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Recently, different concepts of symmetry on R+ such as R-symmetry, log-symmetry,
and double symmetry are studied. Analogous concepts and their properties of these
symmetries on R will be studied in this work. Based on skewing representation and
previous studies, characterizations of double symmetry on R will be given. Among
others, some interesting examples of the so-called I-symmetry, that is the analogue
of log-symmetry on R, will also be presented.
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1. Introduction

A random variable (r.v.) X is said to be symmetric about a constant �, if X − � and
� − X have the same distribution, denote it by X − �

d= � − X. If � = 0, we simply
say X is symmetric. Recently, different concepts of symmetry on R+ are introduced
and investigated. Mudholkar and Wang (2007) gave the definition of R-symmetric
distribution on R+. According to their definition, a positive r.v. X with probability
density function (pdf) fX is said to be R-symmetric about the R-center �, where
� > 0, if fX��x� = fX��/x�, x > 0. By using the Cauchy-Schlömilch transformation,
Baker (2008) provided an efficient way to construct R-symmetric distributions
on R+, a lot of examples through this transformation were then given. Later,
Chaubey et al. (2010) offered a similar theorem to clarify the correspondence
between the ordinary symmetric distributions and the R-symmetric distributions
on R+. For R-symmetric and unimodal r.v.’s on R+, Mudholkar and Wang (2007)
and Chaubey et al. (2010) gave representations of their pdf’s. Mudholkar and
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2 Huang and Teng

Wang (2010) showed that the product-convolution of two R-symmetric unimodal
distributions on R+ is still R-symmetric unimodal on R+.

Earlier, Seshadri (1965) studied another nonordinary symmetry. He
characterized those non negative r.v.’s X’s such that X

d= 1/X. Since logX
d=

− logX, this was referred as log-symmetry by Jones (2008). When X is a non
negative r.v., Jones (2008) studied R-symmetry and log-symmetry about �, � > 0.
The latter is X/�

d= �/X, which is equivalent to the ordinary symmetry about log �
of the r.v. logX. Jones (2008) also pointed out that when X has a pdf f , X/�

d= �/X
is equivalent to x2fX��x� = fX��/x�, x > 0. For non negative r.v.’s link between
R-symmetry and log-symmetry was studied by Chaubey et al. (2010).

Jones and Arnold (2008) studied the r.v.’s on R+ which are both R-symmetric
and log-symmetric, the so-called double symmetry. An example of doubly symmetric
distribution is lognormal. They also characterized the class of absolutely continuous
distributions on R+ that are doubly symmetric. It turns out to be a proper subset
of absolutely continuous distributions on R+ which are moment-equivalent to the
lognormal distribution.

In this work, we will investigate natural analog of the concepts of R-symmetry,
log-symmetry, and double symmetry on R. More precisely, we call the analog of
log-symmetry on R as I-symmetry. Here, “I” stands for “inverse.” Throughout this
work, unless it is stated, every r.v. is assumed to follow an absolutely continuous
distribution. Also for an r.v., say X, let fX denote the pdf of X.

First, we give definitions of those symmetries mentioned above.

Definition 1.1. An r.v. X on R is said to be R-symmetric about the R-center �,
where � > 0, if

fX��x� = fX

(
�

x

)
� x ∈ R\�0�� (1)

or equivalently, if

fX�x� = fX

(
�2

x

)
� x ∈ R\�0�	

It can be shown easily from (1), if X is R-symmetric on R, then fX�0� = 0.

Definition 1.2. An r.v. X on R is said to be I-symmetric about �, where � > 0, if

X

�

d= �

X
�

or equivalently, if

x2fX��x� = fX

(
�

x

)
� x ∈ R\�0�	 (2)

Definition 1.3. An r.v. X on R is said to be doubly symmetric about ��� ��, where
�� � > 0, if X is both R-symmetric about � and I-symmetric about �.

Through this extension of symmetric concepts from R+ to R, some new
distributional properties of interest are established. In Sec. 2, based on a mixture
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Concepts of Symmetry on the Real Line 3

representation, we investigate the relationship between double symmetry on R+ and
double symmetry on R. In Secs. 3, 4, and 5, we give some elementary propositions
of R-symmetry, I-symmetry, and double symmetry, respectively. Next, in Sec. 6, we
characterize the doubly symmetric distributions on R, and in Sec. 7, we give some
further study about R-symmetry and I-symmetry. It turns out the results are much
related to the skewing representation of a pdf Hence, these results will shed some
insight into skew distributions.

