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Abstract

Consider a sequence of independent and identically distributed random variables {Xi, i �1} with a common absolutely con-
tinuous distribution function F. Let X1:n �X2:n � · · · �Xn:n be the order statistics of {X1, X2, . . . , Xn} and {Yl, l�1} be the
sequence of record values generated by {Xi, i �1}. In this work, the conditional distribution of Yl given Xn:n is established. Some
characterizations of F based on record values and Xn:n are then given.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Throughout this work, let {Xi, i�1} be a sequence of independent and identically distributed random variables with a
common absolutely continuous distribution function F, a probability density function (p.d.f.) f, a hazard function r and a
cumulative hazard function R. Assume that F has support (a, b) and f (x) > 0, a < x < b, where −∞�a < b�∞. Note
that r(x)=f (x)/(1−F(x)), R(x)=∫ x

a
r(u) du=− log(1−F(x)), a < x < b, and 0 < r(x), R(x) < ∞, a < x < b. Let

X1:n �X2:n � · · · �Xn:n be the order statistics based on {X1, X2, . . . , Xn}. In addition, the sequences of record times
U(l) and record values Yl are defined as follows: U(1)=1, U(l+1)=min{i > U(l) : Xi > XU(l)} and Yl =XU(l), l�1.
Furthermore, let Nn = sup{l|Yl �Xn:n, l�1} be the number of records among the first n observations. The properties
and characterizations related to order statistics and record values have been widely studied and some excellent reviews
can be found in books such as Arnold et al. (1992, 1998), Rao and Shanbhag (1994), Nevzorov (2001) and David and
Nagaraja (2003).

The properties between record values and order statistics have also been extensively investigated. Huang and Su
(1999) viewed both record values and order statistics as point processes with order statistics properties and gave some
characterization results. This explains why record values and order statistics are closely related. Hence there are many
parallel characterizations for record values and order statistics. Related studies have been reported by Deheuvels (1984),
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Gupta (1984), Nagaraja (1988), Huang and Su (1999) and Huang et al. (2007), etc. These results can be applied to
characterize the uniform distribution using the sequence of order statistics, and the exponential distribution using the
sequence of record values, respectively.

On the other hand, Nagaraja and Nevzorov (1997) investigated the conditional distribution of Y2 given X2:2, and
obtained a characterization of the exponential distribution based on the independence of Y2 − X2:2 and X2:2. In fact,
from (5.2) to (5.4) of Nagaraja and Nevzorov (1997), it is easily shown that the distribution function F can be uniquely
determinated by the conditional expectation g(x) = E(Y2 − X2:2|X2:2 = x), a < x < b. Balakrishnan and Stepanov
(2004) recently extended the work of Nagaraja and Nevzorov (1997). They established the conditional distribution of
Y2 given Xn:n, where n�1. Some characterizations related to the conditional distribution of Y2 given Xn:n were also
studied by Balakrishnan and Stepanov (2004).

In this work, we first provide a generalization of Balakrishnan and Stepanov (2004). More precisely, the conditional
distribution of the record value Yl given Xn:n, where l and n are positive integers, is established. Characterizations of
distributions based on record values and Xn:n are then studied. Our results extend some characterization theorems in
the literature.

2. The conditional distribution of record values given Xn:n

First, we give the following two lemmas which can be used to prove Theorem 1, and can be found in books by Arnold
et al. (1998) or Nevzorov (2001).

Lemma 1. For any positive integer n, Nn and Xn:n are independent, and

fNn(k) = 1

n

∑
1<t1<···<tk−1 �n

(
k−1∏
i=1

(ti − 1)

)−1

, 1�k�n, (1)

where
∑

1<t1<···<tk−1 �n(
∏k−1

i=1 (ti − 1))−1 is defined to be 1 for k = 1.

It is known that fNn(k) is the coefficient of the term sk in the expansion of
∏n

j=1(s + j − 1)/n!.

Lemma 2. For positive integers k�n and l�k + 1,

fYl
(y|Nn = k, Xn:n = x) = fYl

(y|Yk = x)

= 1

(l − k − 1)! (R(y) − R(x))l−k−1 f (y)

1 − F(x)
, a < x < y < b.

