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Let T be a random variable having an absolutely continuous distribution function.
It is known that linearity of E�T �T > t� can be used to characterize distributions
such as exponential, power and Pareto distribution. In this work, we will extend the
above results. More precisely, we characterize the distribution of T by using certain
relationships of conditional moments of T . Our results can also be used to obtain
new characterization of distributions based on adjacent order statistics or record
values.
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1. Introduction

For a non negative random variable (r.v.) T , during the past decades, there are many
studies on characterizing exponential distribution under some weaker conditions
than lack-of-memory property:

P�T > s + t �T > t� = P�T > s�� 0 ≤ s� t < ��

For example, each of the following assumptions based on moments of residual life:

E��T − t�k �T > t� = c1� 0 ≤ t < ��

Var�T − t �T > t� = c2� 0 ≤ t < ��
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Characterizations of Distributions 2751

and

Var�T − t �T > t� = �E�T − t �T > t��2� 0 ≤ t < �� (1)

where k ≥ 1 is a fixed integer and c1� c2 > 0 are constants, can be used to
characterize T to be exponentially distributed; see Dallas (1979), Azlarov and
Sultanava (1972), and Nagaraja (1975), respectively. Recently, Gupta and Kirmani
(2004) gave a uniqueness theorem showing that, under some mild conditions, the
function Var�T − t �T > t�, t ≥ 0, can be used to determine the distribution of T .

Related results can be found in the book of Rao and Shanbhag (1994) and
articles, such as Navarro et al. (1998), Gupta and Kirmani (2000), Su and Huang
(2000), Gupta (2006), Nair and Sudheesh (2006, 2010), and references therein.
Among them, Su and Huang (2000) showed that the cumulative distribution
function (cdf) F of T is determined by giving the function

��t� = E�g�T� �T > t�� a < t < b�

where g is a continuous function and �a� b� is the support of F� Note that if T
has a probability density function (pdf) f , then F�t�� a < t < b, ��t�� a < t < b, or
E�T �T > t�� a < t < b, are equivalent, in the sense that given one of them, the other
two can be determined, where ��t�, the hazard function, is defined as

��t� = f�t�

1− F�t�
� a < t < b�

Gupta and Kirmani (2004) considered the case a = 0 and b = � and used the ratio
of ��t� and E�T �T > t� to characterize the distribution of T . Nair and Sudheesh
(2006) showed that, for a continuous function g and a differentiable function h, the
pdf f satisfies the differential equation

f ′�t�
f�t�

= −h′�t�
h�t�

+ � − g�t�

�h�t�
� a < t < b� (2)

where � and � are the mean and the standard deviation of g�T�, if and only if

E�g�T� �T > t� = � + �h�t���t�� a < t < b� (3)

Later, for a = 0, b = �, g′�t� �= 0, 0 < t < �, and T being positive, Nair and
Sudheesh (2010) first showed that

Var�g�T� �T > t� = �� − E�g�T� �T > t���E�g�T� �T > t�− g�t��

+ �E�g′�T�h�T� �T > t�� 0 < t < �� (4)

if and only if (3) holds, then we obtained the characterization of distributions.
For example, when g�t� = t and h�t� = �t/�, where � = E�T� and � = √

Var�T�, (4)
becomes

E��T − t�2 + �t − 2���T − t� �T > t� = �t� 0 < t < �� (5)
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2752 Huang and Su

and

f ′�t�
f�t�

= − 1
�
� 0 < t < ��

follows. Consequently the relationship (5) characterizes the exponential distribution
with cdf F�t� = 1− e−t/�, 0 < t < �.

In Sec. 2, we first generalize Nagaraja (1975) by using the weaker condition

E��T − t�2 �T > t� = 	�E�T − t �T > t��2� a < t < b� (6)

where 	 is a constant, or equivalently,

Var�T − t �T > t� = �	− 1��E�T − t �T > t��2� a < t < b� (7)

It can be seen that when 	 = 2, a = 0, and b = �, (7) reduces to (1). We
identify all distributions allowing the condition (6). These distributions can also
be characterized by the linearity of E�T �T > t�, a < t < b. Motivated by this, we
characterize the distribution of T by using certain relationships of conditional
moments of T . It turns out that some common distributions, such as exponential,
uniform and Pareto, can be characterized by using our theorems. Note that the pdf
f satisfying (2) is not assumed in this work.

In Sec. 3, we present some applications of our results in the characterization of
distributions by using order statistics and record values.

