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ABSTRACT

Since Azzalini (1985,1986) introduced the fundamental properties of the skew-normal

distribution, there are many investigations about the skew distributions based on certain

symmetric probability density functions. These classes of the skew-symmetric distributions

include the original symmetric distribution and have some properties like the original one

and yet is skew.

In this thesis, we consider two topics of the skew-symmetric models. In Chapter 1, we

study the quadratic forms of multivariate skew normal-symmetric distributions. Following

the paper by Gupta and Chang (2003) we generalize a multivariate skew normal-symmetric

distribution with p.d.f. of the form fZ(z) = 2φp(z;Ω)G(α′z), where Ω > 0, α ∈ Rp,

φp(z;Ω) is the p-dimensional normal p.d.f. with zero mean vector and correlation matrix Ω,

and G is taken to be an absolutely continuous distribution function such that G′ is symmetric

about 0. First we obtain the moment generating function of certain quadratic forms. It is

interesting to find that the distributions of some quadratic forms are independent of G. Then

the joint moment generating functions of a linear compound and a quadratic form, and two

quadratic forms, and conditions for their independence are given. Finally we take G to be

one of normal, Laplace, logistic or uniform distribution, and determine the distribution of a

special quadratic form for each case.

In Chapter 2, we study the generalized skew-Cauchy distributions. We investigate the

generalized skew-symmetric distributions. Suppose Y is an absolutely continuous random

variable symmetric about 0 with probability density function f and cumulative distribution

function F . If a random variable X satisfies X2 d
= Y 2, then X is said to have a generalized

skew distribution of F (or f). The generalized skew-Cauchy (GSC) distribution are consid-

ered and special examples of GSC distribution are presented. Some of these examples are

generated from generalized skew-normal or generalized skew-t distributions.

Keywords: Chi-square distribution, independence, moment generating function, non-normal

models, quadratic form, Skew-Cauchy distribution, skew-normal distribution, skew-symmetric

distribution, skew-t distribution.
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Chapter 1

Quadratic Forms of Multivariate

Skew Normal-Symmetric

Distributions

1.1 Introduction

The univariate skew normal distribution was introduced by Azzalini (1985) and (1986), and
Gupta et al. (2004b), and its multivariate version by Azzalini and Dalla Valle (1996), Azzalini
and Capitanio (1999), Gupta and Kollo (2000), and Gupta et al. (2004a). These classes of
distributions include the normal distribution and have some properties like the normal and yet
is skew. They are useful in studying robustness. Here a p-dimensional random vector Z is said
to have a multivariate skew normal distribution if it is continuous and its probability density
function (p.d.f.) is given by

fZ(z) = 2φp(z;Ω)Φ(α′z), (1.1)

where Ω > 0, α ∈ Rp, φp(z;Ω) is the p.d.f. of Np(0,Ω) distribution (the p-dimensional normal
distribution with zero mean vector and correlation matrix Ω), and Φ(·) is the standard normal
cumulative distribution function (c.d.f.). It is denoted by Z ∼ SNp(Ω,α), to mean that the
random vector Z has p-variate skew normal p.d.f. (1.1). Quadratic forms of skew normal random
vectors have been studied by many authors, including Azzalini (1985), Azzalini and Dalla Valle
(1996), Azzalini and Capitanio (1999), Loperfido (2001), Genton et al. (2001), and Gupta and
Huang (2002).

The classes of univariate symmetric p.d.f.s which depend on a skewness parameter have
also been studied by Gupta et al. (2002), and Arellano-Valle et al. (2004). In particular
the skew normal, uniform, Student’s t, Cauchy, Laplace, and logistic distributions are given
and some of their properties are explored. The multivariate skew-Cauchy distribution and
multivariate skew t-distribution are studied by Arnold and Beaver (2000), and Gupta (2003),
respectively. Following Gupta et al. (2002), Nadarajah and Kotz (2003) studied univariate
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skewed distributions generated by the normal kernel. More precisely, they generated skew p.d.f.s
of the form 2f(u)G(λu), where f is taken to be a normal p.d.f. with zero mean, while the
c.d.f. G is taken to come from one of normal, Student’s t, Cauchy, Laplace, logistic or uniform
distribution. A class of multivariate skew distributions has been introduced by Gupta and Chang
(2003).

Following Gupta and Chang (2003), the general form of multivariate skew-symmetric distri-
bution is given by the following lemma.

Lemma 1.1. Let f be a p.d.f. of a p-dimensional random vector symmetric about 0, and G an
absolutely continuous distribution function such that G′ is symmetric about 0. Then

fZ(z; α) = 2f(z)G(α′z), z ∈ Rp, (1.2)

is a p.d.f. of a random p-vector Z for any α ∈ Rp.

Note that in Lemma 1.1, for fZ(z) being a p.d.f., the condition for G may not be needed.
For some k > 0, 0 ≤ G(x) ≤ k, G′(x) exists, and G(x) + G(−x) = 1, ∀x ∈ R, is enough. For
example, if G(x) = 1/2, ∀x ∈ R, then fZ(z;α) = f(z), z ∈ Rp, is a p.d.f.. Also the multivariate
skew normal distribution is one special case of the general form, which is obtained by taking
f ≡ φp and G ≡ Φ in (1.2).

In this paper, we consider a class of multivariate skew-symmetric distributions generated by
the normal kernel. We only take f ≡ φp in (1.2), and let G be defined as in Lemma 1.1. Namely,
we say Z has a multivariate skew normal-symmetric distribution, if the p.d.f. of Z is given by

fZ(z) = 2φp(z;Ω)G(α′z), z ∈ Rp, (1.3)

for some α ∈ Rp.
Gupta and Huang (2002) have studied quadratic forms of multivariate skew normal-normal

model. That is they consider the case G ≡ Φ in (1.3). In this paper, we will obtain some
parallel results for the class of multivariate skew normal-symmetric distributions. In Section 2,
we discuss the moment generating function (m.g.f.) of the quadratic form, Q = (Z−a)′A(Z−a),
where a ∈ Rp, A is a p×p symmetric matrix, and Z has a multivariate skew normal-symmetric
distribution with p.d.f. given in (1.3). In Section 3, the independence of a linear compound and a
quadratic form, and two quadratic forms are studied. Then in the following sections, we discuss
some skewed models generated by a normal kernel: the multivariate skew normal-normal model
(Section 4), the multivariate skew normal-Laplace model (Section 5), the multivariate skew
normal-logistic model (Section 6) and the multivariate skew normal-uniform model (Section 7).
The reason that we do not consider the normal-t and normal-Cauchy models, which are also
studied in Nadarajah and Kotz (2003), is that the closed form of the m.g.f. of Q cannot be
obtained in either case.

Note that when Z has the p.d.f. (1.3), the m.g.f. of Z is

MZ(t) = E(et′Z) = 2exp
{

1
2
t′Ωt

}
EU [G(α′U + α′Ωt)], t ∈ Rp, (1.4)
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and the m.g.f. of the linear form h′Z, h ∈ Rp, is

Mh′Z(t) = E[eth′Z ] = MZ [th] = 2exp
{

1
2
t2h′Ωh

}
EU [G(α′U + tα′Ωh)], t ∈ R, (1.5)

where U ∼ Np(0,Ω).
Throughout the rest of this paper, let a ∈ Rp, A′ = A, a p× p matrix.