In the following, we give the conditional distribution of Yl given Xn:n. Note that the conditional distributions for
cases l = 1 and 2 have been given by Feller (1970) and Balakrishnan and Stepanov (2004), respectively. Hereafter, let
pn,k =fNn(k), 1�k�n. Obviously

∑n
k=1pn,k =1. For convenience, in the following, let pn,0 =0, n�1, and p0,0 =1.

Note that for a random vector where some of the variables are discrete and the others are continuous, the joint p.d.f.,
conditional p.d.f. and marginal p.d.f. are defined as usual. That is, the probabilities are calculated by summing for
discrete variables, and integrating for continuous variables.

Theorem 1. Let l, n be positive integers and a < x, y < b.

(i) For l > n,

fYl
(y|Xn:n = x) =

{ n∑
k=1

pn,k

(l − k − 1)! (R(y) − R(x))l−k−1 f (y)

1 − F(x)
, y�x,

0, y < x.

(2)
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(ii) For l�n, P(Yl = x|Xn:n = x) = pn,l , and

fYl
(y|Xn:n = x) =

⎧⎪⎪⎨
⎪⎪⎩

l−1∑
k=1

pn,k

(l − k − 1)! (R(y) − R(x))l−k−1 f (y)

1 − F(x)
, y > x,

n−1∑
k=l

pk−1,l−1

(
1 − k

n

)(
F(y)

F (x)

)k−1
f (y)

F (x)
, y < x.

Proof. First, we have

fYl
(y|Xn:n = x) =

n∑
k=1

fNn,Yl
(k, y|Xn:n = x). (3)

Assume l > n, it can be seen that P(Yl < x|Xn:n = x) = 0, and for y�x, it turns out

fYl
(y|Xn:n = x) =

n∑
k=1

fYl
(y|Nn = k, Xn:n = x)fNn(k|Xn:n = x).

The assertion of part (i) now follows immediately from Lemmas 1 and 2.
Next, assume l�n. It is clear that

P(Yl = x|Xn:n = x) = fNn(l|Xn:n = x) = pn,l .

Now if y > x, it can easily be seen that

fYl
(y|Nn = k, Xn:n = x) = 0, k� l. (4)

In view of (3) and (4), we obtain

fYl
(y|Xn:n = x) =

l−1∑
k=1

fYl
(y|Nn = k, Xn:n = x)fNn(k|Xn:n = x)

=
l−1∑
k=1

pn,k

(l − k − 1)! (R(y) − R(x))l−k−1 f (y)

1 − F(x)
, y > x.

On the other hand, if y < x, it can easily be seen that for l = n, we have fYn(y|Xn:n = x) = 0, and for l < n and
a < y1 < · · · < yl−1 < y < x < b, we have

fY1,...,Yl−1,Yl ,Xn:n(y1, . . . , yl−1, y, x)

=
∑

1<t1<···<tl−1<n

(
l−1∏
i=1

(F (yi))
ti−ti−1−1f (yi)

)
f (y)(n − tl−1)(F (x))n−tl−1−1f (x), (5)

where t0 = 1 and again
∑

1<t1<···<tl−1<n

∏l−1
i=1(F (yi))

ti−ti−1−1f (yi) is defined as 1 for l = 1. Taking the integrations
with respect to y1, . . . , yl−1, yields

fYl,Xn:n(y, x) =
∑

1<t1<···<tl−1<n

n − tl−1∏l−1
i=1(ti − 1)

(
F(y)

F (x)

)tl−1−1

(F (x))n−2f (x)f (y)

=
n−1∑
k=l

pk−1,l−1(n − k)

(
F(y)

F (x)

)k−1

(F (x))n−2f (x)f (y), y < x. (6)

Consequently,

fYl
(y|Xn:n = x) =

n−1∑
k=l

pk−1,l−1

(
1 − k

n

)(
F(y)

F (x)

)k−1
f (y)

F (x)
, y < x,

and the proof of part (ii) is finished. �
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Note that in Theorem 1, fYl
(y|Xn:n =x), y�x, can also be derived from (B) and (BB) of Balakrishnan and Stepanov

(2004). Furthermore, in view of Lemma 2 and (2), it is easy to check that for l > n and a < x, y < b,

fYl
(y|Xn:n = x) =

n∑
k=1

pn,kfYl
(y|Yk = x).