2. Preliminary Results

Let X be an r.v. on R. Obviously, fX can have the following mixture representation:

fX�x� = af1�x�I�x>0� + �1− a�f2�−x�I�x≤0�� (3)

where I is the indicator function, and

a = P�X > 0� =
∫ �

0
fX�x�dx	 (4)

Then both f1�x� = fX�x�/a and f2�x� = fX�−x�/�1− a� are pdf’s on R+. Note that
f1 is defined to be 0 if a = 0, and f2 is defined to be 0 if a = 1. It can be seen if
a = 0, then X is on R−; if a = 1, then X is on R+. Based on the above representation,
we have the following simple lemma.

Lemma 2.1. Let X be an r.v. on R with 0 < a < 1, where a is defined in (4). Then X is
doubly symmetric about ��� �� if and only if both f1 and f2 in (3) are doubly symmetric
about ��� ��.

By Lemma 2.1, we have the following consequence.

Corollary 2.1. Let X be an r.v. on R with 0 < a < 1, where a is defined in (4). Then
X is R-symmetric about � if and only if both f1 and f2 are R-symmetric about �; X is
I-symmetric about � if and only if both f1 and f2 are log-symmetric about �.

3. R-Symmetry on R

Mudholkar and Wang (2007) investigated the properties of R-symmetry on R+. It
can be shown easily for R-symmetric on R that many similar properties still hold.
As an example, for independent nonnegative r.v.’s X and Y which are R-symmetric
about �1 and �2, respectively, Mudholkar and Wang (2007) proved that XY is R-
symmetric about �1�2. This property also holds for R-symmetry on R. Yet if X is
R-symmetric, 1/X may not be R-symmetric about any center. Consequently, if the
independent r.v.’s X and Y are both R-symmetric, it may happen that X/Y is not
R-symmetric about any center. The following is an example.

Example 3.1. Let X and Y be i.i.d. with the common distribution of the root-
reciprocal of IG�1� 
� (IG stands for inverse Gaussian). That is,

fX�x� = fY �x� =
√
2

�

exp

(
−


2

(
1
x
− x

)2
)
� x > 0	
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4 Huang and Teng

Then as pointed out by Mudholkar and Wang (2007), both X and Y are R-
symmetric in R about 1. The pdf’s of the r.v.’s U = 1/X, and V = X/Y are given by

fU �u� =
√
2
√
�u2

exp

(
−


2

(
1
u
− u

)2
)
� u > 0�

and

fV �v� =

e2


�v

∫ �

0
exp

(
−


2

(
1
v
+ v

)(
1
y
+ y

))
dy� v > 0�

respectively. Now it can be shown easily that neither of U and V is R-symmetric.

Although an R-symmetric pdf fX on R+ may not be unimodal, under certain
conditions fX can be unimodal, see, e.g., Sec. 2.1 of Baker (2008) and Remark 3.2
of Chaubey et al. (2010). Yet if fX is R-symmetric on R, then certainly it cannot
be unimodal. This can be seen by noting fX�0� = 0. Mudholkar and Wang (2007)
proved that if X is R-symmetric about � in R+, and X is unimodal, then � is the
mode. Similarly, it can be shown if X is R-symmetric about � in R, and both f1
and f2 in (3) are unimodal, then � is their common mode. Hence, after reflecting
of f2 through the origin, fX is bimodal. On the other hand, Mudholkar and Wang
(2010) showed that on R+ the product-convolution of two R-symmetric unimodal
distributions is still R-symmetric unimodal. Along the lines of Mudholkar and
Wang (2010) and using the representation in (3), we have the following analogous
result for R-symmetry on R.

Proposition 3.1. Let the independent r.v.’s X and Y be R-symmetric bimodal with the
R-centers �1 and �2, respectively. Then XY is R-symmetric and bimodal with the R-center
�1�2.

4. I-Symmetry

We now give some simple properties of I-symmetry. The proofs are similar to those
of the situation of log-symmetry on R+, hence are omitted.

Proposition 4.1. Let the r.v. X on R be I-symmetric about �. Then P�−� < X ≤ �� =
1/2. Also for every constant a > 0, aX is I-symmetric about a�.

Proposition 4.2. Let the independent r.v.’s X and Y on R be I-symmetric about �1 and
�2, respectively. Then XY is I-symmetric about �1�2.