2. Characterizations Based on Moments of Left Truncated r.v.

From now on, let T be an r.v. with an absolutely continuous cdf F and a pdf
f . Also assume that F has support �a� b�, where −� ≤ a < b ≤ �. First we give
an extension of Nagaraja (1975), where F is determined by using Var�T − t �T > t�
proportional to �E�T − t �T > t��2, ∀a < t < b.

Theorem 2.1. Assume that f is continuous and

E��T − t�2 �T > t� = 	�E�T − t �T > t��2� a < t < b� (8)

where 	 is a constant. Then only the following three cases are possible:

(i) 	 = 2, a > −�, b = � and F�t� = 1− e−
�t−a�, a < t < �, where 
 > 0 is a
constant, namely T has an exponential distribution with location parameter;

(ii) 1 < 	 < 2, −� < a < b < � and F�t� = 1− ��b − t�/�b − a��2�	−1�/�2−	�,
a < t < b, in particular, if 	 = 4/3, then T has a U�a� b� distribution;

(iii) 	 > 2, a > −�, b = � and F�t� = 1− ��a+ ��/�t + ���2�	−1�/�	−2�, a < t < �,
where � > −a is a constant, namely T has a Pareto distribution.

Proof. As T is non degenerate, from (8), it follows that 	 > 1, and

�1− F�t��
∫ b

t
�x − t�2f�x�dx = 	

(∫ b

t
�x − t�f�x�dx

)2

� a < t < b� (9)
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Characterizations of Distributions 2753

Taking the derivatives of both sides of (9) with respect to t yields

f�t�
∫ b

t
�x − t�2f�x�dx = 2�	− 1��1− F�t��

∫ b

t
�x − t�f�x�dx� a < t < b� (10)

In view of (9) and (10), we obtain (note that
∫ b

t
�x − t�2f�x�dx �= 0)

f�t�
∫ b

t
�x − t�f�x�dx = 2�1− 1/	��1− F�t��2� a < t < b� (11)

this in turn implies that f is differentiable. Now by taking the derivatives of both
sides of (11) with respect to t yields

f ′�t�
∫ b

t
�x − t� f�x�dx = �−3+ 4/	� f�t� �1− F�t�� � a < t < b� (12)

(11) and (12) together imply

f ′�t�
f�t�

= 4− 3	
2�	− 1�

f�t�

1− F�t�
� a < t < b�

Consequently,

f�t� = 
�1− F�t���3	−4�/�2	−2�� a < t < b�

where 
 > 0 is a constant. From this we have, for a < t < b,

F�t� =
{
1− c1e

−
t� 	 = 2�

1− �c2t + c3�
r� 	 �= 2�

(13)

where c1 > 0 is a constant, r = �2	− 2�/�2− 	�, c2 = −
/r and c3 is a constant.
First, consider the case 	 = 2. Then (13) yields a > −�, b = � and c = e
a. This

proves assertion (i).
Next, consider the case 	 �= 2. Assume that 1 < 	 < 2. This in turn implies that

r > 0 and c2 < 0. As F�t� is a cdf, from (13), it yields that −� < a < b < �, c2 =
1/�a− b� and c3 = b/�b − a�. The last case to be considered is 	 > 2. Then r < 0
and c2 > 0 follows. From (13), it can be seen that this can only happen if a = �1−
c3�/c2 > −� and b = �. The remaining assertions of (ii) and (iii) can be obtained
immediately.

Remark 2.1. Let k ≥ 1 be an integer. If F�t� = 1− e−
�t−a�, a < t < �, 
 > 0, then

E��T − t�k �T > t� = ��k+ 1�

k

� a < t < �
 (14)

if F�t� = 1− ��b − t�/�b − a��r , a < t < b, r > 0, then

E��T − t�k �T > t� = ��k+ 1���r + 1�
��k+ r + 1�

�b − t�k� a < t < b
 (15)
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2754 Huang and Su

if F�t� = 1− ��a+ ��/�t + ���r , a < t < �, � > −a, r > k, then

E��T − t�k �T > t� = ��k+ 1���r − k�

��r�
�t + ��k� a < t < �� (16)

The next theorem can be compared to Gupta (2006), where the monotonic
behavior of Var�T − t �T > t� was studied through the function E��T − t�2 �T >
t�/E�T − t �T > t�.