Namely, the conditional distribution can be represented as a mixture of n distributions.

3. Characterizations based on conditional expectations of record values given Xn:n

In this section, we first give a lemma which can be used for proving Theorems 2–4.

Lemma 3. Assume that f is differentiable and

r ′(x) = �(r(x) − �)(r(x))2, a < x < b, (7)

for some � > 0 and � > 0. Also assume

there exists a < t < b such that r(t)�� (condition A).

Then a > − ∞, b = ∞ and F(x) = 1 − e−�(x−a), a < x < ∞.

Proof. First (7) can be rewritten as

r(u) = � + 1

�

r ′(u)

r2(u)
, a < u < b. (8)

Integrating both sides of (8) with respect to u over (a, x), a < x < b, we have

R(x) = �x − 1

�

1

r(x)
− lim

u↓a

(
�u − 1

�

1

r(u)

)
. (9)

Suppose a = −∞. Since r(x) > 0, a < x < b, and �, � > 0, it yields limu→−∞(�u − (1/�)1/r(u)) = −∞. This in turn
implies R(x) = ∞, which contradicts the fact R(x) < ∞, a < x < b. Hence a > − ∞. It consequently follows, from
(9), that r(a+) = limu↓ar(u) > 0 and

�R(x) = ��(x − a) − 1

r(x)
+ 1

r(a+)
, a < x < b. (10)

On the other hand, from (10) and the fact limx↑bR(x) = ∞, it turns out b = ∞.
Now suppose that there exists a < x0 < ∞ such that r(x0) �= �, we are able to derive a contradiction again. The

assumption that f is differentiable implies that r(x) is continuous in x > a, hence r(x) �= � for x belonging to some
open interval containing x0. Let a1 = inf{x|r(x) �= �} and a2 = inf{x|x > a1, r(x) = �}. Then a�a1 < a2 �∞ (a2 is
defined to be ∞ if r(x) �= � for every x > a1) and r(x) �= �, a1 < x < a2. From (7), we have

r ′(u)

(r(u) − �)(r(u))2 = �, a1 < u < a2. (11)

Integrating both sides of (11) with respect to u over (a1, x), a1 < x < a2, it yields

1

�r(x)
+ 1

�2 log

∣∣∣∣1 − �

r(x)

∣∣∣∣− lim
u↓a1

(
1

�r(u)
+ 1

�2 log

∣∣∣∣1 − �

r(u)

∣∣∣∣
)

= �(x − a1). (12)

Now assume a1 > a. The continuity of r(x) implies limu↓a1r(u) = r(a1) = �, this in turn implies that the left side of
(12) is ∞. Hence a1 = a. Consequently, from (12) we conclude r(a+) �= �, and for a < x < a2,

log

∣∣∣∣1 − �

r(x)

∣∣∣∣− log

∣∣∣∣1 − �

r(a+)

∣∣∣∣= �

(
��(x − a) − 1

r(x)
+ 1

r(a+)

)
. (13)
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Similarly, we obtain a2 = ∞. That is r(x) �= �, for a < x < ∞. In view of (10) and (13), it turns out∣∣∣∣1� − 1

r(x)

∣∣∣∣=
∣∣∣∣1� − 1

r(a+)

∣∣∣∣ e��R(x), a < x <∞. (14)

As r(x) is continuous and r(x) �= �, a < x < ∞, condition A leads to r(x) > �, a < x < ∞. Letting x → ∞, the right
side of (14) approaches ∞. This in turn implies limx→∞r(x) = 0, which contradicts r(x) > �, a < x < ∞. Therefore,
we conclude that there does not exist a < x0 < ∞ such that r(x0) �= �. This results in r(x) = �, a < x < ∞, and
F(x) = 1 − e−�(x−a), a < x < ∞, follows. �

In Lemma 3, suppose that condition A is replaced by the condition in which “r is an increasing hazard function”. It
can easily be seen that (7) implies that r(x)��, a < x < b. Along the lines of the above proof, the assertion of Lemma 3
still follows. Another replacement for condition A is “limx↑br(x) > 0” or “limx↓ar(x) = �”.