In contrast to R-symmetry, for I-symmetry we have the following result.

Proposition 4.3. Let the independent r.v.’s X and Y on R be I-symmetric about �1 and
�2, respectively. Then X/Y is I-symmetric about �1/�2. In particular, 1/X is I-symmetric
about 1/�1.
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Concepts of Symmetry on the Real Line 5

5. Double Symmetry

In this section some simple properties of double symmetry will be given. Again the
proofs are all omitted.

Proposition 5.1. Let the r.v. X on R be doubly symmetric about ��� ��. Then for any
constant a > 0, aX is doubly symmetric about �a�� a��.

Proposition 5.2. Let the independent r.v.’s X and Y on R be doubly symmetric about
��2� �2� and ��2� �2�, respectively. Then XY is doubly symmetric about ��1�2� �1�2�.

The following proposition points out that the ratio of two independent doubly
symmetric r.v.’s is still doubly symmetric.

Proposition 5.3. Let the independent r.v.’s X and Y on R be doubly symmetric about
��1� �1� and ��2� �2�, respectively. Then X/Y is doubly symmetric about ��1�2/�

2
2� �1/�2�.

In particular, 1/X is doubly symmetric about ��1/�
2
1� 1/�1�.

6. Main Results

Based on the study of univariate skew normal distribution, see, e.g., Azzalini (1985),
for a pdf fX , it can also be represented as

fX�x� = 2f�x�G�x�� x ∈ R� (5)

where

f�x� = 1
2
�fX�x�+ fX�−x�� (6)

is a symmetric pdf, and

G�x� = fX�x�

fX�x�+ fX�−x�
=
{
af1�x�/�af1�x�+ �1− a�f2�x��� x > 0�

�1− a�f2�−x�/�af1�−x�+ �1− a�f2�−x��� x ≤ 0�
(7)

is a skewing function, that is G�x� ≥ 0 and G�x�+G�−x� = 1, x ∈ R. In this section,
we will characterize double symmetry through skewing representation.

As the skew representation plays an important role in characterization of
double symmetry, we are interested in knowing is it possible that f is not doubly
symmetric, yet fX is doubly symmetric? The next lemma will answer this question.

Lemma 6.1. Let the r.v. X on R be doubly symmetric about ��� ��. Then the f in (5)
is also doubly symmetric about ��� ��.

Jones and Arnold (2008) characterized the class of absolutely continuous
distributions on R+ which are doubly symmetric. By using their result and
the skewing representation of a distribution as in (5), we have the following
characterization of the double symmetry on R.



246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Huang and Teng

Theorem 6.1. Let the r.v. X on R be doubly symmetric about ��� ��. Let k = �/�. Also,
let fX be represented as in (5). Then f has the form

f�x� ∝
�∑

i=−�
�−2ik2i�i+1�x2i�x����−2k4�i−1�x2�I��k−2i < �x� ≤ �k2−2i�� x ∈ R\�0�� (8)

where � is a non negative function on �k−4� 1
 and chosen to satisfy

��u� = �

(
1
k4u

)
� k−4 < u ≤ 1� (9)

where

��u� ≡ u��u�� (10)

and G is chosen to satisfy

G��x� = G

(
�

x

)
� and G��x� = G

(
�

x

)
x ∈ R\�0�	 (11)

Proof. First from Lemma 6.1, we obtain X1 = �X� is doubly symmetric. Now by
Jones and Arnold (2008),

fX1
�x� ∝

�∑
i=−�

�−2ik2i�i+1�x2i+1���−2k4�i−1�x2�I��k−2i < x ≤ �k2−2i�� x > 0�

where the non negative function � defined on �k−4� 1
 satisfying (9) and (10). Note
that f�x� = fX1

��x��/2, x ∈ R, hence (8) is obtained immediately.
Next due to the doubly symmetric property of X, we have (1) and (2). Then by

the representation of (5), (1), and (2) in turn imply

2f��x�G��x� = 2f
(
�

x

)
G

(
�

x

)
� (12)

and

2x2f��x�G��x� = 2f
(
�

x

)
G

(
�

x

)
� (13)

respectively. Furthermore, from Lemma 6.1, we obtain f��x� = f��/x� and
x2f��x� = f��/x�. These together with (12) and (13) imply (11) immediately. This
completes the proof. �

The “if” part of the next theorem is obvious. By Lemma 6.1 and Theorem 6.1,
the “only if” part follows.