1.2 Moment generating functions of certain quadratic forms

In this section, let Z be a multivariate skew normal-symmetric distribution with p.d.f. given
in (1.3). First we derive the m.g.f. of the quadratic form Q = (Z − a)′A(Z − a).

Theorem 2.1. The m.g.f. of Q is given by

MQ(t) =
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×EU1 [G(−2tα′(Ω−1 − 2tA)−1Aa + α′(Ω−1 − 2tA)−1/2U1)], t ∈ R, (1.6)

where U1 ∼ Np(0, I).

Proof. For t ∈ R, the m.g.f. of Q is

MQ(t) = E(etQ)

= 2
∫

Rp

exp{t(z − a)′A(z − a)}φp(z;Ω)G(α′z)dz

= 2
∫

Rp

exp{−1
2
(z′Ω−1z − 2t(z − a)′A(z − a))}G(α′z)dz

=
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×EU1 [G(−2tα′(Ω−1 − 2tA)−1Aa + α′(Ω−1 − 2tA)−1/2U1)], t ∈ R.

We also need the following two preliminary lemmas.

Lemma 2.2. Let X be a normally distributed random variable with mean zero. Let F (y)
be a continuous function which satisfies F (y) + F (−y) = 1, y ∈ R. Then

E[F (X)] =
1
2

.

Lemma 2.3. If X ∼ Nn(µ,Σ), where C is an n ×m constant matrix, m ≤ n, and V is an
m × 1 constant vector, then Y = C ′X + V ∼ Nm(C ′µ + V ,C ′ΣC). Specially, if m = 1, i.e.

C = c is an n× 1 column vector, and let V = 0 , then Y = c′X ∼ N(c′µ, c′Σc).
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By using the above results, the following corollary gives the distribution of four special
quadratic forms.

Corollary 2.4. Let MQi
(t)=E(etQi), t ∈ R, i = 1, 2, 3, 4.

(i). Let Q1 = Z ′AZ, where AΩ = diag(δ1, · · · , δp). Then Z ′AZ v
∑p

j=1 δjXj , where Xj v
χ2

1, j = 1, · · · , p , are independent and identically distributed (i.i.d.).

(ii). Let Q2 = Z ′Ω−1Z. Then Z ′Ω−1Z v χ2
p .

(iii). Let Q3 = (Z − a)′Ω−1(Z − a). Then

MQ3
(t) =

2exp{ t
1−2ta

′Ω−1a}
(1− 2t)p/2

×EU1 [G(
−2t

1− 2t
α′a +

1
(1− 2t)1/2

α′Ω1/2U1)], t ∈ R.

(iv). Let Q4 = Z ′AZ. Then

MQ4
(t) = |I − 2tAΩ|−1/2, Ω−1 − 2tA > 0, t ∈ R.

Proof.

(i). Substituting a = 0, and AΩ = diag(δ1, · · · , δp) in (1.6), we obtain the m.g.f. of Q1 :

MQ1
(t) =

2
|I − 2tAΩ|1/2

×EU1 [G(α′(Ω−1 − 2tA)−1/2U1)]

= [
p∏

j=1

(1− 2tδj)]−1/2 =
p∏

j=1

(1− 2tδj)−1/2, t ∈ R,

where EU1 [G(α′(Ω−1 − 2tA)−1/2U1)] = 1/2 is obtained by using Lemma 2.2.

(ii). By case (i), substituting A = Ω−1 such that AΩ = Ω−1Ω = I, i.e. δj = 1, j = 1, . . . , p ,
we obtain the m.g.f. of Q2 :

MQ2
(t) =

p∏

j=1

(1− 2tδj)−1/2 = (1− 2t)−p/2, t ∈ R.

(iii). Substituting A = Ω−1 in (1.6), we obtain the m.g.f. of Q3 :

MQ3
(t) =

2exp{a′[tΩ−1 + 2t2Ω−1(Ω−1 − 2tΩ−1)−1Ω−1]a}
|I − 2tΩ−1Ω|1/2

×EU1 [G(−2tα′(Ω−1 − 2tΩ−1)−1Ω−1a + α′(Ω−1 − 2tΩ−1)−1/2U1)]

=
2exp{ t

1−2ta
′Ω−1a}

(1− 2t)p/2
×EU1 [G(

−2t

1− 2t
α′a +

1
(1− 2t)1/2

α′Ω1/2U1)], t ∈ R.

4



(iv). Substituting a = 0 in (1.6), we obtain the m.g.f. of Q4 :

MQ4
(t) = |I − 2tAΩ|−1/2, Ω−1 − 2tA > 0, t ∈ R.

Note that MQ1
(t), MQ2

(t) and MQ4
(t) are the same as those in Gupta and Huang (2002),

respectively, where multivariate skew normal-normal model is considered. In other words, the
distributions of the three quadratic forms Q1, Q2 and Q4, are independent of G. In particular,
the distribution of Q4 = Z ′AZ is the same as that of the corresponding quadratic form where
Z ∼ Np(0,Ω). Also from (iv), it is easy to obtain the following more general result than (ii)
(see proposition 7 of Azzalini and Capitanio (1999)).

Corollary 2.5. Let B be a symmetric positive semidefinite p × p matrix of rank k such that
BΩB = B. Then Z ′BZ ∼ χ2

k.

1.3 Independence of linear forms and quadratic forms

Theorem 3.1. For h ∈ Rp, if AΩh = 0 and AΩα = 0, the linear form h′Z and the quadratic
form Z ′AZ are independent.

Proof. The joint m.g.f. of h′Z and Z ′AZ is

M1(t1, t2) = 2
∫

Rp

exp{−1
2 [z′Ω−1z − 2t1h

′z − 2t2z
′Az]}

(2π)p/2|Ω|1/2
G(α′z)dz

=
2exp{1

2 t21h
′(Ω−1 − 2t2A)−1h}

|I − 2t2AΩ|1/2

×EU1 [G(t1α′(Ω−1 − 2t2A)−1h + α′(Ω−1 − 2t2A)−1/2U1)], t1, t2 ∈ R.(1.7)

By Lemma 2.3, we have

t1α
′(Ω−1 − 2t2A)−1h + α′(Ω−1 − 2t2A)−1/2U1

∼ N(t1α′(Ω−1 − 2t2A)−1h, α′(Ω−1 − 2t2A)−1α). (1.8)

Now note that

(Ω−1 − 2t2A)−1 = Ω
∞∑

j=0

(2t2)j(AΩ)j , (1.9)

for ‖ 2t2AΩ ‖< 1, where ‖ · ‖ is a matrix norm. Hence the expansion (1.9) is always valid in
the neighborhood of t2 = 0 (see Horn and Johnson (1996, p.301)). Finally from (1.7), (1.8) and
(1.9), if AΩh = 0, and AΩα = 0, it yields

M1(t1, t2) =
2exp{1

2 t21h
′Ωh}

|I − 2t2AΩ|1/2
× EU1 [G(t1α′Ωh + α′Ω−1/2U1)], t1, t2 ∈ R, (1.10)
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which in turn implies h′Z and Z ′AZ are independent.