Theorem 2.2. Assume that f is continuous and for some integer k ≥ 1,

E��T − t�k �T > t� = �	t + ��E��T − t�k−1 �T > t�� a < t < b� (17)

where 	 and � are constants. Then only the following three cases are possible:

(i) 	 = 0, � > 0, a > −�, b = � and F�t� = 1− e−�k/���t−a�, a < t < �;
(ii) −1 < 	 < 0, a > −�, b = −�/	 and F�t� = 1− ��b − t�/�b − a��−k�1+1/	�, a <

t < b;
(iii) 	 > 0, a > −�, b = � and F�t� = 1− ��a+ ��/�t + ���k�1+1/	�, a < t < �, where

� = �/	.

Proof. From (17), it can be obtained that

	t + � > 0� a < t < b� (18)

and ∫ b

t
�x − t�k f�x�dx = �	t + ��

∫ b

t
�x − t�k−1 f�x�dx� a < t < b� (19)

Taking the kth derivatives of both sides of (19) with respect to t and after some
manipulations, we obtain

f�t�

1− F�t�
= k�	+ 1�

	t + �
� a < t < b� (20)

In view of (18) and (20), it follows that 	 > −1.
First, consider the case 	 = 0. Then � > 0 follows. Solving (20) yields F�t� =

1− c1e
−�k/��t, a < t < b, where c1 > 0 is a constant. As F�t� is a cdf, it turns out that

a > −�, b = � and c1 = eka/�. The proof of assertion (i) is completed.
Next, consider the case 	 �= 0. The solutions of (20) is

F�t� = 1− c2�	t + ��r� a < t < b� (21)

where r = −k�1+ 1/	� and c2 > 0 is a constant. Assume that −1 < 	 < 0. This
gives r > 0. Again as F�t� is a cdf, from (21), it can be seen that −� < a < b < �,
c2 = �	a+ ��−r and � = −	b� On the other hand, assume that 	 > 0. Then r < −k
follows. This, together with (18) and (21), shows that a > −�, b = � and c2 =
�	a+ ��−r . The assertions (ii) and (iii) now follow immediately.

In the above theorem, again we have characterizations of the exponential
distribution in (i), uniform distribution in (ii), where 	 = −k/�k+ 1�, and Pareto
distribution in (iii).
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Characterizations of Distributions 2755

Before proving the next two theorems, we need the following lemma which can
be found in Boyce and DiPrima (1997).

Lemma 2.1. Consider the Euler equation:

t2y′′�t�+ �ty′�t�+ �y�t� = 0� (22)

where t belongs to an interval not containing the origin, and � and � are some fixed
real numbers. Then

y�t� =

c1�t��1−�+

√
�1−��2−4��/2 + c2�t��1−�−

√
�1−��2−4��/2� if �1− ��2 > 4��

�c3 + c4 log �t���t��1−��/2� if �1− ��2 = 4��

where c1, c2, c3, and c4 are arbitrary constants.

For a = 0 and b = �, Dallas (1979) used the condition E��T − t�k �T > t� = c,
t ≥ 0, where k ≥ 1 is a fixed integer and c is a constant, to characterize T to be
exponentially distributed, and Galambos and Hagwood (1992) gave a uniqueness
theorem showing that the function E��T − t�2 �T > t�, t ≥ 0 can determine the
distribution of T . Inspired by this and in view of Remark 2.1, we give the following
theorem.

Theorem 2.3. Assume that f is differentiable and for some integer k ≥ 2,

E��T − t�k �T > t� = �	t + ��2E��T − t�k−2�T > t�� a < t < b� (23)

where 	 and � are constants. Then only the following three cases are possible:

(i) 	 = 0, � �= 0, a > −�, b = � and F�t� = 1− e−
√

k�k−1�/�2�t−a�, a < t < �;
(ii) 0 < 	2 < 1, a > −�, b = −�/	 and F�t� = 1− ��b − t�/�b − a��

�
√
1+ 4k�k− 1�/	2 − 2k+ 1�/2, a < t < b;

(iii) 	2 > 0, a > −�, b = � and F�t� = 1− ��a+ ��/�t + ����2k−1+
√

1+4k�k−1�/	2�/2, a <
t < �, where � = �/	�

Proof. First consider 	 = 0. From (23), it follows that � �= 0 and

∫ b

t
�x − t�k f�x�dx = �2

∫ b

t
�x − t�k−2 f�x�dx� a < t < b� (24)

Taking the kth derivatives of both sides of (24) with respect to t and after some
manipulations, we obtain the second order linear homogeneous differential equation

F ′′�t�+ k�k− 1�
�2

�1− F�t�� = 0� a < t < b�

which yields the solution

F�t� = 1+ c1e

t + c2e

−
t� a < t < b� (25)
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2756 Huang and Su

where 
 = √
k�k− 1�/�2. As F�t� is a cdf, (25) yields

�1-1� a > −�� b = � and F�t� = 1− e−
�t−a�� a < t < �


�1-2� −� < a < b < � and F�t� = 1+ e
�t+a�/�e2b
 − e2a
�

+ e−
�t−a�/�e2�a−b�
 − 1�� a < t < b�

It can be readily checked that the equality in (23) with 	 = 0 is achieved only for
case (1-1). This proves assertion (i).

