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ABSTRACT

The classical coupon collector’s problem is concerned with the number of purchases in

order to have a complete collection, assuming that on each purchase a consumer can obtain a

randomly chosen coupon. For most real situations, a consumer may not just get exactly one

coupon on each purchase. Motivated by the classical coupon collector’s problem, in this work,

we will study the so-called suprenewal process. Let {Xi, i ≥ 1} be a sequence of independent

and identically distributed random variables, Sn =
∑n

i=1 Xi, n ≥ 1, S0 = 0. For every t ≥ 0,

define Qt = inf{n | n ≥ 0, Sn ≥ t}. For the classical coupon collector’s problem, Qt denotes

the minimal number of purchases, such that the total number of coupons that the consumer

has owned until time t is greater than or equal to t, t ≥ 0. First the process {Qt, t ≥ 0} and

the renewal process {Nt, t ≥ 0} generated by the same sequence {Xi, i ≥ 1} are compared.

Next some fundamental properties of {Qt, t ≥ 0} are provided. Finally limiting and some

other related results are obtained for the process {Qt, t ≥ 0}.

Keywords: Coupon collector’s problem, geometric distribution, negative binomial distribu-

tion, renewal process, sample path, suprenewal process.
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1. Introduction

Starting from the end of April 2005, collecting Hello Kitty magnets became an immensely
popular hobby in Taiwan. President Chain Stores Corp., which runs Taiwanese largest con-
venience store chain, 7-Eleven, was giving away one of a series of commemorative Hello Kitty
magnets for each NTD77 a consumer spends at 7-Eleven store. There are 41 different patterns
of Hello Kitty magnets in total. Because the cover of each package of magnet is the same, it is
reasonable to assume that the magnets are given randomly.

We now review the classical coupon collector’s problem. Assume there are N distinct coupons
in a collection, and a series of random draws is made with replacement from these. Let T denote
the number of draws necessary for all N coupons to have been drawn at least once. Properties of
T had been studied by many authors, see e.g. Goodwin (1949) and Feller (1950). Among others,
expectation and variance of T can be obtained as follows. For i ≥ 1, let Ci ∈ {1, 2, · · · , N} be the
coupon obtained at the i-th draw. The i-th draw is called a success, if Ci has not been obtained
before the i-th draw. For 1 ≤ i ≤ N , let Ti denote the number of draws after the (i − 1)-th
success, till the i-th success. Then T =

∑N
i=1 Ti. Obviously, T1, T2, · · · , TN are independent, and

Ti has a geometric distribution with parameter pi = (N − i+1)/N , then E(Ti) = N/(N − i+1),
and Var(Ti) = (1− (N/(N − i + 1))/(N/(N − i + 1))2, 1 ≤ i ≤ N . Thus

E(T ) =
N∑

i=1

E(Ti) = NHN , (1)

where for N ≥ 1, HN =
∑N

i=1 1/i is the N -th Harmonic number, and

Var(T ) =
N∑

i=1

Var(Ti) = N2
N∑

i=1

1
i2
−NHN . (2)

The above coupon collector’s problem can be generalized. Assume the i-th coupon has
probability pi of being drawn, where 0 < pi < 1, i = 1, 2, · · · , N , such that

∑N
i=1 pi = 1, the

pi’s are allowed to be unequal. This was studied by von Schelling (1954). Some limiting results
were derived by Baum and Billingsley (1965) and Hoslt (1971), and others. Related problems
had also been discussed, such as the collector’s brotherhood problem. As an example, Foata et
al.(2001) and Foata and Zeilberger (2003) considered the situation that the collector shares his
harvest with his brothers. They answered the question that when the collection of the collector
is completed, the number of coupons each brother still lacks.

For our present problem, the expected number of magnets needed for collecting a complete
set of 41 magnets is 41

∑41
i=1 1/i

.= 176.42. For a particular consumer, if his spending is less
than NTD77, then he gets 0 magnet, if his spending is at least NTD77 and less than NTD154,
than he gets 1 magnet, if his spending is at least NTD154 and less than NTD231, then he gets
2 magnets on that purchase, and so on. Now what is the number of purchases needed in order
to get magnets greater than or equal to 176.42? To solve this problem, first we introduce a new
process and study some of its properties.
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Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables, Sn =

∑n
i=1 Xi, n ≥ 1, S0 = 0. For every t ≥ 0, define Qt = inf{n | n ≥ 0, Sn ≥ t}.

For the magnets problem, Xi can be viewed as the number of magnets received on the i-th
purchase, i ≥ 1, and Qt can be viewed as the minimal number of purchases, such that the total
number of magnets is greater than or equal to t, t ≥ 0.

Recall that the renewal process {Nt, t ≥ 0} generated by the same sequence {Xi, i ≥ 1},
where for t ≥ 0, Nt = sup{n | n ≥ 0, Sn ≤ t}, Nt denotes the number of renewals in [0, t].
Qt can be referred to as the minimal number of renewals in [t,∞), and we call {Qt, t ≥ 0}
the suprenewal process. In Section 2, we compare the suprenewal process {Qt, t ≥ 0} with the
renewal process. In Section 3, some fundamental properties of {Qt, t ≥ 0} are studied. Finally,
limiting and some other related results are presented in Section 4.