Theorem 6.2. Let the pdf of the r.v. X be written as in (5). Then X is doubly symmetric
about ��� �� if and only if

(i) f is doubly symmetric about ��� ��, and
(ii) G satisfies (11).
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Concepts of Symmetry on the Real Line 7

We give an illustration of Theorem 6.2.

Example 6.1. Let the pdf of the r.v. X be written as in (5), where

f�x� = 1

2
√
2���x� exp

(
− �log �x� − ��2

2�2

)
�

and

G�x� = 1
2
+ �

2
sgn�x� cos

(
2��log �x� − ��

�2

)
� ��� ≤ 1	

Note that X1 = �X� has Log-� ��� �2� distribution, which is doubly symmetric about
�e�−�2� e��. From Lemma 2.1, f is doubly symmetric about ��� �� = �e�−�2� e��. Also,
it can be checked easily that G�e�−�2x� = G�e�−�2/x� and G�e�x� = G�e�/x�. Hence
the conditions for G in (11) are satisfied. Therefore, X is doubly symmetric about
�e�−�2� e��.

7. Further Study of R-Symmetry and I-Symmetry

7.1. Generation of R-Symmetric Distributions

Baker (2008) showed that any pdf on R+ may be transformed to an R-symmetric pdf
on R+ by the Cauchy-Schlömilch transformation. Later, Chaubey et al. (2010) gave
a similar transformation. More precisely they offered a simple method to generate
an R-symmetric pdf on R+ by a symmetric pdf. Along the lines of Chaubey et al.
(2010), the following corresponding result for R-symmetry on R can be obtained
immediately.

Theorem 7.1. Let h be a symmetric pdf Then

g�x� = 2
�
h

(
x

�
− �

x

)
G
(x
�

)
� x ∈ R\�0�� (14)

where � > 0, and G is a skewing function which satisfies

G�x� = G�1/x�� x ∈ R\�0�� (15)

is an R-symmetric pdf with the R-center �.

We now give a simple class of examples of skewing function which satisfies (15).
Note that the term G�x/�� in (14) can be replaced by G�x�, then instead of (15),
the skewing function G must satisfy G��x� = G��/x�, x ∈ R\�0�. Also, if a skewing
function G satisfies (15), then G1�x� = G�x/��, x ∈ R\�0�, is a skewing function
satisfying G1��x� = G1��/x�, x ∈ R\�0�.
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8 Huang and Teng

Example 7.1. The function defined below is a skewing function satisfying (15),

G�x� =



1
2
�1+ h�x��� 0 ≤ �x� ≤ 1�

1
2

(
1+ h

(
1
x

))
� �x� > 1�

(16)

where �h�x�� ≤ 1, �x� ≤ 1, is an odd function. When h�x� = cxn, where �c� ≤ 1 and n
is 0 or odd number, then

G�x� =



1
2
�1+ cxn�� 0 ≤ �x� ≤ 1�

1
2
�1+ cx−n�� �x� > 1	

(17)

In particular, if c = 0, then G�x� = 1/2, x ∈ R.

7.2. Characterization of I-Symmetry

First, we give a characterization by Seshadri (1965) of the distributions with support
on R+ which are log-symmetric about 1.

Lemma 7.1. Let X be an r.v. on R+. Then X is log-symmetric about 1 if and only if

fX�x� =
1
x
g�log x�� x > 0� (18)

where g is a symmetric pdf.

The next lemma is an extension of the above lemma, which concerns r.v.’s on R.

Lemma 7.2. Let X be an r.v. on R. Then X is I-symmetric about 1 if and only if

fX�x� =
1
�x�g�log �x��G�x�� x ∈ R\�0�� (19)

where g is a symmetric pdf and G is a skewing function which satisfies (15).

Proof. First we prove the “if” part. Suppose (19) holds. Let Z = 1/X. Then,

fZ�z� = fX

(
1
z

)
1
z2

= �z�
z2

g

(
log

∣∣∣∣1z
∣∣∣∣
)
G

(
1
z

)
= 1

�z�g�log �z��G�z� = fX�z�� z ∈ R\�0��

where the third equality is by the symmetry of g and (15). This proves the “if” part.
Next, assume X is I-symmetric about 1. According to Corollary 2.1, both f1

and f2 in (3) are log-symmetric about 1. From Lemma 7.1, f1�x� = g1�log x�/x and
f2�x� = g2�log x�/x, where g1 and g2 are symmetric pdf’s. By (5), (6), and (7), it
follows