Next, consider 	 �= 0. First note that (23) can be rewritten as

E��T1 − t1�
k �T1 > t1� = 	2t21E��T1 − t1�

k−2 �T1 > t1�� a1 < t1 < b1�

where T1 ≡ T + �/	 having a cdf F1�x� ≡ F�x − �/	�, a1 ≡ a+ �/	 and b1 ≡ b +
�/	. Hence, it is sufficient to prove the situation � = 0. Now from (23) with � = 0,
it follows that ab ≥ 0 and

∫ b

t
�x − t�k f�x�dx = 	2t2

∫ b

t
�x − t�k−2 f�x�dx� a < t < b� (26)

Similarly, taking the kth derivatives of both sides of (26) with respect to t, we
arrive at

t2
F ′′�t�+ 2kt
F ′�t�+ k �k− 1�
(
1− 1/	2

)
F�t� = 0� a < t < b� (27)

where 
F�t� = 1− F�t�. By Lemma 2.1, the solution of (27) is

F�t� = 1− c3�t�−�−� − c4�t��−�� a < t < b� (28)

where � = k− 1/2 > 0, � = √
1+ 4k�k− 1�/	2/2 > 0 and c3� c4 are constants. Note

that � > � if 	2 > 1; � = � if 	2 = 1; � < � if 0 < 	2 < 1. Since ab ≥ 0, limt↓a F�t� =
0 and limt↑b F�t� = 1, (28) leads to the following eight cases:

�2-1� 0 < 	2 < 1� a > −�� b = 0 and F�t� = 1− �t/a��−�� a < t < 0


�2-2� 0 < 	2 ≤ 1� a > 0� b = � and F�t� = 1− �a/t��+�� a < t < �


�2-3� 	2 > 1� a > 0� b = � and F�t� = 1− c3t
−�−�

− �a�−� − c3a
−2��t�−�� a < t < �


�2-4� 	2 �= 1� a > 0� b < � and

F�t� = 1− �a�+�/�b2� − a2����b2�t−�−� − t�−��� a < t < b


�2-5� 	2 = 1� a > 0� b < � and

F�t� = 1− �t−2� − b−2��/�a−2� − b−2��� a < t < b


�2-6� 	2 �= 1� a > −�� b < 0 and

F�t� = 1− ��a��+�/��a�2� − �b�2�����t��−� − �b�2��t�−�−��� a < t < b


�2-7� 	2 = 1� a > −�� b < 0 and
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Characterizations of Distributions 2757

F�t� = 1− ��b�−2� − �t�−2��/��b�−2� − �a�−2��� a < t < b


�2-8� 	2 = 1� a = −�� b < 0 andF�t� = �b/t�2�� −� < t < b�

Since F�t� is a cdf and satisfies (23) with � = 0, it can be seen that cases (2-4)–(2-8)
are excluded, and there remains cases (2-1), (2-2), and case (2-3) only for c3 = a�+�.
Note that when c3 = a�+�, F�t� in case (2-3) is exactly the same as that in case (2-2).
Consequently, the assertions (ii) and (iii) follow immediately. The proof is finished.

Note that (8) can be rewritten as

E�T 2 + 2�	− 1�tT − �	− 1�t2 �T > t� = 	E2�T �T > t�� a < t < b�

Inspired by this, we are interested in knowing which distributions can be
characterized by using the following more general form

E�T 2 + �q1t + q2�T + q3t
2 + q4t + q5 �T > t� = q6E

2�T �T > t�� a < t < b� (29)

where q1� · · · � q6 are constants. In particular, if q1 = q2 = q3 = q4 = 0, q5 > 0 and
q6 = 1, then (29) is equivalent to Var�T �T > t� = q5, a < t < b
 if q1 = −	− 2, q2 =
−�, q3 = 	+ 1, q4 = � and q5 = q6 = 0, then (29) reduces to (17) with k = 2
 if q1 =
−2, q2 = q6 = 0, q3 = 1− 	2, q4 = 2	� and q5 = −�2, then (29) reduces to (23) with
k = 2. The following theorem corresponds to the situation q1 = q3 = q4 = 0, q2 =
2��1− 	�, q5 = �1− 	��2 and q6 = 	.