For the normal-normal model, it is shown in Gupta and Huang (2002), h′Z and Z ′AZ are
independent if and only if AΩh = 0 and AΩα = 0. Yet for the general model, we only can
show the if part. The following theorem nevertheless is in if and only if form.

Theorem 3.2. Let B1 and B2 be p× p symmetric matrices. The quadratic forms Z ′B1Z and
Z ′B2Z are independent if and only if B1ΩB2 = 0.

Proof. The joint m.g.f. of Z ′B1Z and Z ′B2Z is

M2(t1, t2) = 2
∫

Rp

exp{−1
2 [z′Ω−1z − 2t1z

′B1z − 2t2z
′B2z]}

(2π)p/2|Ω|1/2
G(α′z)dz

=
2

|Ω|1/2|Ω−1 − 2t1B1 − 2t2B2|1/2
EU1(G(α′(Ω−1 − 2t1B1 − 2t2B2)−1/2U1))

= |I − 2(t1B1 + t2B2)Ω|−1/2, t1, t2 ∈ R. (1.11)

Again the last step is obtained by using Lemma 2.2. Now from (1.11) for independence we get
the condition B1ΩB2 = 0.

Corollary 3.3. Let B1, · · · ,Bn be p × p symmetric matrices. The quadratic forms Z ′BiZ,
i = 1, · · · , n, are mutually independent if and only if BiΩBj = 0, i 6= j.

By (1.11), M2(t1, t2) is independent of α. Hence as in Proposition 2 of Loperfido (2001), we
have the following consequence.

Corollary 3.4. Let B1, · · · , Bn be p × p symmetric matrices. The joint distribution of the
quadratic forms (Z ′B1Z, · · · , Z ′BnZ), i = 1, · · · , n, does not depend on α.

1.4 Multivariate skew normal-normal model

Let G = Φ, then we obtain the multivariate skew normal-normal distribution for Z. As
mentioned it before, this distribution has been studied by Azzalini and Dalla Valle (1996), its
applications are given in Azzalini and Capitanio (1999), and its quadratic form has been studied
by Gupta and Huang (2002).

1.4.1 M.G.F. of (Z − a)′A(Z − a)

In this section we derive the m.g.f. of the quadratic form Q = (Z − a)′A(Z − a). For this
we need the following lemma (see Zacks (1981), pp. 53-59).

Lemma 4.1. Let U ∼ Np(0,Ω). Then, for any scalar u and v ∈ Rp, we have

6



E[Φ(u + v′U)] = Φ
{

u

(1 + v′Ωv)1/2

}
. (1.12)

Using the above lemma, we obtain the following theorem (Theorem 2 of Gupta and Huang
(2002)).

Theorem 4.2. The m.g.f. of Q is given by

MQ(t) =
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×Φ
[
− 2tα′(Ω−1 − 2tA)−1Aa

(1 + α′(Ω−1 − 2tA)−1α)1/2

]
, t ∈ R. (1.13)

1.4.1.1. Special case

Case (iii). The m.g.f. of Q3 is

MQ3
(t) =

2exp{ t
1−2ta

′Ω−1a}
(1− 2t)p/2

× Φ
[ −2t

1− 2t

α′a
(1 + α′Ωα/(1− 2t))1/2

]
, t ∈ R.

1.5 Multivariate skew normal-Laplace model

Let G = G2 be the c.d.f. of a Laplace distribution, namely

G2(x) =

{
1− 1

2exp(−x) , x ≥ 0,
1
2exp(x) , x < 0,

we obtain the multivariate skew normal-Laplace distribution for Z.

1.5.1 M.G.F. of (Z − a)′A(Z − a)

In the following we derive the m.g.f. of the quadratic form Q = (Z −a)′A(Z −a). For this
we need the following lemma which can be obtained by routine computation.

Lemma 5.1. Let U ∼ Np(0,Ω). Then, for any scalar u and v ∈ Rp, we have

E[G2(u + v′U)] =
1
2
exp

{
u +

1
2
v′Ωv

}
Φ

(−(u + v′Ωv)
(v′Ωv)1/2

)
+ Φ

(
u

(v′Ωv)1/2

)

−1
2
exp

{
−u +

1
2
v′Ωv

}
Φ

(
u− v′Ωv

(v′Ωv)1/2

)
. (1.14)

7



Substituting (1.14) in (1.6) yields the following theorem.

Theorem 5.2. The m.g.f. of Q is given by

MQ(t) =
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×
[
1
2
exp

{
−2tα′(Ω−1 − 2tA)−1Aa +

1
2
α′(Ω−1 − 2tA)−1α

}

×Φ
(

2tα′(Ω−1 − 2tA)−1Aa−α′(Ω−1 − 2tA)−1α

(α′(Ω−1 − 2tA)−1α)1/2

)
+ Φ

(−2tα′(Ω−1 − 2tA)−1Aa

(α′(Ω−1 − 2tA)−1α)1/2

)

−1
2
exp

{
2tα′(Ω−1 − 2tA)−1Aa +

1
2
α′(Ω−1 − 2tA)−1α

}

×Φ
(−2tα′(Ω−1 − 2tA)−1Aa−α′(Ω−1 − 2tA)−1α

(α′(Ω−1 − 2tA)−1α)1/2

)]
, t ∈ R. (1.15)

1.5.1.1. Special case

Case (iii). The m.g.f. of Q3 is

MQ3
(t) =

2exp{ t
1−2ta

′Ω−1a}
(1− 2t)p/2

×
[
Φ

( −2t
1−2tα

′a

( 1
1−2tα

′Ωα)1/2

)

+
1
2
exp

{
− 2t

1− 2t
α′a +

1
2(1− 2t)

α′Ωα

}
Φ

(
2t

1−2tα
′a− 1

1−2tα
′Ωα

( 1
1−2tα

′Ωα)1/2

)

−1
2
exp

{
2t

1− 2t
α′a +

1
2(1− 2t)

α′Ωα

}
Φ

( −2t
1−2tα

′a− 1
1−2tα

′Ωα

( 1
1−2tα

′Ωα)1/2

)]
, t ∈ R.

1.6 Multivariate skew normal-logistic model

Let G = G3 be the c.d.f. of a logistic distribution, namely

G3(x) =
1

1 + exp(−x/β)
, −∞ < x < ∞,

we obtain the multivariate skew normal-logistic distribution for Z. Using the Taylor series
expansion for (1 + w)−1, then

G3(x) =





∞∑

j=0

(−1
j

)
exp(−jx

β
) , x ≥ 0,

exp(
x

β
)
∞∑

j=0

(−1
j

)
exp(

jx

β
) , x < 0.

8



1.6.1 M.G.F. of (Z − a)′A(Z − a)

In the following we derive the m.g.f. of the quadratic form Q = (Z − a)′A(Z − a). First
we need a lemma given by Nadarajah and Kotz (2003).

