ(b1v)Φ(b2v)Φ(b3v)dv

=
∫ ∞

0
v

1√
2π

e−a2v2/2Φ(b1v)Φ(b2v)Φ(b3v)dv

=

[
−Φ(b1v)Φ(b2v)Φ(b3v)e−a2v2/2

∣∣∣∣
∞

0

+
∫∞
0 e−a2v2/2d(Φ(b1v)Φ(b2v)Φ(b3v))

]

√
2πa2

=

[
1
8 +

∫∞
0 e−a2v2/2[b1φ(b1v)Φ(b2v)Φ(b3v) + b2φ(b2v)Φ(b1v)Φ(b3v) + b3φ(b3v)Φ(b1v)Φ(b2v)]dv

]
√

2πa2
,

where the last integration can be obtained by (12), and the proof follows.

Proof of Theorem 2.2. First the joint p.d.f. of U and V is

fU,V (u, v) =

(
1
8

+
1
4π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

φ(u)φ(v)Φ(b1u)Φ(b2u)Φ(b3v)

= λφ(u)φ(v)Φ(b1u)Φ(b2u)Φ(b3v), u, v ∈ R, (15)

where

λ =

(
1
8

+
1
4π

arctan

(
b1b2√

1 + b2
1 + b2

2

))−1

. (16)

Hence the p.d.f. of X is

fX(x) = λ

∫ ∞

−∞
|v|φ(xv)φ(v)Φ(b1xv)Φ(b2xv)Φ(b3v)dv

= λ

∫ ∞

0
vφ(xv)φ(v)Φ(b1xv)Φ(b2xv)Φ(b3v)dv+λ

∫ ∞

0
vφ(xv)φ(v)Φ(−b1xv)Φ(−b2xv)Φ(−b3v)dv.

Let S={(1, 2), (2, 1)}. By Lemma 2.3, we have

fX(x) =
λ

16π(1 + x2)
+

λ

16π(1 + x2)
+

∑

(i,j)∈S

bixλ

2π(1 + x2)


 1

8
√

1 + (1 + b2
i )x2

+
arctan

(
bjx√

1+(1+b2i )x2

)

4π
√

1 + (1 + b2
i )x2

+

arctan
(

b3√
1+(1+b2i )x2

)
+ arctan

(
bjxb3√

1+(1+b2i )x2
q

1+(1+b2i +b2j )x2+b23

)

4π
√

1 + (1 + b2
i )x2



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+
b3λ

2π(1 + x2)




1
8
√

1 + b2
3 + x2

+
arctan

(
b1x√

1+b23+x2
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4π
√

1 + b2
3 + x2
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arctan

(
b2x√

1+b23+x2

)
+ arctan

(
b1xb2x√

1+b23+x2
√

1+(1+b21+b22)x2+b23
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√
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3 + x2
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

−
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bixλ

2π(1 + x2)




1

8
√
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i )x2
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arctan

(
−bjx√

1+(1+b2i )x2
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√
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arctan
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1+(1+b2i )x2

)
+ arctan

(
bjxb3√

1+(1+b2i )x2
q

1+(1+b2i +b2j )x2+b23

)
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√
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i )x2




− b3λ
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1
8
√
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+
arctan

(
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arctan
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√
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)

4π
√
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λ

(1 + x2)8π

)

+
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√
1 + (1 + b2

1)x2
)
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(
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1)x2
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(2π)2
√
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[
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√
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(2π)2
√
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+
b3λ
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[
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√
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G1(x), x ∈ R,

30



where

G1(x) =
1
2

+
b1x

[
arctan

(
b3/

√
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1)x2
)

+ arctan
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√
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1)x2
)]
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√
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+
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√
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(
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√
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2)x2
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√
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+
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√
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)
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(
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√
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Chapter 3

Identities for negative moments of

quadratic forms in skew normal

variables

3.1 Introduction

For non-negative random variables, it is known that negative moments are usually difficult
to compute. Among others, Chao and Straederman (1972) studied the problem of finding the
expected value of functions of a random variable X of the form f(X) = (X+A)−n, where X+A >