Theorem 2.4. Assume that f is differentiable and

E��T + ��2 �T > t� = 	�E�T + � �T > t��2� a < t < b� (30)

where 	 and � are constants. Then 	 > 1 and only the following two cases are possible:

(i) a > −�, b = −� and F�t� = 1− ��b − t�/�b − a��
√

	/�	−1�−1, a < t < b;

(ii) a > −�, b = � and F�t� = 1− ��a+ ��/�t + ���
√

	/�	−1�+1, a < t < �.

Proof. As in the proof of Theorem 2.3, it is sufficient to consider the case � = 0.
From (30), it follows that 	 > 1 and

�1− F�t��
∫ b

t
x2f�x�dx = 	

(∫ b

t
xf�x�dx

)2

� a < t < b� (31)

Taking the derivatives of both sides of (31) with respect to t yields that,
for a < t < b,

∫ b

t
x2f�x�dx = 2	t

∫ b

t
xf�x�dx − t2�1− F�t��� (32)

If ab < 0, by letting t = 0, it leads to a contradiction that the left-hand side of (32)
is greater than 0 and the right hand side of (32) is equal to 0. Hence, ab ≥ 0.
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2758 Huang and Su

By taking the second derivatives of both sides of (32) with respect to t and after
some manipulations, we obtain

t2
F ′′�t�+ 3t
F ′�t�− 1
	− 1


F�t� = 0� a < t < b� (33)

where 
F�t� = 1− F�t�. By Lemma 2.1, the solution of (33) is

F�t� = 1+ c1�t��−1 + c2�t�−�−1� a < t < b� (34)

where � = √
	/�	− 1� > 1 and c1� c2 are constants. Using (34), ab ≥ 0, and the fact

that F�t� is a cdf, we obtain the following solutions:

�3-1� a > −�� b = 0 and F�t� = 1− �t/a��−1 � a < t < 0


�3-2� a > 0� b = � and F�t� = 1− �a/t��+1 � a < t < �


�3-3� a > 0� b < � and F�t� = 1− �a�+1/�b2� − a2����b2�t−�−1 − t�−1��

a < t < b


�3-4� a > −�� b < 0 and F�t� = 1− ��a��+1/��a�2� − �b�2���
��t��−1 − �b�2��t�−�−1�� a < t < b�

Again for each F�t� in cases (3-1)–(3-4), E�Tk �T > t� can be obtained easily, and
then we conclude that the equality in (30) with � = 0 holds only for F�t� as given
in cases (3-1) and (3-2), which proves our result for the case � = 0. This completes
the proof.

Again when 	 = 4/3, the above theorem provides a characterization of the
��a� b� distribution.

Remark 2.2. Let k ≥ 1 be an integer. If F�t� = 1− ��b − t�/�b − a��r , a < t < b,
r > 0, then

E��b − T�k �T > t� = r

r + k
�b − t�k� a < t < b


if F�t� = 1− ��a+ ��/�t + ���r , a < t < �, � > −a, r > k, then

E��T + ��k �T > t� = r

r − k
�t + ��k� a < t < ��

3. Applications to Characterizations Based on Adjacent Order
Statistics and Record Values

Let �Xi, i ≥ 1� be a sequence of independent and identically distributed r.v’s with
a common absolutely continuous cdf G. Also, assume that G has support �a� b�,
where −� ≤ a < b ≤ �. Let X1�n ≤ X2�n ≤ · · · ≤ Xn�n be the order statistics based on
�X1� X2� � � � � Xn�. Let the sequences of record times U�n� and record values Yn be
defined as follows: U�1� = 1, U�n+ 1� = min�i > U�n� � Xi > XU�n�� and Yn = XU�n�,
n ≥ 1. The properties and characterizations related to order statistics and record
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values have been widely studied and some excellent reviews can be found in books
such as Arnold et al. (1998, 2008), Nevzorov (2001), and David and Nagaraja
(2003). Also, it has been pointed out by Deheuvels (1984), Gupta (1984), Nagaraja
(1988), Huang and Su (1999), and Huang et al. (2007), etc., there are many parallel
characterizations for order statistics and record values. In this section, we will
illustrate how our previous results can be applied to order statistics and record
values.