2. Comparisons of {Qt, t ≥ 0} and {Nt, t ≥ 0}

Let X1, X2, · · · be i.i.d. random variables with the same distribution as X, where X, a
nonnegative random variable, has the distribution function F with F (0−) = 0 and F (0) < 1.
Let Sn =

∑n
i=1 Xi, n ≥ 1, S0 = 0. Let {Qt, t ≥ 0} and {Nt, t ≥ 0} be the suprenewal process

and renewal process generated by {Xi, i ≥ 1} respectively. Obviously, Q0 = 0 and Qt ≥ 1, if
t > 0. Also Qt ≤ n if and only if Sn ≥ t. Hence for every t > 0 and integer n ≥ 1,

P (Qt = n) = P (Qt ≤ n)− P (Qt ≤ n− 1)

= P (Sn ≥ t)− P (Sn−1 ≥ t)

= P (Sn−1 < t)− P (Sn < t). (3)

If F is continuous, then Sn is a continuous random variable for every integer n ≥ 0. Consequently,

P (Qt = n) = Fn−1(t)− Fn(t), t > 0, n ≥ 1, (4)

where Fn is the n-fold convolution of F with itself, n ≥ 1, and F0(t) = 1, t ≥ 0.
We now compare the two processes {Qt, t ≥ 0} and {Nt, t ≥ 0}. First instead of having right

continuous sample paths for {Nt, t ≥ 0}, {Qt, t ≥ 0} has left continuous sample paths. Next
instead of (3) and (4), whether F is continuous or not,

P (Nt = n) = P (Sn ≤ t)− P (Sn+1 ≤ t) = Fn(t)− Fn+1(t), t ≥ 0, n ≥ 0. (5)

On the other hand, {Qt, t ≥ 0} and {Nt, t ≥ 0} have the same jump times. Denote the sequence
of jump times by 0 = τ0 < τ1 < τ2 < · · ·. Then

Nt = Qt − 1, if t 6∈ {τ0, τ1, τ2, · · ·}, (6)

and

Nτi = Qτi + Yτi − 1, i ≥ 0, (7)
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where

Yτ0 = 1,

Yτi = Qτi+ −Qτi = Nτi −Nτi−, i ≥ 1, (8)

denotes the common jump size at τi of the processes {Qt, t ≥ 0} and {Nt, t ≥ 0}. It can be
seen that for i ≥ 1, Yτi has a Ge(λ) distribution, where λ = 1− F (0), if F (0) > 0; and Yτi ≡ 1,
hence Qτi = Nτi , i ≥ 1, if F (0) = 0. Yτi and Qτi are independent, and Yτi and Nτi−1 are also
independent. If F is continuous, then F (0) = 0, and

Nt = Qt − 1 almost everywhere on [0,∞). (9)

As an example, let F (x) = 1 − e−λx, λ > 0, x > 0, then it is well known that Nt has a P(λt)
distribution, t > 0. By (9), Qt− 1 is also P(λt) distributed for almost all t on [0,∞). Note that
except (6) and (7), we also have the following relationship

Qτi ≤ Nτi ≤ Qτi+1 , i ≥ 0. (10)

Although Qt may be less than Nt, from the definitions of Qt and Nt, we have

SNt ≤ t ≤ SQt , t ≥ 0. (11)

In particular

SNτi
= SQτi

= τi, i ≥ 0. (12)

Recall that SNt+1−t, t−SNt , and XNt+1 = SNt+1−SNt are called residual life at time t, current
life at time t, and total life at time t, respectively, for the renewal process {Nt, t ≥ 0}. It is
known that P (XNt+1 > x) ≥ P (X1 > x), x ≥ 0, and E(XNt+1) ≥ E(X1), t ≥ 0. This is the
so-called inspection paradox. Similarly, it can be shown

P (XQt > x) ≥ P (X1 > x), x ≥ 0. (13)

That is XQt is stochastically larger than X1. Consequently,

E(XQt) ≥ E(X1), t ≥ 0. (14)

Furthermore, using the fact that a renewal process probabilistically starts over when a renewal
occurs, for every increasing function g, the following inequality is immediate:

E(g(Nt+s −Nt)) ≤ E(g(Ns + 1)), t, s ≥ 0. (15)

Similarly, we have

E(g(Qt+s −Qt)) ≤ E(g(Qs)), t, s ≥ 0. (16)

3



In particular

E(Qt+s −Qt) ≤ E(Qs), t, s ≥ 0. (17)

We give a typical sample paths of {Qt, t ≥ 0} and {Nt, t ≥ 0}, respectively, to illustrate the
relationships (6), (7) and (10). Assume X1 = 2, X2 = 0, X3 = 1, X4 = 4, X5 = 0, X6 = 0, X7 =
3, · · ·, then S1 = 2, S2 = 2, S3 = 3, S4 = 7, S5 = 7, S6 = 7, S7 = 10, · · ·. Figure 1 gives the sample
paths of {Qt, t ≥ 0} and {Nt, t ≥ 0}.
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Figure 1. Sample paths of {Qt, t ≥ 0} and {Nt, t ≥ 0}

3. Some fundamental properties of {Qt, t ≥ 0}

There are many investigations for properties of renewal process in the literatures. In this
section, we explore some basic properties of the process {Qt, t ≥ 0}, especially for the case
that X takes on nonnegative integer values. Throughout this section, let P (X < ∞) = 1,
and P (X = k) = pk, where pk ≥ 0, k = 0, 1, 2, · · ·, p0 < 1, and

∑∞
k=0 pk = 1. Also let

N = sup{i | i ≥ 0, pi > 0}.
First we introduce some notation which will be used often in this work. Let dte and btc

denote the ceiling function and the floor function, respectively, namely dte = the least integer
greater than or equal to t, and btc = the greatest integer less than or equal to t. For example,
d3.7e = 4, b3.7c = 3, and d6e = b6c = 6. For integers a, b, c, with a ≤ b ≤ c, and nonnegative
integers x0, x1, · · · , xN , if N < ∞, let

Aa,b = {(x0, x1, · · · , xN )|
N∑

i=0

xi = a, and
N∑

i=0

ixi = b},

Ba,b,c = {(x1, x2, · · · , xN )|
N∑

i=1

xi = a, and
N∑

i=1

ixi = b, b + 1, · · · , c},

and

Ca = {(x1, x2, · · · , xN )|
N∑

i=1

xi = a};
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if N = ∞, let

A1
a,b = {(x0, x1, · · ·)|

∑

i≥0

xi = a, and
∑

i≥0

ixi = b},

and

B1
a,b,c = {(x1, x2, · · ·)|

∑

i≥1

xi = a, and
∑

i≥1

ixi = b, b + 1, · · · , c}.