f�x� = 1
2�x� �ag1�log �x��+ �1− a�g2�log �x��� =

1
2�x�g�log �x��� x ∈ R\�0�� (20)
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Concepts of Symmetry on the Real Line 9

and

G�x� =
{
ag1�log x�/�ag1�log x�+ �1− a�g2�log x��� x > 0�

�1− a�g2�log�−x��/�ag1�log�−x��+ �1− a�g2�log�−x���� x < 0�
(21)

where g�x� = ag1�x�+ �1− a�g2�x�, x ∈ R, which is a mixture pdf of g1 and g2. Due
to the fact that both g1 and g2 are symmetric, g, and hence f , is also symmetric.
Finally, that the function G in (21) satisfies (15) is obvious. This completes the
proof. �

Remark 7.1. If the G in (19) is G�x� = 0, x ≤ 0, and G�x� = 1, x > 0, then X > 0
and fX is reduced to (18).

Consider an r.v. X which is I-symmetric about �. Then by Proposition 4.1 and
Lemma 7.2, the consequence given below follows.

Theorem 7.2. Let X be an r.v. on R. Then X is I-symmetric about �, if and only if

fX�x� =
1
�x�g

(
log

�x�
�

)
G
(x
�

)
� x ∈ R\�0�� (22)

where g is a symmetric pdf and G is a skewing function which satisfies (15).

The following are examples to illustrate Theorem 7.2.

Example 7.2. Let X be ��0� 1� distributed with pdf fX�x� = ���1+ x2��−1, x ∈ R.
Obviously X

d= 1/X. By choosing

g�x� = 2ex

��1+ e2x�
� x ∈ R�

and G�x� = 1/2, x ∈ R, then

fX�x� =
1

��1+ x2�
= 1

�x�g�log �x��G�x�� x ∈ R\�0�	

On the other hand, if

fX�x� =
2

��1+ x2�
G�x�� x ∈ R�

where G is a skewing function which satisfies (15), then for this X, it is still
I-symmetric about 1.

Example 7.3. Let g�x� = 1
2e

−�x�, x ∈ R, the pdf of a Laplace distribution, and
G�x� = I�x≥0�, x ∈ R, a skewing function which satisfies (15). Then,

fX�x� =
1
�x�g�log x�G�x� =



1
2
� 0 < x < 1�

1
2x2

� x ≥ 1	
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10 Huang and Teng

This is the pdf of U/V , where U and V are i.i.d. ��0� 1� r.v.’s. Note that if X
d= U/V ,

where U and V are i.i.d. r.v.’s, then X is I-symmetric about 1.

Although the ratio of two i.i.d. r.v.’s has a distribution that is I-symmetric
about 1, for an r.v. Z which is log-symmetric about 1, we will show below that there
may not exist two i.i.d. r.v.’s X and Y such that Z

d= X/Y . As logZ is symmetric, if
there is a symmetric r.v. which is not distributed as the difference of two i.i.d. r.v.’s,
then this offers an example that a log-symmetric r.v. may not be distributed as the
ratio of two i.i.d. r.v.’s.

Throughout the rest of this section, let �Z�t�, t ∈ R, denote the characteristic
function (ch.f.) of the r.v. Z. First by noting the ch.f. of the difference of two i.i.d.
r.v.’s is real and nonnegative, we have the following lemma.

Lemma 7.3. Let the r.v. Z on R+ be log-symmetric about 1. Also, let Z1 = logZ. If
there exist two i.i.d. r.v.’s X and Y such that Z

d= X/Y , then �Z1
�t� ≥ 0, ∀t ∈ R.

For a symmetric r.v. Z1, let Z = eZ1 . Then Z is log-symmetric about 1.
According to Lemma 7.3, if �Z1

�t� < 0 for some t ∈ R, then there do not exist

two i.i.d. r.v.’s X and Y such that Z
d= X/Y . The following example was given by

Seshadri (1965).

Example 7.4. Let the pdf of the r.v. Z1 mentioned above be

fZ1
�z� = 1√

2�
z2e−z2/2� z ∈ R	

Then,

�Z1
�t� =

√
2
�
�1− t2�e−t2/2� t ∈ R	

As �Z1
�t� < 0 when �t� > 1, there do not exist two i.i.d. r.v.’s X and Y such that

Z
d= X/Y follows.