Lemma 6.1. Let U ∼ Np(0,Ω). Then, for any scalar u and v ∈ Rp, we have

E[G3(u + v′U)] =
∞∑

j=0

(−1
j

) [
exp

{
− j

β
u +

j2

2β2
v′Ωv

}
Φ

(
u− j

β v′Ωv

(v′Ωv)1/2

)

+exp
{

(j + 1)
β

u +
(j + 1)2

2β2
v′Ωv

}
Φ


−u− (j+1)

β v′Ωv

(v′Ωv)1/2





 . (1.16)

Substituting (1.16) into (1.6), we obtain the following theorem.

Theorem 6.2. The m.g.f. of Q is given by

MQ(t) =
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×
∞∑

j=0

(−1
j

)[
exp

{
2tj

β
α′(Ω−1 − 2tA)−1Aa +

j2

2β2
α′(Ω−1 − 2tA)−1α

}

× Φ

(−2tα′(Ω−1 − 2tA)−1Aa− j
β α′(Ω−1 − 2tA)−1α)

(α′(Ω−1 − 2tA)−1α)1/2

)

+ exp
{
−2t(j + 1)

β
α′(Ω−1 − 2tA)−1Aa +

(j + 1)2

2β2
α′(Ω−1 − 2tA)−1α

}

× Φ


2tα′(Ω−1 − 2tA)−1Aa− (j+1)

β α′(Ω−1 − 2tA)−1α

(α′(Ω−1 − 2tA)−1α)1/2





 , t ∈ R. (1.17)

1.6.1.1. Special case

Case (iii). The m.g.f. of Q3 is

MQ3
(t) =

2exp{ t
1−2ta

′Ω−1a}
(1− 2t)p/2

×


∞∑

j=0

(−1
j

)[
exp

{
2tj

(1− 2t)β
α′a +

j2

2(1− 2t)β2
α′Ωα

}
× Φ

(− 2t
1−2tα

′a− j
(1−2t)β α′Ωα

( 1
1−2tα

′Ωα)1/2

)

+ exp
{
− 2t(j + 1)

(1− 2t)β
α′a +

(j + 1)2

2(1− 2t)β2
α′Ωα

}
× Φ

(
2t

1−2tα
′a− j+1

(1−2t)β α′Ωα

( 1
1−2tα

′Ωα)1/2

)]]
, t ∈ R.
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1.7 Multivariate skew normal-uniform model

Let G = G4 be the c.d.f. of a uniform distribution, namely

G4(x) =





0 , x < −h,
x+h
2h , −h ≤ x < h,

1 , x ≥ h,

we obtain the multivariate skew normal-uniform distribution for Z.

1.7.1 M.G.F. of (Z − a)′A(Z − a)

In the following we derive the m.g.f. of the quadratic form Q = (Z − a)′A(Z − a). Again
first we give a lemma.

Lemma 7.1. Let U ∼ Np(0,Ω). Then, for any scalar u and v ∈ Rp,

E[G4(u + v′U)] =
(v′Ωv)1/2

2h
√

2π
exp

{
−(h + u)2

2v′Ωv

}
− (v′Ωv)1/2

2h
√

2π
exp

{
−(h− u)2

2v′Ωv

}

+
(

u

2h
− 1

2

) [
Φ

(
h− u

(v′Ωv)1/2

)
− 1

]
+

(
u

2h
+

1
2

)
Φ

(
h + u

(v′Ωv)1/2

)
. (1.18)

Substituting (1.18) into (1.6), we obtain the following theorem.

Theorem 7.2. The m.g.f. of Q is given by

MQ(t) =
2exp{a′[tA + 2t2A(Ω−1 − 2tA)−1A]a}

|I − 2tAΩ|1/2

×
[

(α′(Ω−1 − 2tA)−1α)1/2

2h
√

2π
exp

{
−(h− 2tα′(Ω−1 − 2tA)−1Aa)2

2(α′(Ω−1 − 2tA)−1α)

}

− (α′(Ω−1 − 2tA)−1α)1/2

2h
√

2π
exp

{
−(h + 2tα′(Ω−1 − 2tA)−1Aa)2

2(α′(Ω−1 − 2tA)−1α)

}

+
(−2tα′(Ω−1 − 2tA)−1Aa

2h
− 1

2

)[
Φ

(
h + 2tα′(Ω−1 − 2tA)−1Aa

(α′(Ω−1 − 2tA)−1α)1/2

)
− 1

]

+
(−2tα′(Ω−1 − 2tA)−1Aa

2h
+

1
2

)
Φ

(
h− 2tα′(Ω−1 − 2tA)−1Aa

(α′(Ω−1 − 2tA)−1α)1/2

)]
, t ∈ R.(1.19)

1.7.1.1. Special case

Case (iii). The m.g.f. of Q3 is

MQ3
(t) =

2exp{ t
1−2ta

′Ω−1a}
(1− 2t)p/2

10



×
{

( 1
1−2tα

′Ωα)1/2

2h
√

2π

(
exp

{
−(h− 2t

1−2tα
′a)2

2
1−2tα

′Ωα

}
− exp

{
−(h + 2t

1−2tα
′a)2

2
1−2tα

′Ωα

})

+

( −2t
1−2tα

′a
2h

− 1
2

)[
Φ

(
h + 2t

1−2tα
′a

( 1
1−2tα

′Ωα)1/2

)
− 1

]

+

( −2t
1−2tα

′a
2h

+
1
2

)
Φ

(
h− 2t

1−2tα
′a

( 1
1−2tα

′Ωα)1/2

)}
, t ∈ R.
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Chapter 2

Generalized Skew-Cauchy

Distribution

2.1 Introduction

The univariate skew-normal distribution has been studied by many authors, see e.g. Azzalini
(1985,1986), Henze (1986), Chiogna (1998) and Gupta et al. (2004b). Following Azzalini (1985),
a random variable X is said to have a skew-normal distribution with parameter λ, denoted by
X ∼ SN (λ), if the probability density function (p.d.f.) is given by

fX(x) = 2φ(x)Φ(λx), λ, x ∈ R, (2.1)

where φ and Φ are the p.d.f. and cumulative distribution function (c.d.f.) of the standard normal
distribution, respectively.

By letting the p.d.f. of the random variable X be

fX(x) = 2φ(x)Φ(
λ1x√

1 + λ2x2
), λ1, x ∈ R, λ2 ≥ 0, (2.2)

Arellano-Valle et al. (2004) defined a so-called skew-generalized normal distribution, they de-
noted this distribution by SGN (λ1, λ2).