Note that if (x0, x1, · · · , xN ) ∈ Aa+x0,b, then (x1, x2, · · · , xN ) ∈ Ba,b,b; if (x0, x1, · · ·) ∈ A1
a+x0,b,

then (x1, x2, · · ·) ∈ B1
a,b,b, and Ba,a,Na = Ca.

We give three simple examples in the following.

Example 1. Let p1 = p2 = p3 = 1/3. Then the support of Q3.5 is {2, 3, 4}, and P (Q3.5 = 2) =
2/3, P (Q3.5 = 3) = 8/27, P (Q3.5 = 4) = 1/27.

Example 2. Let p0, p1, p2 > 0, and p0 + p1 + p2 = 1. Then P (Q2 = i) = (i − 1)pi−2
0 (1 −

p0)p1 + pi−1
0 p2, i ≥ 1. In particular, if p0 = 0.2, p1 = 0.3, p2 = 0.5, then P (Q2 = 1) =

0.5, P (Q2 = 2) = 0.34, P (Q2 = 3) = 0.116, P (Q2 = 4) = 0.0328, · · · .

The next example shows that the family of the distribution Qt contains geometric and neg-
ative binomial, the two common statistical distributions.

Example 3. Assume 0 < p0 < 1 and p1 = 1− p0. In this case τi = i, i ≥ 1. That is X1, X2, · · ·
are i.i.d. Ber(p1) random variables, and Sn is B(n, p1) distributed, n ≥ 1. Then obviously for ev-
ery t > 0, SQt = dte, Qt ∼ NB(dte, p1), and for every integer k ≥ 2, Q1, Q2−Q1, · · · , Qk−Qk−1,
are i.i.d. random variables with the common Ge(p1) distribution. Consequently, for every
t > 0, E(Qt) = dte/p1, E(SQt − t) = dte − t, and E(t − SQt−1) = t − dte + 1. Hence
E(XQt) = E(SQt − SQt−1) = 1 > p1 = E(X1). Moreover, it can be seen easily, for the
above {Xi, i ≥ 1} , for any 0 < p0 < 1, there is an infinite number of positive t’s, such that
E(SQt − t) > E(X1).

Remark 1. As a comparison, for the {Xi, i ≥ 1} defined in Example 3, we have SNt = btc,

P (Nt = n) =
(

n

btc
)

p
btc+1
1 p

n−btc
0 , n ≥ btc,

and P (Nt = n) = 0, for n < btc. That is Nt + 1 ∼ NB(btc + 1, p1), t > 0. This also
can be seen by (6), (7) and Example 3. Now E(Nt) = (btc + p0)/p1, E(t − SNt) = t − btc,
E(SNt+1 − t) = btc+ 1− t, and E(XNt+1) = 1 > E(X1), t > 0.

Next we find the distribution of Qt, t > 0.

5



Theorem 1. For every integer n ≥ 1 and t > 0,

P (Qt = n) =





gn−1,t − gn,t , p0 = 0,
dte−1∑

m=0

gm,tp
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0) , 0 < p0 < 1,

(18)

where if N < ∞,

gm,t =





(1− p0)m , 0 ≤ m ≤ b dte−1
N c,

∑

(x1,x2,···,xN )∈Bm,m,dte−1

m!(
N∏

i=1

pxi
i

xi!
) ,m ≥ b dte−1

N c+ 1,
(19)

if N = ∞,

gm,t =





1 ,m = 0,
∑

(x1,x2,···)∈B1
m,m,dte−1

m!(
∏

i≥1

pxi
i

xi!
) ,m ≥ 1. (20)

Proof. Obviously we only need to prove (18) holds for positive integer t. We prove this
by induction. (i) First we prove the case p0 = 0 and N < ∞. That (18) holds for t = 1 can be
seen as following. From assumptions, we have P (Sn < 1) = 0, n ≥ 1, P (S0 < 1) = 1. Thus

P (Q1 = n) = P (Sn−1 < 1)− P (Sn < 1)

=

{
1 , n = 1,

0 , n ≥ 2,

= gn−1,1 − gn,1, n ≥ 1,

where the last equality holds is because for every n ≥ 1, Bn,n,0 is a null set, hence gn,1 = 0. This
together with g0,1 = 1 implies g0,1 − g1,1 = 1, and gn−1,1 − gn,1 = 0, n ≥ 2. Now suppose (18)
is true for t = r ≥ 1, i.e. we have

P (Qr = n) = gn−1,r − gn,r.

Then

P (Qr+1 = n) = P (Sn−1 < r + 1)− P (Sn < r + 1)

= [P (Sn−1 < r)− P (Sn < r)] + [P (Sn−1 = r)− P (Sn = r)]

= [gn−1,r − gn,r] + [P (Sn−1 = r)− P (Sn = r)]

= {
∑

(x1,x2,···,xN )∈Bn−1,n−1,r−1

(n− 1)!(
N∏

i=1

pxi
i

xi!
)−

∑

(x1,x2,···,xN )∈Bn,n,r−1

n!(
N∏

i=1

pxi
i

xi!
)}
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+{
∑

(x1,x2,···,xN )∈Bn−1,r,r

(n− 1)!(
N∏

i=1

pxi
i

xi!
)−

∑

(x1,x2,···,xN )∈Bn,r,r

n!(
N∏

i=1

pxi
i

xi!
)}

=
∑

(x1,x2,···,xN )∈Bn−1,n−1,r

(n− 1)!(
N∏

i=1

pxi
i

xi!
)−

∑

(x1,x2,···,xN )∈Bn,n,r

n!(
N∏

i=1

pxi
i

xi!
)

= gn−1,r+1 − gn,r+1.