It is noted that, for a < t < b, 1 ≤ i < n, and j ≥ 1, when F = 1− �1−G�n−i,
the conditional distribution of T , given T > t, is identical with that of Xi+1�n given
Xi�n = t� In particular, when F = G, the conditional distribution of T , given T > t,
is also identical with that of Yj+1 given Yj = t. This in turn implies that every
characterization result in Sec. 2 has a parallel version based on the conditional
moments of Xi+1�n given Xi�n = t, as well as that of Yj+1 given Yj = t. For example,
Theorem 2.2 yields characterizations of G by using

E��Xi+1�n − Xi�n�
k �Xi�n = t� = �	t + ��E��Xi+1�n − Xi�n�

k−1 �Xi�n = t�� a < t < b�

or

E��Yj+1 − Yj�
k � Yj = t� = �	t + ��E��Yj+1 − Yj�

k−1 � Yj = t�� a < t < b�

where k ≥ 1 is an integer, and 	, � are constants. For k = 1, the above two
characterizations can be found in Dembińska and Wesołowski (1998) and Nagaraja
(1977), respectively.

On the other hand, for a < t < b, 1 ≤ i < n, and j ≥ 1, the conditional
distribution of T , given T < t, is identical to that of Xi�n given Xi+1�n = t, if F = Gi,
and that of Yj given Yj+1 = t, if

F�x�

F�t�
= �− log�1−G�x���j

�− log�1−G�t���j
� a < x < t� (35)

Similarly, the characterizations of F based on conditional moments of T given T < t
can deduce the characterizations of G based on the conditional moments of Xi�n

given Xi+1�n = t, or Yj given Yj+1 = t. Note that, for k ≥ 1, a < t < b, and � is a
constant, let u = −t and U = −T , then

E��T − t�k �T > t� = E��u− U�k �U < u��

and

E��T + ��k �T > t� = �−1�kE��U − ��k �U < u��

This leads to the conclusion that every characterization result in Sec. 2 has a
corresponding form based on conditional moments of T given T < t. Consequently,
the corresponding characterizations of G based on the conditional moments of
backward order statistics or record values follows. The followings are two examples
of applications of Theorem 2.2.
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Theorem 3.1. Assume that G′ is continuous and for some integers 1 ≤ i ≤ n− 1 and
k ≥ 1,

E��Xi+1�n − Xi�n�
k �Xi+1�n = t� = �	t + ��E��Xi+1�n − Xi�n�

k−1 �Xi+1�n = t�� a < t < b�
(36)

where 	 and � are constants. Then only the following three cases are possible:

(i) 	 = 0, � > 0, a = −�, b < � and G�x� = e−�k/�i����b−x�, −� < x < b;
(ii) 0 < 	 < 1, a = �/	, b < � and G�x� = ��x − a�/�b − a��k�1−	�/�i	�, a < x < b;
(iii) 	 < 0, a = −�, b < � and G�x� = ���− b�/��− x��k�	−1�/�i	�, −� < x < b,

where � = −�/	.

In the above theorem, we have a characterization of ��a� b� distribution in (ii),
where 	 = k/�k+ i�� Note that Theorem 3.1 covers the result reported by Ferguson
(1967), where it was proved that G can be determined by (36) with k = 1.

The next theorem extends Nagaraja (1988), where G was characterized by using
linearity of E�Yj+1 − Yj � Yj+1�. It provides a characterization of the exponential
distribution in (ii), where 	 = k/�k+ j��

Theorem 3.2. Assume that G′ is continuous and for some integers j� k ≥ 1,

E��Yj+1 − Yj�
k � Yj+1 = t� = �	t + ��E��Yj+1 − Yj�

k−1 � Yj+1 = t�� a < t < b�

where 	 and � are constants. Then only the following three cases are possible:

(i) 	 = 0, � > 0, a = −�, b = � and G�x� = 1− exp
{−c1e

�k/��j��x
}
, −� < x < �,

where c1 > 0 is a constant;
(ii) 0 < 	 < 1, a = �/	, b = � and G�x� = 1− exp

{−c2�x − a�k�1−	�/�j	�
}
, a < x <

�, where c2 > 0 is a constant;
(iii) 	 < 0, a = −�, b = −�/	 and G�x� = 1− exp�−c3�b − x�k�1−	�/�j	��, −� < x <

b, where c3 > 0 is a constant.
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