The multivariate skew-normal distribution has also been considered by Azzalini and Dalla
Valle (1996), Azzalini and Capitanio (1999), Gupta and Kollo (2003), and Gupta et al. (2004a).
Here a p-dimensional random vector X is said to have a multivariate skew-normal distribution,
denoted by X ∼ SN p(Ω, α), if it is continuous and its p.d.f. is given by

fX(x) = 2φp(x;Ω)Φ(α′x), (2.3)

where Ω > 0, α ∈ Rp, φp(x;Ω) is the p.d.f. of Np(0,Ω) distribution (the p-dimensional normal
distribution with zero mean vector and correlation matrix Ω). Quadratic forms of skew-normal
random vectors have been studied by Azzalini (1985), Azzalini and Dalla Valle (1996), Azzalini
and Capitanio (1999), Loperfido (2001), Genton et al. (2001), and Gupta and Huang (2002).
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Based on Gupta and Huang (2002), some parallel results for the class of multivariate skew
normal-symmetric distributions have also been obtained by Huang and Chen (2006).

If the p.d.f. of a random variable X has the form

fX(x) = 2f(x)G(x), x ∈ R, (2.4)

where f is a p.d.f. of a random variable symmetric about 0, and G is a Lebesque measurable
function satisfying 0 ≤ G(x) ≤ 1 and G(x) + G(−x) = 1 a.e. on R, then X is said to have
the so-called skew-symmetric distribution. Gupta et al. (2002) studied the models in which f

is taken to be the p.d.f. from one of the following distributions: normal, Student’s t, Cauchy,
Laplace, logistic, and uniform distribution, and G is a distribution function such that G′ is
symmetric about 0. Nadarajah and Kotz (2003) considered the models that f is taken to be
a normal p.d.f. with zero mean, while G is taken to come from one of the above continuous
symmetric distributions. Multivariate skew-symmetric distributions have also been studied by
Gupta and Chang (2003) and Wang et al. (2004a). The multivariate skew-Cauchy distribution
and multivariate skew t-distribution are studied by Arnold and Beaver (2000), and Gupta (2003),
respectively.

It is known that the square of each of the N (0, 1), SN (λ) and SGN (λ1, λ2) distribution is
χ2

1 distributed. Based on this observation, in this paper, first we introduce the generalized skew-
symmetric model in Section 2. Then in Section 3, we introduce the generalized skew-Cauchy
(GSC) distribution. In Section 4, some examples as well as their p.d.f.s of GSC distribution
generated by the ratio of two independent generalized skew normally distributed random vari-
ables will be given. Finally, in Section 5, several of the possible shapes of the p.d.f. of a main
example in Section 4 under various choices of parameters will be illustrated.

2.2 Generalized skew distributions

First we give a definition.

Definition 1. Suppose Y is an absolutely continuous random variable symmetric about 0 with
p.d.f. f and c.d.f. F . Assume random variable X satisfies

X2 d= Y 2. (2.5)

Then X is said to have a generalized skew distribution of F (or f).

In the above definition, if Y has a common distribution, such as N (0, 1) distribution, then
X is said to have a generalized skew-N (0, 1) distribution. The p.d.f. of a generalized skew
distribution can be obtained by using the following lemma.

Lemma 1.(Huang et al. (2005)) Let n be a positive integer, and h(t), t ∈ A, a continuous p.d.f.
Also assume A ⊂ [0,∞), when n is even. Then Xn has h as its p.d.f., if and only if the p.d.f. of
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X is

fX(x) =

{
nxn−1h(xn) , n is odd,

n|x|n−1h(xn)G(x) , n is even,
(2.6)

where x ∈ B = {x|x ∈ R, xn ∈ A}, and G(x) is a Lebesgue measurable function which satisfies
0 ≤ G(x) ≤ 1 and G(x) + G(−x) = 1 a.e., ∀x ∈ B.

According to the above lemma, the following theorem is obtained immediately.

Theorem 1. Assume the random variable Y is defined as in Definition 1, and X has a gener-
alized skew distribution of f . Then the p.d.f. of X is

fX(x) = 2f(x)G(x), x ∈ R, (2.7)

or equivalently,

fX(x) = f(x)(1 + H(x)), x ∈ R, (2.8)

where G, the skew function, is a Lebesque measurable function satisfying

0 ≤ G(x) ≤ 1 and G(x) + G(−x) = 1 a.e. on R, (2.9)

and H(x) = 2G(x)− 1, satisfying

−1 ≤ H(x) ≤ 1 and H(−x) = −H(x) a.e. on R. (2.10)

Proof. Let h(t) be the p.d.f. of X2. Then h(t) = t−1/2f(t1/2), t > 0. By Lemma 1,

fX(x) = 2|x| 1
|x|f(|x|)G(x) = 2f(x)G(x), x ∈ R,

as required, where f(|x|) = f(x) is by the fact that f is symmetric about 0. The rest of the
proof is obvious hence is omitted.

There are infinitely many functions satisfy (2.9). For example G is the distribution function
corresponding to a symmetric random variable (in particular G can be taken as F ), G(x) =
(1 + sinx)/2 (hence G is not necessary to be increasing), G(x) ≡ 1/2 (in this case fX(x) =
f(x), x ∈ R), etc. The p.d.f. given in (2.7) has the same form as in (2.4). In fact, Arnold and
Lin (2004) have used fX in (2.7) with f = φ to define the generalized skew-N (0, 1) distribution.
SN (λ), SGN (λ1, λ2), the skew normal-symmetric models of Nadarajah and Kotz (2003) all
belong to the class of generalized skew-N (0, 1) distribution.

Let (Y1, Y2) be BVN (0, 0, 1, 1, ρ) distributed, |ρ| 6= 1. Denote Y(1) = min{Y1, Y2} and
Y(2) = max{Y1, Y2}. Loperfido (2002) pointed out that Y(1) ∼ SN (−γ) and Y(2) ∼ SN (γ),
where γ = [(1−ρ)/(1+ρ)]1/2. For the minimum and maximum of a random sample of size two,
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we have the following result.

Proposition 1. Suppose X1 and X2 are two independent and identically distributed random
variables with the common absolutely continuous c.d.f. F and p.d.f. f , where f is assumed to
be symmetric about 0. Let X(1) = min{X1, X2}, X(2) = max{X1, X2}. Then X(1) and X(2) are
both generalized skew distributions of f with p.d.f.s

fX(1)
(y1) = 2f(y1)F (−y1), y1 ∈ R, (2.11)

and

fX(2)
(y2) = 2f(y2)F (y2), y2 ∈ R, (2.12)

respectively. Also |X(1)| d= |X(2)| d= |X1|.
Proof. For independent and identically distributed random variables, the marginal p.d.f.s of
X(1) and X(2) can be obtained immediately. By using 1 − F (y1) = F (−y1), y1 ∈ R, it yields
(2.11). The rest of this proposition is obvious.

It can be seen easily, that in the above proposition, neither the minimum nor the maximum
has a generalized skew distribution of f , if the sample size of random variables is greater than two.
Also when (X1, X2) is BVN (0, 0, 1, 1, 0) distributed, namely X1 and X2 are independent N (0, 1)
distributed, then Proposition 1 implies X(1) and X(2) are SN (−1) and SN (1) distributed,
respectively, which coincides with the result by Loperfido (2002).

The next property for generalized skew-N (0, σ2) distribution is also immediate.