This proves (18) holds for t = r + 1. By the induction argument this completes the proof for
the case p0 = 0 and N < ∞. The proof of (18) for the case p0 = 0 and N = ∞ is similar to the
proof for the case p0 = 0 and N < ∞, hence is omitted.

(ii) Next we prove the case 0 < p0 < 1 and N < ∞. The proof of (18) for t = 1 is as
following.

P (Q1 = n) = P (Sn−1 < 1)− P (Sn < 1) = P (Sn−1 = 0)− P (Sn = 0)

= pn−1
0 − pn

0 = g0,1p
n−1
0 (

(
n− 1

0

)
−

(
n

0

)
p0).

Now suppose (18) is true for t = r ≥ 1, i.e. we have

P (Qr = n) =
r−1∑

m=0

gm,rp
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0). (21)

Then

P (Qr+1 = n) = P (Sn−1 < r + 1)− P (Sn < r + 1)

= [P (Sn−1 < r)− P (Sn < r)] + [P (Sn−1 = r)− P (Sn = r)]

= P (Qr = n) + [P (Sn−1 = r)− P (Sn = r)], (22)

and

P (Sn−1 = r) =
∑

(x0,x1,···,xN )∈An−1,r

(n− 1)!(
N∏

i=0

pxi
i

xi!
)

= (
∑

(x1,x2,···,xN )∈Bb r−1
N

c+1,r,r

(n− 1)!
(n− b r−1

N c − 2)!
p

n−b r−1
N
c−2

0 (
N∏

i=1

pxi
i

xi!
)) + · · ·

+(
∑

(x1,x2,···,xN )∈Br,r,r

(n− 1)!
(n− r − 1)!

pn−r−1
0 (

N∏

i=1

pxi
i

xi!
))

=
(

n− 1
b r−1

N c+ 1

)
{

∑

(x1,x2,···,xN )∈Bb r−1
N

c+1,r,r

(br − 1
N

c+ 1)!(
N∏

i=1

pxi
i

xi!
)}pn−b r−1

N
c−2

0 + · · ·

+
(

n− 1
r

)
{

∑

(x1,x2,···,xN )∈Br,r,r

r!(
N∏

i=1

pxi
i

xi!
)}pn−r−1

0 . (23)

7



That the second equality of (23) holds is because if (x0, x1, · · · , xN ) ∈ An−1,r, i.e.
∑N

i=1 xi =
n − 1 − x0 and

∑N
i=1 ixi = r, then

∑N
i=1 xi ≤ r, hence x0 ≥ n − r − 1. On the other hand, if

x0 ≥ n−b(r−1)/Nc−1, then
∑N

i=1 xi ≤ b(r−1)/Nc, and
∑N

i=1 ixi ≤ r−1 follows. This proves
n− r − 1 ≤ x0 ≤ n− b(r − 1)/Nc − 2. Hence

∑N
i=1 xi = b(r − 1)/Nc+ 1, · · · , r. This together

with
∑N

i=1 ixi = r implies (x1, x2, · · · , xN ) ∈ Bb(r−1)/Nc+1,r,r, · · · ,Br,r,r. Similarly,

P (Sn = r) =
(

n

b r−1
N c+ 1

)
{

∑

(x1,x2,···,xN )∈Bb r−1
N

c+1,r,r

(br − 1
N

c+ 1)!(
N∏

i=1

pxi
i

xi!
)}pn−b r−1

N
c−1

0 + · · ·

+
(

n

r

)
{

∑

(x1,x2,···,xN )∈Br,r,r

r!(
N∏

i=1

pxi
i

xi!
)}pn−r

0 . (24)

Substituting (21), (23) and (24) into (22), it yields

P (Qr+1 = n) = {
(

n− 1
0

)
pn−1
0 +

(
n− 1

1

)
(1− p0)pn−2

0 + · · ·+
(

n− 1
b r−1

N c
)

(1− p0)b
r−1
N
c

·p0
n−1−b r−1

N
c +

(
n− 1

b r−1
N c+ 1

)
(

∑

(x1,x2,···,xN )∈Bb r−1
N

c+1,b r−1
N

c+1,r

(br − 1
N

c+ 1)!

·(
N∏

i=1

pxi
i

xi!
))p

n−b r−1
N
c−2

0 + · · ·+
(

n− 1
r − 1

)
(

∑

(x1,x2,···,xN )∈Br−1,r−1,r

(r − 1)!(
N∏

i=1

pxi
i

xi!
))

·pn−r
0 +

(
n− 1

r

)
(

∑

(x1,x2,···,xN )∈Br,r,r

r!(
N∏

i=1

pxi
i

xi!
))pn−r−1

0 } − {
(

n

0

)
pn
0

+
(

n

1

)
(1− p0)pn−1

0 + · · ·+
(

n

b r−1
N c

)
(1− p0)b

r−1
N
cp0

n−b r−1
N
c

+
(

n

b r−1
N c+ 1

)
(

∑

(x1,x2,···,xN )∈Bb r−1
N

c+1,b r−1
N

c+1,r

(br − 1
N

c+ 1)!(
N∏

i=1

pxi
i

xi!
))p

n−b r−1
N
c−1

0

+ · · ·+
(

n

r − 1

)
(

∑

(x1,x2,···,xN )∈Br−1,r−1,r

(r − 1)!(
N∏

i=1

pxi
i

xi!
))pn−r+1

0

+
(

n

r

)
(

∑

(x1,x2,···,xN )∈Br,r,r

r!(
N∏

i=1

pxi
i

xi!
))pn−r

0 }

=
b r−1

N
c∑

m=0

(1− p0)mpn−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0)