0, and n is a non-negative integer. Wu et al. (2009) proved that under suitable conditions, for
some special sequences of r.v.’s {Xn, n ≥ 1}, E(a + Xn)−α ∼ (a + E(Xn))−α, as n →∞, where
“∼”denotes asymptotically equal. On the other hand, quadratic forms of multivariate normal
random variables appear in many areas of statistics, such as time series, hypothesis testing, and
general linear model, etc. There are many investigations dedicated to evaluation of moments of
quadratic forms, as well as moments of ratios of quadratic forms. Magnas (1986,1990) provided
some numerical estimators about E(U)s, E(U s(X ′CX)) and E(U s(a′X)), where s = 1, 2, · · · ,
U = X ′AX/X ′BX, X is Nr(µ,Σ)(the r-dimensional normal distribution with mean vector µ

and correlation matrix Σ) distributed, A and C are symmetric matrices, B is a symmetric and
non-negative matrix, and a ∈ Rr. Mathai and Provost (1992) gave a compendium of formulas
for inverse moments of quadratic forms in multivariate normal variables in terms of Lauricella’s
function. Gupta and Kabe (1998) provided a method to obtain the exact moments of ratios of
quadratic forms X ′AX/X ′X where A is a positive definite matrix, and X isNr(µ,Σ) distributed.
By assuming that the ratio and its own denominator of the quadratic form X ′AX/X ′BX are
independent, where X is Nr(0, Σ) distributed, B = aIr, a > 0, Ir is an r×r identity matrix, and
A is a positive definite matrix, Conniffe and Spencer (2001) solved some hydrology problems.
Paolella (2003) gave several numerical methods for computing the moments of a ratio of quadratic
forms in multivariate normal variables.
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Recently under the assumption of normality, by using two key lemmas of Meng (2005),
Rukhin (2009) provided some formulas relating negative central moments of the quadratic form
defined by a positive definite matrix to those determined by the inverse matrix. He also gave
similar relationships for ratios of quadratic forms. These results can be used to check the numer-
ical accuracy of different algorithms for evaluation of these moments(see Magnas (1986,1990),
and Paolella (2003)).

In this note, under two multivariate skew normal distributions, we obtain some results
parallel to Rukhin (2009).

3.2 Main results

In this section, we provide some formulas relating negative central moments of the quadratic
forms defined by a positive definite matrix to those determined by the inverse matrix. According
to Huang and Chen (2006), first we give a definition.

Definition 3.1. A random variable Z is said to be multivariate skew normal distributed if its
probability density function (p.d.f.) has the form

fZ(z) = 2φr(z; Ω)G(α′z), z ∈ Rr, (1)

where Ω > 0, α ∈ Rr, φr(z; Ω) is the p.d.f. of Nr(0,Ω) distribution, and G(·) is a skew function,
that is 0 ≤ G(x) ≤ 1, G(x) + G(−x) = 1, ∀x ∈ R.

Throughout this section, assume Z has the p.d.f. given in (1). The moment generating
function (m.g.f.) of the quadratic form Z ′AZ was given by Huang and Chen (2006).

Lemma 3.1. Let Q = Z ′AZ, where A is an r × r symmetric matrix A. Then the m.g.f. of Q

is given by

E(etQ) = |Ir − 2tAΩ|−1/2, Ir − 2tAΩ > 0, t ∈ R.

By using Lemma 3.1, the following lemma can be obtained immediately.

Lemma 3.2. Let Q1 = Z ′AZ, and Q2 = Z ′BZ, where A and B are r× r symmetric matrices.
Then the joint m.g.f. of Q1 and Q2 is given by

E(etQ1+sQ2) = |Ir − (2tA + 2sB)Ω|−1/2, Ir − (2tA + 2sB)Ω > 0, t, s ∈ R.

We also need the following two lemmas by Meng (2005). Let

MX,Y (t1, t2) = E
(
et1X+t2Y

)
, t1, t2 ∈ R,

denote the joint m.g.f. of X and Y .
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Lemma 3.3. Suppose a is a non-negative integer and b > 0, P (Y > 0) = 1, MX,Y (t1, 0) exists
in a neighborhood of t1 = 0, and Xa/Y b is quasi-integrable with respect to P , where P is the
probability measure of (X, Y ). Then M

(a,0)
X,Y (0,−t2)tb−1

2 is quasi-integrable with respect to R+

and the identity

E

(
Xa

Y b

)
=

1
Γ(b)

∫ ∞

0
tb−1M

(a,0)
X,Y (0,−t)dt =

1
Γ(b)

∫ ∞

0
tb−1E(Xaexp(−tY ))dt

holds, where the values ±∞ are allowed.