Proposition 2. Let X1, · · · , Xn+m, n, m ≥ 1, be independent random variables each has a
generalized skew-N (0, σ2) distribution. Then

∑n
i=1 X2

i /n∑n+m
i=n+1 X2

i /m
∼ Fn,m,

where Fn,m has an F distribution with n and m degrees of freedom.

Note that it is allowed that the random variables X1, · · · , Xn+m in the above proposition are
not necessary to be identically distributed. The following is an equivalent condition to (2.5).

Proposition 3.(Wang et al. (2004b)) If X ∼ 2f(x)G(x) and Y ∼ 2f̃(x)G̃(x), where 2f(x)G(x)
and 2f̃(x)G̃(x) are two p.d.f.s of generalized skew distributions, then

f(x) = f̃(x) ⇔ τ(X) d= τ(Y ), for every even function τ,

⇔ X2 d= Y 2.

It should be mentioned here, one even function τ , such that τ(X) d= τ(Y ) is enough to imply
X2 d= Y 2. We give a simple proposition below, which can be compared with Proposition 3 of
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Arellano-Valle et al. (2004).

Proposition 4. Let X be generalized skew-N (0, σ2) distributed, Y be N (0, σ2) distributed,
and Z be χ2

1 distributed, σ > 0. Then |X| d= |Y | d= σ
√

Z ∼ HN (0, σ2), where HN (0, σ2) denotes
the half-normal distribution with parameter σ.

Although there are some parallel properties between non-skew and skew distributions, there
also have many properties hold for non-skew distributions but not for skew distributions. We
list some examples below:

Let X1 and X2 be independent and identically distributed random variables with N (0, σ2)
being their common distribution. Then

(i). X2
1 + X2

2 and X1/
√

X2
1 + X2

2 are independent,

(ii). X2
1 + X2

2 and X1/X2 are independent,

(iii). X1 −X2 and X1 + X2 are independent.

But none of these properties hold for any other generalized skew-N (0, σ2) distributions.

2.3 The GSC models

We now use Definition 1 to define the generalized skew-Cauchy distribution.
X is said to have a generalized skew-C(0, σ) distribution, denoted by GSC(σ), where σ > 0,

if X2 d= Y 2, where Y has a C(0, σ) distribution. That is X2 has the p.d.f.

h(t) =
σ

π[
√

t(σ2 + t)]
, t ≥ 0, σ > 0. (2.13)

Denote the distribution of X2 by C2(0, σ).
By Theorem 1, X has a GSC(σ) distribution, if and only if the p.d.f. of X has either of the

following forms

fX(x) =
2σ

π(σ2 + x2)
G(x), x ∈ R, σ > 0, (2.14)

or

fX(x) =
σ

π(σ2 + x2)
(1 + H(x)), x ∈ R, σ > 0, (2.15)

where G and H are Lebesque measurable functions satisfying (2.9) and (2.10), respectively.
There are some simple properties for the distribution of GSC(σ).

Proposition 5.

(i). The only symmetric GSC(σ) distribution is C(0, σ) distribution.
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(ii). Let X ∼ GSC(σ), and r ∈ R. Then E|X|r exists if and only if |r| < 1.

(iii). X ∼ GSC(σ) ⇔ X2 ∼ C2(0, σ) ⇔ 1
X2

∼ C2(0,
1
σ

) ⇔ 1
X
∼ GSC( 1

σ
).

Gupta et al. (2002) gave three examples of GSC distribution. The first example is defined
in a similar way as the skew normal distribution defined by Azzalini (1985,1986). That is the
p.d.f. of X is 2f(x)F (λx), where f(·) and F (·) are the p.d.f. and c.d.f. of C(0, σ) distribution,
respectively. More precisely, the p.d.f. of X is given by

f1(x) =
σ

π(σ2 + x2)

[
1 +

2 arctan(λx/σ)
π

]
, λ, x ∈ R, σ > 0. (2.16)

As C(0, 1) distribution is exactly the T1 distribution, inspired by this, the second example of
GSC distribution is based on the skew-T1 distribution, the latter is defined in a similar way as
t distribution.

Example 1. Let X = U/
√

W , where U has a generalized skew-N (0, 1) distribution and W

independent of U is χ2
1 distributed. Then X has a GSC(1) distribution.

Note that the random variable X given above satisfies X2 d= X2
1 , where X1 = U1/

√
W1,

U1 has a N (0, 1) distribution, and W1 independent of U1 is χ2
1 distributed. That is X1 is T1

distributed. Hence GSC(1) is also a generalized skew-T1 distribution.
For a special case, let U have a SN (λ1) distribution. Then the p.d.f. of X is given by

f2(x) =
1

π(1 + x2)

[
1 +

λ1x√
1 + (1 + λ2

1)x2

]
, λ1, x ∈ R, (2.17)

which is the second example of GSC distribution given by Gupta et al. (2002).

2.4 More examples of GSC distribution

First we give another GSC example below, which is a slight generalization of the second
example given by Gutpa et al. (2002).

Example 2. Let U and V be two independent random variables both are generalized skew-
N(0, σ2) distributed. Then X = U/|V | has a GSC(1) distribution.

In particular, let U be SN (λ) distributed, and V be generalized skew-N (0, 1) distributed.
Then X = U/|V | has the p.d.f. given in (2.17).

The reason that the two X’s defined in Example 1 and this example are equally distributed
is due to Proposition 4.

Suppose that U and V are two independent random variables and both are N (0, σ2) dis-
tributed, σ > 0. It is known that not only U/|V | but also U/V is C(0, 1) distributed. The next
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example indicates similar result holds for generalized skew-normal distributions. This example
nevertheless is a slight generalization of Examples 1 and 2. Note that both

√
W in Example 1

and |V | in Example 2 are generalized skew-N (0, 1) distributed.

Example 3. Let U and V be two independent random variables both distributed as generalized
skew-N(0, σ2) distribution. Then X = U/V has a GSC(1) distribution.

The third way of Gupta et al. (2002) to define GSC distribution is by letting X = U/V ,
where U and V are independent random variables both distributed as SN (λ). Obviously X has
a GSC(1) distribution. Although Gupta et al. (2002) failed to obtain the closed form of the
p.d.f. of X, the p.d.f. actually can be obtained. The following theorem indicates that the closed
form of the p.d.f. of X can be derived, even under a more general setting.

Theorem 2. Let U and V be independent random variables distributed as SN (λ1) and SN (λ2),
respectively, λ1, λ2 ∈ R. Then X ≡ X(λ1, λ2) = U/V has a GSC(1) distribution with p.d.f.

fX(x) =
1

π(1 + x2)

(
1 +

2λ2 arctan(λ1x/
√

1 + λ2
2 + x2)

π
√

1 + λ2
2 + x2

+
2λ1x arctan(λ2/

√
1 + (1 + λ2

1)x2)
π
√

1 + (1 + λ2
1)x2

)
,

x ∈ R. (2.18)

Before proving this theorem, we give some preliminary results below. The first lemma can
be found in Gupta and Brown (2001).