+
r∑

m=b r−1
N
c+1

(
∑

(x1,x2,···,xN )∈Am,m,r

r!(
N∏

i=1

pxi
i

xi!
))pn−m−1

0 (
(

n− 1
m

)
−

(
n

m

)
p0)
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=
b r

N
c∑

m=0

(1− p0)mpn−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0)

+
r∑

m=b r
N
c+1

(
∑

(x1,x2,···,xN )∈Bm,m,r

m!(
N∏

i=1

pxi
i

xi!
))pn−m−1

0 (
(

n− 1
m

)
−

(
n

m

)
p0)

=
r∑

m=0

gm,r+1p
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0), (25)

where the third equality holds is because if
∑N

i=1 Xi = m, then m ≤ ∑N
i=1 iXi ≤ Nm, hence if

r ≥ Nm, i.e. m ≤ br/Nc, then Bm,m,r = Bm,m,Nm and

∑

(x1,x2,···,xN )∈Bm,m,r

m!(
N∏

i=1

pxi
i

xi!
) =

∑

(x1,x2,···,xN )∈Bm,m,Nm

m!(
N∏

i=1

pxi
i

xi!
)

=
∑

(x1,x2,···,xN )∈Cm

m!(
N∏

i=1

pxi
i

xi!
)

= (p1 + p2 + · · ·+ pN )m

= (1− p0)m.

This proves (18) holds for t = r + 1, and the proof for the case 0 < p0 < 1 and N < ∞ is
completed.

(iii) Finally we consider the case 0 < p0 < 1 and N = ∞. The proof of (18) for t = 1 is the
same as in (ii). Now suppose the induction statement is true for t = r ≥ 1, i.e. we have

P (Qr = n) =
r−1∑

m=0

gm,rp
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0). (26)

Then

P (Qr+1 = n) = P (Sn−1 < r + 1)− P (Sn < r + 1)

= P (Qr = n) + [P (Sn−1 = r)− P (Sn = r)], (27)

and

P (Sn−1 = r) =
∑

(x0,x1,···)∈A1
n−1,r

(n− 1)!(
∏

i≥0

pxi
i

xi!
)

= (
∑

(x1,x2,···)∈B1
1,r,r

(n− 1)!
(n− 2)!

pn−2
0 (

∏

i≥1

pxi
i

xi!
)) + · · ·

+(
∑

(x1,x2,···)∈B1
r,r,r

(n− 1)!
(n− r − 1)!

pn−r−1
0 (

∏

i≥1

pxi
i

xi!
))
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=
(

n− 1
1

)
{

∑

(x1,x2,···)∈B1
1,r,r

(
∏

i≥1

pxi
i

xi!
)}pn−2

0 + · · ·

+
(

n− 1
r

)
{

∑

(x1,x2,···)∈B1
r,r,r

r!(
∏

i≥1

pxi
i

xi!
)}pn−r−1

0 , (28)

where the second equality holds is by using the same argument as in the discussion of the
paragraph after (23). Similarly,

P (Sn = r) =
(

n

1

)
{

∑

(x1,x2,···)∈B1
1,r,r

(
∏

i≥1

pxi
i

xi!
)}pn−1

0 + · · ·

+
(

n

r

)
{

∑

(x1,x2,···)∈B1
r,r,r

r!(
∏

i≥1

pxi
i

xi!
)}pn−r

0 . (29)

Substituting (26), (28) and (29) into (27), it yields

P (Qr+1 = n) = {
(

n− 1
0

)
pn−1
0 +

(
n− 1

1

)
(

∑

(x1,x2,···)∈B1
1,1,r

(
∏

i≥1

pxi
i

xi!
))pn−2

0 + · · ·

+
(

n− 1
r

)
(

∑

(x1,x2,···)∈B1
r,r,r

r!(
∏

i≥1

pxi
i

xi!
))pn−r−1

0 }

−{
(

n

0

)
pn
0 +

(
n

1

)
(

∑

(x1,x2,···)∈B1
1,1,r

(
∏

i≥1

pxi
i

xi!
))pn−1

0 + · · ·

+
(

n

r

)
(

∑

(x1,x2,···)∈B1
r,r,r

r!(
∏

i≥1

pxi
i

xi!
))pn−r

0 }

= pn−1
0 (

(
n− 1

0

)
−

(
n

0

)
p0)

+
r∑

m=1

pn−m−1
0 (

∑

(x1,x2,···)∈B1
m,m,r

m!(
∏

i≥1

pxi
i

xi!
))(

(
n− 1

m

)
−

(
n

m

)
p0)

=
r∑

m=0

gm,r+1p
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0). (30)

This proves (18) holds for t = r + 1. The proof is completed.

Let

φt(s) = E(e−sQt) =
∞∑

n=1

P (Qt = n)e−sn, s ≥ 0,

be the Laplace transform of Qt, t ≥ 0. φt(s) and the moments of Qt can be obtained immedi-
ately by using Theorem 1. We give the results in the following corollary.
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Corollary 1. Let integer n ≥ 1, p0 ≥ 0, and t > 0.
(i).

φt(s) = 1− 1− e−s

1− p0e−s

dte−1∑

m=0

gm,t(
e−s

1− p0e−s
)m, s ≥ 0. (31)

(ii).