Lemma 3.4. Suppose a is a positive noninteger with a = [a] + (a), where [a] is the largest
integer not exceeding a, (a) = a− [a], and b > 0 and P (X ≥ 0, Y > 0) = 1. Then

E

(
Xa

Y b

)
=

1
Γ((a))Γ(b)

∫ ∞

0

∫ ∞

0
t
(a)−1
1 tb−1

2 M
([a],0)
X,Y (−t1,−t2)dt1dt2

=
1

Γ((a))Γ(b)

∫ ∞

0

∫ ∞

0
t
(a)−1
1 tb−1

2 E(X [a]exp(−t1X − t2Y ))dt1dt2,

and one side is finite if and only if the other side is.

When G(x) = 1/2, x ∈ R, that is Z is Nr(0, Ω) distributed, Theorems 2.1 and 2.2 of Rukhin
(2009) gave formulas for E(Z ′AZ)−q and E((Z ′BZ)p/(Z ′AZ)q), respectively. As Lemmas 3.1
and 3.2 indicate that the distribution of Z ′AZ, as well as the joint distribution of Z ′AZ and
Z ′BZ, both are independent of G, consequently, the results of Rukhin (2009) also hold for our
multivariate skew normal distribution. We state the results as Theorems 3.1 and 3.2 below.

Theorem 3.1. Let A be an r × r positive definite matrix. Then if 0 < q < r/2,

E(Z ′AZ)−q =
Γ(r/2− q)

22q−r/2Γ(q)|AΩ|1/2
E(Z ′CZ)q−r/2,

where C = Ω−1/2A−1/2Ω−1A−1/2Ω−1/2.

The following are some immediate consequences.

Corollary 3.1. If Ω = Ir, then

E(Z ′AZ)−q =
Γ(r/2− q)

22q−r/2Γ(q)|A|1/2
E(Z ′A−1Z)q−r/2.

Corollary 3.2. If A = Ω−1, then

E(Z ′Ω−1Z)−q

E(Z ′Ω−1Z)q−r/2
=

Γ(r/2− q)
22q−r/2Γ(q)

.

Corollary 3.3. If q = r/4, then

E(Z ′AZ)−r/4

E(Z ′CZ)−r/4
= |AΩ|−1/2.
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Corollary 3.4.

E(Z ′AZ)−q

E(Z ′Z)−q
= |A|−1/2 E(Z ′CZ)q−r/2

E(Z ′Ω−1Ω−1Z)q−r/2
−−−→
q → r/2

|A|−1/2.

The next theorem gives the expectation of the ratio of powers of two quadratic forms.

Theorem 3.2. Let A be an r×r positive definite matrix, B an r×r symmetric and non-negative
definite matrix, also assume 0 < q < p + r/2 with p ≥ 0. Then

E
(Z ′BZ)p

(Z ′AZ)q
=

Γ(r/2 + p− q)
22q−p−r/2Γ(q)|AΩ|1/2

E
(Z ′Ω−1/2A−1/2BA−1/2Ω−1/2Z)p

(Z ′Ω−1/2A−1/2Ω−1A−1/2Ω−1/2Z)p−q+r/2
.

Corollary 3.5. If Ω = Ir, then

E
(Z ′BZ)p

(Z ′AZ)q
=

Γ(r/2 + p− q)
22q−p−r/2Γ(q)|A|1/2

E
(Z ′A−1/2BA−1/2Z)p

(Z ′A−1Z)p−q+r/2
.

Corollary 3.6. If A = Ω−1, then

E
(Z ′BZ)p

(Z ′AZ)q
=

Γ(r/2 + p− q)
22q−p−r/2Γ(q)

E
(Z ′BZ)p

(Z ′Ω−1Z)p−q+r/2
.

Corollary 3.7. If q = r/4 + p/2, then

|AΩ|1/2E
(Z ′BZ)p

(Z ′AZ)r/4+p/2
= E

(Z ′Ω−1/2A−1/2BA−1/2Ω−1/2Z)p

(Z ′Ω−1/2A−1/2Ω−1A−1/2Ω−1/2Z)r/4+p/2
.