Next, we give a sufficient condition for a log-symmetric r.v. on R+ which can
be represented as X/Y , where X and Y are i.i.d. r.v.’s.

Theorem 7.3. Let the r.v. Z on R+ be log-symmetric about 1, and let Z1 = logZ. If√
�Z1

is a ch.f., then there exist two i.i.d. r.v.’s X and Y such that Z
d= X/Y .

Proof. That Z is log-symmetric about 1 implies �Z1
is a real and even function.

Hence
√
�Z1

is also even. Let i.i.d. r.v.’s X1 and Y1 have ch.f.
√
�Z1

. Then �X1−Y1
�t� =

�Z1
�t�, t ∈ R. Consequently, Z1

d= X1 − Y1. The rest of the proof follows easily. �

Theorem 7.3 has the following immediate consequence.

Corollary 7.1. Let the r.v. Z on R+ be log-symmetric about 1. Also, let Z1 = logZ. If
�Z1

is infinitely divisible, then there exist two i.i.d. r.v.’s X and Y such that Z
d= X/Y .
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It is known that the function ��t�, t ∈ R, is a Pólya type ch.f. if

��0� = 1� ��t� ≥ 0� ��t� = ��−t�� t ∈ R� (23)

where � is decreasing and continuous convex on R+; see, e.g., Chung (2001). The
following is another consequence.

Corollary 7.2. Let the r.v. Z on R+ be log-symmetric about 1. Also, let Z1 = logZ. If
�Z1

is a Pólya type ch.f. satisfying

�Z1
�t� > 0� �′′

Z1
�t��Z1

�t�− 1
2
��′

Z1
�t��2 ≥ 0� t > 0� (24)

then there exist two i.i.d. r.v.’s X and Y such that Z
d= X/Y .

Proof. Firstly, we show that
√
�Z1

is also a Pólya type ch.f. That
√
�Z1

satisfies (23)
is obvious. Also, since �Z1

is decreasing and continuous on R+, so is
√
�Z1

. Now

(√
�Z1

�t�
)′′

= �′′
Z1
�t��Z1

�t�− ��′
Z1
�t��2/2

2�Z1
�t�
√
�Z1

�t�
≥ 0 (25)

by (24). Consequently,
√
�Z1

is convex on R+. Therefore,
√
�Z1

is a Pólya type ch.f.
The proof then follows by Theorem 7.3. �

It is known that both ��0� 1� and � �0� 1� distributions are infinitely divisible.
We now present some examples to illustrate Corollary 7.1.

Example 7.5. Let the pdf of the r.v. Z be

fZ�z� =
1

�z�1+ �log z�2�
� z > 0	

Then, Z is log symmetric about 1, and Z1 is ��0� 1� distributed, where Z1 = logZ.
Since ��0� 1� distribution is infinitely divisible, according to Corollary 7.1, there
exist two i.i.d. r.v.’s X and Y such that Z

d= X/Y . As can be seen, if the common pdf
of X and Y is

fX�x� =
1/2

�x�1/4+ �log x�2�
� x > 0�

then this can be served as an example.

Example 7.6. Let the r.v. Z be Log-� �0� 1� distributed. Also let Z1 = logZ. Then Z

is log-symmetric about 1, and Z1 is � �0� 1� distributed, which is infinitely divisible.
Hence, there exist two i.i.d. r.v.’s X and Y such that Z

d= X/Y . The r.v.’s X and Y

with Log-� �0� 1/2� being their common distribution is an example.
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Example 7.7. Let the r.v. Z1 have the Pólya type ch.f. �Z1
�t� = �1+ �t��−1, t ∈ R.

Also let Z = eZ1 . Then Z is log-symmetric about 1. Since

�′′
Z1
�t��Z1

�t�− 1
2
��′

Z1
�t��2 = 3

2�1+ t�4
≥ 0� t ∈ R+�

according to Corollary 4, there exist two i.i.d. r.v.’s X and Y such that Z
d= X/Y .

In Examples 7.4 and 7.5, that the common distribution of X and Y is related to
that of Z by a scale factor of 2 on the logged scale can be seen from the fact that
the ch.f. of logX is the square root of the ch.f. of logZ, the ch.f.’s of ��0� 1� and
� �0� 1� have the forms exp�−�s�� and exp�is�, respectively, whose square root have
similar forms exp�−�s�/2� and exp�is/2�, respectively, which corresponding to the
ch.f.’s of ��0� 1/2� and � �0� 1/2� distributions, respectively. Not only more general
Cauchy and normal distributions, among those common distributions, the family of
gamma distributions also have such kind of property.