E(Qt) =
dte−1∑

m=0

gm,t

(1− p0)m+1
. (32)

(iii).

Var(Qt) =
dte−1∑

m=0

(1 + 2m + p0)
gm,t

(1− p0)m+2
− {

dte−1∑

m=0

gm,t

(1− p0)m+1
}2, (33)

where gm,t, m ≥ 0, are as defined in (19) and (20).

Proof. (i). Due to the expression (18), the proof of (31) is divided into two parts: 0 < p0 < 1,
and p0 = 0. First we prove the case 0 < p0 < 1.

φt(s) =
∞∑

n=1

{
dte−1∑

m=0

gm,tp
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0)}e−sn

=
∞∑

n=1

dte−1∑

m=0

(
n− 1

m

)
gm,tp

n−m−1
0 e−sn −

∞∑

n=1

dte−1∑

m=0

(
n

m

)
gm,tp

n−m
0 e−sn

=
dte−1∑

m=0

gm,t

pm+1
0

{
∞∑

n=1

(
n− 1

m

)
(p0e

−s)n} −
dte−1∑

m=0

gm,t

pm
0

{
∞∑

n=1

(
n

m

)
(p0e

−s)n}

= A−B. (34)

Now

A =
g0,t

p0
{
∞∑

n=1

(
n− 1

0

)
(p0e

−s)n}+
dte−1∑

m=1

gm,t

pm+1
0

{
∞∑

n=1

(
n− 1

m

)
(p0e

−s)n}

=
g0,te

−s

1− p0e−s
+
dte−1∑

m=1

gm,t

pm+1
0

{
∞∑

n=1

n−m

m

(
n− 1
n−m

)
(p0e

−s)n}

=
g0,te

−s

1− p0e−s
+
dte−1∑

m=1

gm,t

pm+1
0

{
∞∑

n=1

(
n

m
− 1)

(
n− 1
n−m

)
(1− p0e

−s)m(p0e
−s)n−m}( p0e

−s

1− p0e−s
)m

=
g0,te

−s

1− p0e−s
+
dte−1∑

m=1

gm,t

pm+1
0

(
1

1− p0e−s
− 1)(

p0e
−s

1− p0e−s
)m

11



=
g0,te

−s

1− p0e−s
+
dte−1∑

m=1

gm,t(
e−s

1− p0e−s
)m+1

=
dte−1∑

m=0

gm,t(
e−s

1− p0e−s
)m+1, (35)

and

B = g0,t{
∞∑

n=1

(
n

0

)
(p0e

−s)n}+
dte−1∑

m=1

gm,t

pm
0

{
∞∑

n=1

(
n

m

)
(p0e

−s)n}

= g0,t
p0e

−s

1− p0e−s
+
dte−1∑

m=1

gm,t

pm
0

{
∞∑

n=1

(
n

m
)
(

n− 1
m− 1

)
(p0e

−s)n}

= g0,t
p0e

−s

1− p0e−s
+
dte−1∑

m=1

gm,t

pm
0

{
∞∑

n=1

(
n

m
)
(

n− 1
m− 1

)
(1− p0e

−s)m(p0e
−s)n−m}( p0e

−s

1− p0e−s
)m

= (−g0,t +
g0,t

1− p0e−s
) +

dte−1∑

m=1

gm,t

pm
0

(
1

1− p0e−s
)(

p0e
−s

1− p0e−s
)m

= −g0,t +
dte−1∑

m=0

gm,t

1− p0e−s
(

e−s

1− p0e−s
)m. (36)

The assertion follows by substituting A and B in (35) and (36) into (34), and noting that g0,t = 1.
The proof for the case p0 = 0 is given below.

φt(s) =
∞∑

n=1

(gn−1,t − gn,t)e−sn

=
∞∑

m=0

gm,te
−s(m+1) − (

∞∑

m=0

gm,te
−sm − g0,t)

= 1− (1− e−s)
dte−1∑

m=0

gm,te
−sm, s ≥ 0. (37)

(ii). Taking the derivative of φt with respect to s, we obtain for s > 0,

φ′t(s) = −e−s(1− p0e
−s)− (1− e−s)p0e

−s

(1− p0e−s)2

dte−1∑

m=0

gm,t(
e−s

1− p0e−s
)m

− 1− e−s

1− p0e−s

dte−1∑

m=0

m(
e−s

1− p0e−s
)m−1gm,t{−e−s(1− p0e

−s)− e−s(p0e
−s)

(1− p0e−s)2
}

= − (1− p0)e−s

(1− p0e−s)2

dte−1∑

m=0

gm,t(
e−s

1− p0e−s
)m +

e−s(1− e−s)
(1− p0e−s)3

dte−1∑

m=0

m(
e−s

1− p0e−s
)m−1gm,t.

12



Hence

E(Qt) = − lim
s↓0

φ′t(s) =
dte−1∑

m=0

gm,t

(1− p0)m+1
.

(iii). As in (ii),

E(Q2
t ) = lim

s↓0
φ′′t (s) =

dte−1∑

m=0

(1 + 2m + p0)
gm,t

(1− p0)m+2
,

hence

Var(Qt) = E(Q2
t )− (E(Qt))2

=
dte−1∑

m=0

(1 + 2m + p0)
gm,t

(1− p0)m+2
− {

dte−1∑

m=0

gm,t

(1− p0)m+1
}2

as required.

Example 3.(Continued) We use Theorem 1 and (i) of Corollary 1, respectively, to demonstrate
Qt ∼ NB(dte, p1), t > 0.