Lemma 2. For any b ∈ R,
∫ ∞

0
φ(t)Φ(bt)dt =

1
4

+
1
2π

arctan(b). (2.19)

Lemma 3. For s ≥ 0, integer r ≥ 1 and a1, · · · , ar ∈ R,
∑r

i=1 a2
i 6= 0,

∫ ∞

0
vsφ(a1v) · · ·φ(arv)dv =

Γ((s + 1)/2)2(s−1)/2

(2π)r/2(
∑r

i=1 a2
i )(s+1)/2

. (2.20)

Proof. Since φ(a1v) · · ·φ(arv) = (
√

2π)−(r−1)φ((
∑r

i=1 a2
i )

1/2v), without loss of generality, it
suffices to prove the case r = 1. Now by letting t = a2

1v
2, we have

∫ ∞

0
vsφ(a1v)dv =

1√
2π

∫ ∞

0
vse−a2

1v2/2dv

=
1

2
√

2π(a2
1)(s+1)/2

∫ ∞

0
t(s−1)/2e−t/2dt

=
Γ((s + 1)/2)2(s−1)/2

√
2π(a2

1)(s+1)/2
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as desired.

The next lemma is an extension of the above two lemmas.

Lemma 4. For s ≥ 2, integer r ≥ 1 and a1, · · · , ar, b ∈ R,
∑r

i=1 a2
i 6= 0, we have the following

recursive formula
∫ ∞

0
vsφ(a1v) · · ·φ(arv)Φ(bv)dv

=
bΓ(s/2)2s/2−1

(2π)(r+1)/2(
∑r

i=1 a2
i )(

∑r
i=1 a2

i + b2)s/2
+

s− 1∑r
i=1 a2

i

∫ ∞

0
vs−2φ(a1v) · · ·φ(arv)Φ(bv)dv.(2.21)

Also
∫ ∞

0
φ(a1v) · · ·φ(arv)Φ(bv)dv =

1
(2π)(r+1)/2(

∑r
i=1 a2

i )1/2

(
π

2
+ arctan

(
b

(
∑r

i=1 a2
i )1/2

))
,(2.22)

and
∫ ∞

0
vφ(a1v) · · ·φ(arv)Φ(bv)dv =

1
2(2π)r/2(

∑r
i=1 a2

i )

(
1 +

b

(
∑r

i=1 a2
i + b2)1/2

)
. (2.23)

Proof. Again it suffices to prove the case r = 1. For s ≥ 2, by integration by parts and Lemma
3, it yields

∫ ∞

0
vsφ(a1v)Φ(bv)dv

=
∫ ∞

0
vs 1√

2π
e−a2

1v2/2Φ(bv)dv

=
−1√
2πa2

1

[
vs−1Φ(bv)e−

a2
1v2

2

∣∣∣∣
∞

0

−
∫ ∞

0
e−

a2
1v2

2 d
(
vs−1Φ(bv)

)]

=
b√

2πa2
1

∫ ∞

0
vs−1e−a2

1v2/2φ(bv)dv +
s− 1√
2πa2

1

∫ ∞

0
vs−2e−a2

1v2/2Φ(bv)dv

=
b

a2
1

∫ ∞

0
vs−1φ(a1v)φ(bv)dv +

s− 1
a2

1

∫ ∞

0
vs−2φ(a1v)Φ(bv)dv

=
bΓ(s/2)2s/2−1

2πa2
1(a

2
1 + b2)s/2

+
s− 1
a2

1

∫ ∞

0
vs−2φ(a1v)Φ(bv)dv.

This proves (2.21) for the case r = 1.
Next by letting t = |a1|v, from Lemma 2 we have

∫ ∞

0
φ(a1v)Φ(bv)dv =

1
|a1|

∫ ∞

0
φ(t)Φ(

b

|a1| t)dt =
1

4|a1| +
1

2π|a1| arctan(
b

|a1|),

this is exactly (2.22) for r = 1.
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Finally, again by integration by parts and Lemma 3,
∫ ∞

0
vφ(a1v)Φ(bv)dv

=
−1√
2πa2

1

[
Φ(bv)e−a2

1v2/2
∣∣∣
∞

0
−

∫ ∞

0
e−a2

1v2/2dΦ(bv)
]

=
−1√
2πa2

1

[
−1

2
− b

∫ ∞

0
e−a2

1v2/2φ(bv)dv

]

=
1

2
√

2πa2
1

+
b

a2
1

∫ ∞

0
φ(av)φ(bv)dv

=
1

2
√

2πa2
1

+
b

a2
1

Γ(1/2)2−1/2

2π(a2
1 + b2)1/2

=
1

2
√

2πa2
1

[
1 +

b

(a2
1 + b2)1/2

]
.

This completes the proof of this lemma.

We also have an extended corollary.

Corollary 1. For integer r ≥ 1, and a1, · · · , ar, b1, b2 ∈ R,
∑r

i=1 a2
i 6= 0,

∫ ∞

0
vφ(a1v) · · ·φ(arv)Φ(b1v)Φ(b2v)dv

=
1

2(2π)(r+2)/2(
∑r

i=1 a2
i )

[
π +

b1(π + 2 arctan(b2/(
∑r

i=1 a2
i + b2

1)
1/2))

(
∑r

i=1 a2
i + b2

1)1/2

+
b2(π + 2arctan(b1/(

∑r
i=1 a2

i + b2
2)

1/2))
(
∑r

i=1 a2
i + b2

2)1/2

]
. (2.24)

Proof. Again it suffices to prove the case r = 1. By integration by parts and Lemma 4, it yields
∫ ∞

0
vφ(a1v)Φ(b1v)Φ(b2v)dv

=
∫ ∞

0
v

1√
2π

e−a2
1v2/2Φ(b1v)Φ(b2v)dv

=
−1√
2πa2

1

[
Φ(b1v)Φ(b2v)e−a2

1v2/2
∣∣∣
∞

0
−

∫ ∞

0
e−a2

1v2/2d(Φ(b1v)Φ(b2v))
]

=
−1√
2πa2

1

[
−1

4
−

∫ ∞

0
e−a2

1v2/2[b1φ(b1v)Φ(b2v) + b2φ(b2v)Φ(b1v)]dv

]

=
1

4
√

2πa2
1

+
b1

a2
1

∫ ∞

0
φ(a1v)φ(b1v)Φ(b2v)dv +

b2

a2
1

∫ ∞

0
φ(a1v)φ(b2v)Φ(b1v)dv

=
1

4
√

2πa2
1

+
b1

a2
1

[
1

(2π)3/2(a2
1 + b2

1)1/2

(
π

2
+ arctan

(
b2

(a2
1 + b2

1)1/2

))]

+
b2

a2
1

[
1

(2π)3/2(a2
1 + b2

2)1/2

(
π

2
+ arctan

(
b1

(a2
1 + b2

2)1/2

))]
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=
1

2(2π)3/2a2
1

[
π +

b1(π + 2 arctan(b2/(a2
1 + b2

1)
1/2))

(a2
1 + b2

1)1/2
+

b2(π + 2arctan(b1/(a2
1 + b2

2)
1/2))

(a2
1 + b2

2)1/2

]
.