As mentioned it before, Gupta and Kabe (1998) gave a method to obtain the exact moments
of ratios of quadratic forms X ′AX/X ′X, where X is Nr(µ,Σ) distributed and A is an r × r

positive definite matrix. That is

E

(
X ′AX

X ′X

)p

=
R(1

2 , 1
2 , · · · , 1

2 ; λ1, · · · , λr)
R(1

2 , 1
2 , · · · , 1

2 ; θ1, · · · , θr)
,

where λ1, · · · , λr are roots of ΩA, and θ1, · · · , θr are roots of Ω, and

R

(
1
2
,
1
2
, · · · ,

1
2
; λ1, · · · , λr

)
=

∫ (
r∑

i=1

λiyi

)p

π−r/2(y1y2 · · · yr)−1/2dy1 · · · dyr−1,
r∑

i=1

yi = 1.

The following special case of Theorem 3.2 can be compared to Gupta and Kabe (1998).

Corollary 3.8. If A = Ir and p = q, then

E

(
Z ′BZ

Z ′Z

)p

=
Γ(r/2)

2p−r/2Γ(p)|Ω|1/2
E

(Z ′Ω−1/2BΩ−1/2Z)p

(Z ′Ω−2Z)r/2
.
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Let B1 and B2 be two r×r symmetric matrices, Huang and Chen (2006) proved that Z ′B1Z

and Z ′B2Z are independent if and only if B1ΩB2 = 0. Here both A and Ω are nonsingular,
hence AΩB = 0 implies B = 0. Consequently, for nonzero B, the two quadratic forms Z ′AZ

and Z ′BZ are not independent.

3.3 An extension

The following definition of a more general multivariate skew normal distribution is due to
Wang, et al. (2009).

Definition 3.2. Let the p.d.f. of X be given by

fX(x) = 2φr(x; Ir)Φ(α′x), x ∈ Rr, (2)

where α ∈ Rr, and Φ(·) is the standard normal cumulative distribution function(c.d.f.). Then
Y = µ + β′X is said to be SN r(µ, β, α) distributed, where µ ∈ Rn is the location parameter,
the r × n matrix β is the scale parameter and α is the shape parameter.

Wang, et al. (2009) gave some properties of the SN r(µ, β, α) distribution. In the following,
we consider a more general model with µ = 0. More precisely, let V = β′U , where the p.d.f. of
U is given by

fU (u) = 2φr(u; Ir)G(α′u), u ∈ Rr,

where again G(·) is a skew function. Note that if β is non-singular, the p.d.f. of V is identical
to the p.d.f. of Z given in Definition 3.1 with β′β = Ω. Results similar to Section 2 are given in
the following.

Lemma 3.5. Let Q = V ′AV , where A is an n× n symmetric matrix. Then the m.g.f. of Q is
given by

E(etQ) = |Ir − 2tβAβ′|−1/2, Ir − 2tβAβ′ > 0, t ∈ R.

Proof.

E(etQ) = E(exp(t(U ′β)A(β′U)))dU

=
2

(2π)r/2

∫

Rr

exp

(
t
(
U ′βAβ′U

)− U ′U
2

)
G(α′U)dU

= 2
∫

Rr

(2π)−r/2exp

(
−1

2
U ′(Ir − 2tβAβ′)U

)
G(α′U)dU

= 2|Ir − 2tβAβ′|−1/2EU (G(α′(Ir − 2tβAβ′)−1/2U)) = |Ir − 2tβAβ′|−1/2.

For the present multivariate skew normal distribution, we have the following theorems.
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Theorem 3.3. Let A be an n×n positive definite matrix, and β a full row rank matrix. Then
if 0 < q < r/2,

E(V ′AV )−q =
Γ(r/2− q)

22q−r/2Γ(q)|βAβ′|1/2
E(V ′DV )q−r/2,

where D = β′(ββ′)−1(βAβ′)−1(ββ′)−1β.

Proof. The theorem will be proved upon noting

2qΓ(q)E(V ′AV )−q =
∫ ∞

0
tq−1E

(
e−tV ′AV/2

)
dt =

∫ ∞

0

tq−1

|Ir + tβAβ′|1/2
dt

= |βAβ′|−1/2

∫ ∞

0
ur/2−q+1E

(
e−uV ′DV/2

)
du =

Γ(r/2− q)
2q−r/2|βAβ′|1/2

E(V ′DV )q−r/2,

where Lemmas 3.3 and 3.5 are used in order to obtain the first and second equations, respectively.