By letting N = 1 in Theorem 1, it yields

gm,t =

{
pm
1 , 0 ≤ m ≤ dte − 1,

0 ,m ≥ dte. (38)

Hence

P (Qt = n) =
dte−1∑

m=0

gm,tp
n−m−1
0 (

(
n− 1

m

)
−

(
n

m

)
p0)

=
dte−1∑

m=0

pm
1 pn−m−1

0 {
(

n− 1
m

)
− (

(
n− 1

m

)
+

(
n− 1
m− 1

)
)p0}

=
dte−1∑

m=0

(
n− 1

m

)
pm+1
1 pn−m−1

0 −
dte−2∑

m=0

(
n− 1

m

)
pm+1
1 pn−m−1

0

=
(

n− 1
dte − 1

)
p
dte
1 p

n−dte
0 , n ≥ dte,

where
(
n−1
−1

)
is defined to be 0. This shows Qt ∼ NB(dte, p1), t > 0.

Next from (i) of Corollary 1 and (38), we have

φt(s) = 1− 1− e−s

1− p0e−s

dte−1∑

m=0

gm,t(
e−s

1− p0e−s
)m = 1− 1− e−s

1− p0e−s

dte−1∑

m=0

(
p1e

−s

1− p0e−s
)m

= 1− 1− e−s

1− p0e−s
{
1− ( p1e−s

1−p0e−s )dte

1−e−s

1−p0e−s

} = (
p1e

−s

1− p0e−s
)dte, s ≥ 0,
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which is exactly the Laplace transform of a NB(dte, p1) distributed random variable.

Note that for integers a, b, with a ≤ b, B1
a,a,b =

⋃b−a
i=0 B1

a,a+i,a+i , where B1
a,a,a,B1

a,a+1,a+1,

· · · ,B1
a,b,b, are disjoint. Also let Hn

k =
(
n−1+k

k

)
, n ≥ 1, k ≥ 0, denote the number of k-

combinations with repetition of n distinct things. Before giving Example 4, we need the follow-
ing lemma.

Lemma 1. For integers n ≥ 1, and k ≥ 0, we have

∑

(x1,x2,···)∈B1
n,n+k,n+k

n!∏
i≥1 xi!

=
(

n− 1 + k

k

)
. (39)

Proof. For n ≥ 1, let y1, y2, · · · , yn be any n positive integers. For every i ≥ 1, let zi =∑n
j=1 I{yj=i}, where

I{yj=i} =

{
1 , yj = i,

0 , yj 6= i,

is the indicator function. Then
∑

i≥1 zi = n, and
∑

i≥1 izi =
∑n

j=1 yj . Conversely, for every
(z1, z2, · · ·) ∈ B1

n,n+k,n+k, i.e.
∑

i≥1 zi = n, and
∑

i≥1 izi = n + k, k ≥ 0, there exists ex-
actly one multiset {y1, y2, · · · , yn} satisfying

∑n
j=1 yj = n + k. Hence for every (z1, z2, · · ·) ∈

B1
n,n+k,n+k, (n!/

∏
i≥1 zi!) is the number of distinct permutations of the corresponding multiset

{y1, y2, · · · , yn}. For n ≥ 1, k ≥ 0,
∑

(z1,z2,···)∈B1
n,n+k,n+k

n!/(
∏

i≥1 zi!) is the total number of

combinations of (y1, y2, · · · , yn), such that
∑n

j=1 yj = n + k, i.e.

∑

(z1,z2,···)∈B1
n,n+k,n+k

n!∏
i≥1 zi!

= Hn
(n+k)−n = Hn

k =
(

n− 1 + k

k

)
,

as desired.

Example 4. Assume p0 = 0 and pk = p(1 − p)k−1, k ≥ 1, where 0 < p < 1. Then for
dte ≥ n,

P (Qt = n) =
dte−n∑

k=0

(
n− 2 + k

k

)
pn−1(1− p)k −

dte−n−1∑

k=0

(
n− 1 + k

k

)
pn(1− p)k,

and P (Qt = n) = 0, for dte < n.

Proof. For dte < n, the result is obvious. We now prove the case for dte ≥ n. By letting
p0 = 0 and pk = p(1− p)k−1, k ≥ 1, in Theorem 1, and from Lemma 1, we obtain

P (Qt = n) = gn−1,t − gn,t
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=
∑

(x1,x2,···)∈B1
n−1,n−1,dte−1

(n− 1)!(
∏

i≥1

(p(1− p)i−1)xi

xi!
)

−
∑

(x1,x2,···)∈B1
n,n,dte−1

n!(
∏

i≥1

(p(1− p)i−1)xi

xi!
)

=
dte−n∑

k=0

{
∑

(x1,x2,···)∈B1
n−1,n−1+k,n−1+k

(n− 1)!∏
i≥1 xi!

p
P

i≥1 xi(1− p)
P

i≥2(i−1)xi}

−
dte−n−1∑

k=0

{
∑

(x1,x2,···)∈B1
n,n+k,n+k

n!∏
i≥1 xi!

p
P

i≥1 xi(1− p)
P

i≥2(i−1)xi}

=
dte−n∑

k=0

(
n− 2 + k

k

)
pn−1(1− p)k −

dte−n−1∑

k=0

(
n− 1 + k

k

)
pn(1− p)k. (40)

That the last equality of (40) holds is because if (x1, x2, · · ·) ∈ B1
n−1,n−1+k,n−1+k, 0 ≤ k ≤ dte−n,

i.e.
∑

i≥1 xi = n − 1 and
∑

i≥1 ixi = n − 1 + k, then
∑

i≥2(i − 1)xi = k. Similarly, if
(x1, x2, · · ·) ∈ B1

n,n+k,n+k, 0 ≤ k ≤ dte − n − 1, i.e.
∑

i≥1 xi = n and
∑

i≥1 ixi = n + k,
then

∑
i≥2(i− 1)xi = k.