Proof of Theorem 2.
That X has a GSC(1) distribution is obvious. We derive the p.d.f. of X in the following.

First the joint p.d.f. of U and V is

fU,V (u, v) = 4φ(u)φ(v)Φ(λ1u)Φ(λ2v), u, v ∈ R.

Hence the p.d.f. of X is

fX(x) = 4
∫ ∞

−∞
|v|φ(xv)φ(v)Φ(λ1xv)Φ(λ2v)dv

= 4
∫ ∞

0
vφ(xv)φ(v)Φ(λ1xv)Φ(λ2v)dv + 4

∫ ∞

0
vφ(xv)φ(v)Φ(−λ1xv)Φ(−λ2v)dv.

By using Corollary 1, it yields

fX(x) = 4 · 1
8π2(1 + x2)

[
π +

λ2(π + 2arctan(λ1x/
√

1 + λ2
2 + x2))√

1 + λ2
2 + x2

+
λ1x(π + 2 arctan(λ2/

√
1 + (1 + λ2

1)x2))√
1 + (1 + λ2

1)x2

]

+4 · 1
8π2(1 + x2)

[
π +

−λ2(π + 2 arctan(−λ1x/
√

1 + λ2
2 + x2))√

1 + λ2
2 + x2

+
−λ1x(π + 2 arctan(−λ2/

√
1 + (1 + λ2

1)x2))√
1 + (1 + λ2

1)x2

]

=
1

π(1 + x2)

(
1 +

2λ2 arctan(λ1x/
√

1 + λ2
2 + x2)

π
√

1 + λ2
2 + x2

+
2λ1x arctan(λ2/

√
1 + (1 + λ2

1)x2)
π
√

1 + (1 + λ2
1)x2

)
,

λ1, λ2, x ∈ R,

as desired.

We give another special case of Example 3.

Example 4. Let X = U/V , where U is N (0, 1) distributed, V is SN (λ) distributed, and U

and V are independent. By noting SN (0) d= N (0, 1), from (2.18) we obtain immediately

fX(x) =
1

π(1 + x2)
, x ∈ R.

Consequently, X is C(0, 1) distributed and independent of λ. Being C(0, 1) distributed, X and
1/X have the same distribution. Hence X1 = V/U is also C(0, 1) distributed.
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The following is an extension of Example 4.

Example 5. Let U be N (0, σ2) distributed, and V be generalized skew-N (0, σ2) distributed.
Then X = U/V is C(0, 1) distributed.

Proof. First the joint p.d.f. of U and V is

fU,V (u, v) =
2
σ2

φ(
u

σ
)φ(

v

σ
)G(v), u, v ∈ R, σ > 0,

where G(v) is a Lebesque measurable function satisfying condition (2.9). Hence by letting
t = v/σ, the p.d.f. of X is

fX(x) =
∫ ∞

−∞

2
σ2

φ(
xv

σ
)φ(

v

σ
)G(v)|v|dv.

=
∫ ∞

−∞
2φ(xt)φ(t)G(σt)|t|dt

= 2
∫ ∞

0
tφ(xt)φ(t)G(σt)dt + 2

∫ ∞

0
tφ(xt)φ(t)G(−σt)dt

= 2
∫ ∞

0
tφ(xt)φ(t)[G(σt) + G(−σt)]dt

= 2
∫ ∞

0
tφ(xt)φ(t)dt =

1
π(1 + x2)

, x ∈ R,

as desired.
Obviously the result still holds true if U is generalized skew-N (0, σ2) distributed and V is

N (0, σ2) distributed.

Finally, we give some limiting distributions for the random variable X(λ1, λ2) defined in
Theorem 2. The proof of the following proposition is easy, hence is omitted.

Proposition 6.

(i). lim
λ1→0

X(λ1, λ2)
d= lim

λ2→0
X(λ1, λ2)

d= C(0, 1),

(ii). lim
λ1→∞

X(λ1, λ2)
d= T1, lim

λ1→−∞
X(λ1, λ2)

d= −T1,

(iii). lim
λ2→∞

X(λ1, λ2)
d= T2, lim

λ2→−∞
X(λ1, λ2)

d= −T2,

(iv). lim
λ1,λ2→∞

X(λ1, λ2)
d= lim

λ1,λ2→−∞
X(λ1, λ2)

d= HC(0, 1),

(v). lim
λ1→∞

λ2→−∞

X(λ1, λ2)
d= lim

λ1→−∞
λ2→∞

X(λ1, λ2)
d= −HC(0, 1),
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where HC(0, 1) denotes the half-C(0, 1) distribution, T1 has the following p.d.f.

f3(x) =
1

π(1 + x2)

[
1 +

λ2sgn(x)√
1 + (1 + λ2)

]
, x ∈ R, (2.25)

where sgn(x) = 1, if x > 0, 0, if x = 0, −1, if x < 0, and T2 has the p.d.f. given in (2.17).

2.5 Some figures of the p.d.f. of the GSC distribution

In this section, several of the possible shapes of the p.d.f. of the random variable X(λ1, λ2)
in Theorem 2 under various choices of (λ1, λ2) are illustrated. Figures (e)-(h) in Figure 2
demonstrate some limiting behaviors given in Proposition 6. From Figure 2, it seems the p.d.f.
of the X(λ1, λ2) distribution may have one side heavier tail and one side thinner tail than the
C(0, 1) distribution. However, it can be seen easily that for any λ1, λ2 ∈ R, the ratio of the p.d.f.
of X(λ1, λ2) to the p.d.f. of C(0, 1) distribution tends to 1 as x →∞ or −∞.

In general, GSC distribution may not have the same tail heaviness as the C(0, 1) distribution
also may not be unimodal. As an example let σ = 1 and H(x) = sinx in (2.15), Figure 1
depicts this p.d.f. curve. Yet our conjecture is for any λ1, λ2 ∈ R, the p.d.f. curve of X(λ1, λ2)
is unimodal. This and some other related problems will be studied in the future.
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Figure 1. Probability density function of f(x) = (1 + sinx)/(π(1 + x2)), x ∈ R
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(a).(λ1, λ2) = (2, 5)
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(b).(λ1, λ2) = (−6, 1)
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(c).(λ1, λ2) = (3,−7)
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(d).(λ1, λ2) = (−4,−2)
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(e).(λ1, λ2) = (100, 1)
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(f).(λ1, λ2) = (1, 100)
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(g).(λ1, λ2) = (100, 100)
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(h).(λ1, λ2) = (100,−100)
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Figure 2. Probability density function of X(λ1, λ2) for several values of (λ1, λ2)
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13. Gupta, A.K., González-Faŕıas, G., and Domı́nguez-Molina, J.A. (2004a). A multivariate
skew normal distribution. J. Multi. Anal. 89, 181-190.

14. Gupta, A.K. and Huang, W.-J. (2002). Quadratic forms in skew normal variates. J. Math.
Anal. Appl. 273, 558-564.

15. Gupta, A.K. and Kollo, T. (2003). Density expansions based on the multivariate skew
normal distribution. Sankhyā 65, 821-835.
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