7.3. I-Symmetry Arising from Trigonometric Formulas

Let Z = X/Y . Although Z is I-symmetric about 1 if X and Y are i.i.d., as mentioned
before, the converse may not be true. That the joint pdf of X, Y satisfies

fX�Y �x� y� = fX�Y �y� x�� x� y ∈ R� (26)

is sufficient to imply Z is I-symmetric about 1. See also the following example by
Jones (1999).

Example 7.8. Let �X� Y� have the polar representation

X = R cos� and Y = R sin�� (27)

where � is ��0� 2�� distributed, and R is a positive r.v. independent of �. Then
�X� Y� has a spherically symmetric distribution with pdf

fX�Y �x� y� =
1

2�
√
x2 + y2

fR�
√
x2 + y2�� x� y ∈ R� (28)

which satisfies (26). Hence, tan� �=Y/X� is I-symmetric about 1. In fact, tan� is
��0� 1� distributed.

Example 7.8 shows that there exists an I-symmetric distribution about 1 arising
from trigonometric functions. Jones (1999) also pointed out if the � in (27) is
��a� b� distributed, where b − a = m�, m is a positive integer, then tan� has a
��0� 1� distribution. It follows immediately that for S being an r.v. independent
of �, where � is ��−�/2� �/2� distributed, then tan�n� + S� is also ��0� 1�
distributed, where n is a positive integer. Furthermore, Jones (1999) gave some
multiple angle and angle sum formulas for tangent functions, which remain ��0� 1�
distributed. For example, the double angle formula for tangent function yields
�tan� − 1/ tan��/2 is ��0� 1� distributed. Also, the multiple angle and angle sum
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formulas for sine and cosine functions yield some functions of X and Y have the
same distribution as X and some functions of X and Y have a ��0� 1� distribution.
For example, 2XY/

√
X2 + Y 2 d= X and 2XY/�Y 2 − X2� is ��0� 1� distributed (see

Jones, 1999).
Inspired by Jones (1999), we present some related results in the following. Let

fU �u� =
2
�
G�tan u�� u ∈

(
−�

2
�
�

2

)
� (29)

where G is a skewing function satisfying (15). Let T = tanU . Then the pdf of T is

fT �t� =
2

��1+ t2�
G�t�� t ∈ R� (30)

which is I-symmetric about 1 (see Example 7.2). The following theorem points out
that some of the results presented by Jones (1999) still hold for the r.v.’s U and T
given above.

Theorem 7.4. Let U have the pdf given in (29), and T = tanU . Then:

(i) T
d= 1/T ;

(ii) tan�2U� is ��0� 1� distributed;
(iii) �T − 1/T�/2 is ��0� 1� distributed;
(iv) tan�2U + S� is ��0� 1� distributed, where S is an r.v. independent with U ;
(v) 2XY/�Y 2 − X2� is ��0� 1� distributed, where X = R cosU , Y = R sinU , and R is

a positive r.v. independent with U ;
(vi) let V = sin�4U�, then

fV �v� =
1

�
√
1− v2

� �v� < 1	

The proof of the above theorem is standard hence is omitted.

Remark 7.2. If G�x� = 1/2, x ∈ R, that is U is ��−�/2� �/2� distributed, then 2U
in (ii) and (iv) can be replaced by U , and 4U in (vi) can be replaced by U .

Remark 7.3. Let X = R cosU , Y = R sinU , where U has the pdf given in (29), and
R is a positive r.v. independent of U . Then

fX�Y �x� y� =
2

�
√
x2 + y2

fR�
√
x2 + y2�G�y/x�	

Thus, �X� Y� can be viewed as having a generalized spherically symmetric
distribution.

8. Conclusion

As mentioned by Mudholkar and Wang (2010), data are usually non negative,
right-skewed, and unimodal. Hence, unimodal distributions provide realistic models
for data in practice. I-symmetrically distributed r.v.’s on R can be unimodal.
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14 Huang and Teng

��0� 1� distribution is an example. Yet r.v.’s which are R-symmetric and hence
doubly-symmetric on R cannot be unimodal. As there are also many examples in
applications with bimodal phenomena, the bimodal distributions provided in this
work may then be considered as an alternative to fit the data with bimodal R-
symmetric property.
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