Remark 2. As a comparison, for the pk, k ≥ 0, defined in Example 4, we have

P (Nt = n) =
btc−n∑

k=0

(
n− 1 + k

k

)
pn(1− p)k −

btc−n−1∑

k=0

(
n + k

k

)
pn+1(1− p)k, btc ≥ n,

and P (Nt = n) = 0, for btc < n.

4. Limiting and some other related results

For the renewal process {Nt, t ≥ 0}, it is known that for every t > 0 and r > 0, E(N r
t ) < ∞,

and as t →∞, Nt
a.s.−→∞, Nt/t

a.s.−→ 1/µ, and E(Nt)/t → 1/µ, where µ = E(X1) < ∞. By using
(6), (7) and (10), the following consequence is immediate.

Theorem 2. Let µ = E(X1).
(i). For t > 0 and r > 0, E(Qr

t ) < ∞.
(ii). If t →∞, then Qt

a.s.−→∞.

(iii). Let µ < ∞. If t →∞, then Qt/t
a.s.−→ 1/µ.

(iv). Let µ < ∞. If t →∞, then E(Qt)/t → 1/µ.

Along the lines of the proof for the renewal process {Nt, t ≥ 0}, the central limit theorem
also holds for {Qt, t ≥ 0}.
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Theorem 3. Let µ = E(X1) < ∞, and σ2 = Var(X1) < ∞, then

Qt − t/µ

σ
√

t/µ3
d−−−−→t →∞ N (0, 1). (41)

For the process {Nt, t ≥ 0}, it is well known

E(SNt+1) = E(X1 + · · ·+ XNt+1) = E(X1)E(Nt + 1), t ≥ 0. (42)

Although Nt is not a stopping time, Qt nevertheless is a stopping time. Hence by the Wald
equality and (i) of Theorem 2, we have

E(SQt) = E(X1)E(Qt), t ≥ 0. (43)

We use Example 3 to illustrate (43).

Example 3.(Continued) For t = 0, Q0 = 0, and SQ0 = 0, hence (43) holds. For t > 0,
as E(SQt) = dte, E(Qt) = dte/p1, and E(X1) = p1, (43) holds again.

We now give an example to present a partial answer of the Hello Kitty magnets example
mentioned in Introduction. Note that if one magnet is given at a time, the expected number of
purchases to collect a complete set of 41 magnets is t = 176.42.

Example 5. Let Y1, Y2, · · · be i.i.d. random variables with the same distribution as Y , where
for every i ≥ 1, Yi denotes the amount that a consumer spends at the i-th purchase at 7-Eleven.
Assume that Y ∼ Uniform{1, 2, · · · , 250}. Then

p0 = P (X1 = 0) = P (1 ≤ Y ≤ 76) =
76
250

,

p1 = P (X1 = 1) = P (77 ≤ Y ≤ 153) =
77
250

,

p2 = P (X1 = 2) = P (154 ≤ Y ≤ 230) =
77
250

,

p3 = P (X1 = 3) = P (231 ≤ Y ≤ 250) =
20
250

,

E(X1) = 1.164, Var(X1) = 0.905104, and N = sup{i | i ≥ 0, pi > 0} = 3. Thus by routine
computations, we obtain

P (Qt = n) =
b dte−1

N
c∑

m=0

(1− 76
250

)m(
76
250

)n−m−1(
(

n− 1
m

)
−

(
n

m

)
76
250

)

+
dte−1∑

m=b dte−1
N

c+1

dte−1−m∑

k=0

m−d k
2
e∑

v=m−k

m!
v!(2m− 2v − k)!(k −m + v)!

(
77
250

)2m−v−k

·( 20
250

)k−m+v(
76
250

)n−m−1(
(

n− 1
m

)
−

(
n

m

)
76
250

), n ≥ 59,
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E(Qt) =
b dte−1

N c+ 1
1− P0

+
dte−1∑

m=b dte−1
N

c+1

dte−1−m∑

k=0

m−d k
2
e∑

v=m−k

m!
v!(2m− 2v − k)!(k −m + v)!

·250× 772m−v−k × 20k−m+v

174m+1
,

and

Var(Qt) =
b dte−1

N
c∑

m=0

81500 + 125000m
1742

+
dte−1∑

m=b dte−1
N

c+1

dte−1−m∑

k=0

m−d k
2
e∑

v=m−k

m!
v!(2m− 2v − k)!(k −m + v)!

·2502 × 772m−v−k × 20k−m+1

174m+2
− (E(Qt))2.

Now for t = 176.42, E(Q176.42)
.= 152.466, and Var(Q176.42)

.= 101.888. Hence the expected
number of purchases to get magnets greater than or equal to 176.42 is about 152.466. Further-
more from (43), we have

E(SQ176.42) = E(X1)E(Q176.42)
.= 1.164× 152.466 .= 177.470,

which is slightly greater than 176.42. Recall that, by the definition of Qt, SQt ≥ t, t ≥ 0.
Finally, we give the curve of the probability density function of Q176.42 in Figure 2, and plot

the probability density functions of Z176.42 and N (0, 1) in Figure 3, where

Z176.42 =
Q176.42 − 176.42/1.164√
0.905104

√
176.42/1.1643

is the normalized Q176.42. As expected, due to Theorem 3, the normal approximation to the
probability density function of Z176.42 is very accurate.

60 80 100 120 140 160 180 200
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0.015
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0.035
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n

P
(Q

17
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=
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Figure 2. The probability density function of Q176.42
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Figure 3. The probability density functions of Z176.42(dotted line) and N (0, 1)(solid line)
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