The next theorem concerns the ratio of powers of two quadratic forms.

Theorem 3.4. Let A be an n × n positive definite matrix, B an n × n symmetric and non-
negative definite matrix, and β a full row rank matrix. Also assume 0 < q < p+ r/2 with p ≥ 0.
Then

E
(V ′BV )p

(V ′AV )q
=

Γ(r/2 + p− q)
22q−p−r/2Γ(q)|βAβ′|1/2

E
(V ′β′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2(ββ′)−1βV )p

(V ′β′(ββ′)−1(βAβ′)−1(ββ′)−1βV )p−q+r/2
.

Proof.First let p be a non-negative integer. Then

2qΓ(q)E
(V ′BV )p

(V ′AV )q
=

∫ ∞

0
tq−1E

(
(V ′BV )pe−tV ′AV/2

)
dt

= (−2)p

∫ ∞

0
tq−1 dp

dsp
E

(
e−V ′(sB+tA)V/2

) ∣∣∣
s=0

dt

= (−2)p

∫ ∞

0
tq−1 dp

dsp

1
|Ir + sβBβ′ + tβAβ′|1/2

∣∣∣
s=0

dt

=
(−2)p

|βAβ′|1/2

∫ ∞

0
ur/2−q−1 dp

dsp

1
|Ir + su(βAβ′)−1/2βBβ′(βAβ′)−1/2 + u(βAβ′)−1|1/2

∣∣∣
s=0

du

=
(−2)p

|βAβ′|1/2

∫ ∞

0
ur/2−q−1

· dp

dsp
E

(
e−V ′(suβ′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2(ββ′)−1β+uβ′(ββ′)−1(βAβ′)−1(ββ′)−1)βV/2

) ∣∣∣
s=0

du

=
1

|βAβ′|1/2

∫ ∞

0
ur/2+p−q−1E

(
(V ′β′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2(ββ′)−1βV )p

· e−uV ′β′(ββ′)−1(βAβ′)−1(ββ′)−1βV/2
)

du

=
Γ(r/2 + p− q)

2q−p−r/2|βAβ′|1/2
E

(V ′β′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2(ββ′)−1βV )p

(V ′β′(ββ′)−1(βAβ′)−1(ββ′)−1βV )p−q+r/2
,
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where Lemmas 3.3 and 3.5 are used to obtain the first and third equations, respectively.

Next consider the case p is not an integer. Again we have

2qΓ((p))Γ(q)E
(V ′BV )p

(V ′AV )q
=

1
2(p)

∫ ∞

0

∫ ∞

0
s(p)−1tq−1E

(
(V ′BV )[p]e−sV ′BV/2−tV ′AV/2

)
dsdt

=
(−2)[p]

2(p)

∫ ∞

0

∫ ∞

0
s(p)−1tq−1 d[p]

ds[p]
E

(
e−V ′(sB+tA)V/2

)
dsdt

=
(−2)[p]

2(p)

∫ ∞

0

∫ ∞

0
s(p)−1tq−1 d[p]

ds[p]

1
|Ir + sβBβ′ + tβAβ′|1/2

dsdt

=
(−2)[p]

2(p)|βAβ′|1/2

∫ ∞

0

∫ ∞

0
s(p)−1ur/2−q−1

· d[p]

ds[p]
E

(
e−V ′(uβ′(ββ′)−1(βAβ′)−1(ββ′)−1β+suβ′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2)(ββ′)−1βV/2

)
dsdu

=
(−2)[p]

2(p)|βAβ′|1/2

∫ ∞

0

∫ ∞

0
m(p)−1ur/2+p−q−1

· d[p]

dm[p]
E

(
e−V ′(uβ′(ββ′)−1(βAβ′)−1(ββ′)−1β+mβ′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2)(ββ′)−1βV/2

)
dmdu

=
Γ((p))Γ(r/2 + p− q)
2q−p−r/2|βAβ′|1/2

E
(V ′β′(ββ′)−1(βAβ′)−1/2βBβ′(βAβ′)−1/2(ββ′)−1βV )p

(V ′β′(ββ′)−1(βAβ′)−1(ββ′)−1βV )p−q+r/2
.
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