As mentioned in Section 1, Nagaraja and Nevzorov (1997) proved that the independence of Y2−X2:2 and X2:2 implies
that F is an exponential distribution function. In the following three theorems, we investigate the characterizations of
the exponential distribution based on the independence of Yl+1 − Yl and X2:2, where l�2, Y3 − X2:2 and X2:2, and
Y3 − X3:3 and X3:3, respectively.

Theorem 2. Assume that f is differentiable and for some integer l�2,

E(Yl+1 − Yl |X2:2 = x) = �, a < x < b, (15)

where � > 0 is independent of x. Also assume that condition A holds with � = 1/�. Then a > − ∞, b = ∞ and
F(x) = 1 − e−(1/�)(x−a), a < x < ∞.

Proof. From (15), it can be obtained that

�(1 − F(x)) =
∫ b

x

y

2∑
k=1

p2,k

(l − k)! (R(y) − R(x))l−kf (y) dy

−
∫ b

x

y

2∑
k=1

p2,k

(l − k − 1)! (R(y) − R(x))l−k−1f (y) dy, a < x < b. (16)

After differentiating both sides of (16) with respect to x l times and some manipulations, we obtain

r ′(x) = 2�

(
r(x) − 1

�

)
(r(x))2, a < x < b.

Now Lemma 3 yields the conclusion. �

Theorem 3. Assume that f is differentiable and

E(Y3 − X2:2|X2:2 = x) = �, a < x < b, (17)

where � > 0 is independent of x. Also assume that condition A holds with � = 3/(2�). Then a > − ∞, b = ∞ and
F(x) = 1 − e−(3/(2�))(x−a), a < x < ∞.

Proof. From (17), we have∫ b

x

y(R(y) − R(x) + 1)f (y) dy = 2(x + �)(1 − F(x)), a < x < b. (18)

After differentiating both sides of (18) with respect to x twice, it yields

r ′(x) = �

(
r(x) − 3

2�

)
(r(x))2, a < x < b.

Again the conclusion follows from Lemma 3. �
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The following Theorems 4 can be proved similar to Theorem 3.

Theorem 4. Assume that f is differentiable and

E(Y3 − X3:3|X3:3 = x) = �, a < x < b, (19)

where � > 0 is independent of x. Also assume that condition A holds with � = 7/(6�). Then a > − ∞, b = ∞ and
F(x) = 1 − e−(7/(6�))(x−a), a < x < ∞.

In the rest of this section, we investigate some characterizations based on two conditional expectations E(�(Yl1)|
Xn:n =x) and E(�(Yl2)|Xn:n =x), a < x < b, where l1 > l2 �n�1 and � is a continuous function. In view of Lemma 2,
it can be seen that for k, l�1 and a < x < b, the conditional distributions of Yl |X1:1=x, Yl |Y1=x, and Yk+l−1|Yk =x are
identical. Hence, using our results with n=1, the corresponding characterizations based on the conditional expectations
E(�(Yk+l1−1)|Yk = x) and E(�(Yk+l2−1)|Yk = x), a < x < b, can be obtained.

Theorem 5. Assume that for some positive integers n and i,

gn,i(x) = E(�(Yn+i )|Xn:n = x), a < x < b, (20)

and

gn,i−1(x) = E(�(Yn+i−1)|Xn:n = x), a < x < b, (21)

where gn,i is differentiable and gn,i−1, � are continuous functions with gn,i(x) �= gn,i−1(x), a.e. Then

F(x) = 1 − exp

{
−
∫ x

a

dgn,i(y)

gn,i(y) − gn,i−1(y)

}
, a < x < b. (22)

Proof. From (20), it follows that for a < x < b,

gn,i(x)(1 − F(x)) =
∫ b

x

�(y)

n∑
k=1

pn,k

(n + i − k − 1)! (R(y) − R(x))n+i−k−1f (y) dy. (23)

Differentiating both sides of (23) with respect to x and using (21) yields

(1 − F(x))g′
n,i(x) = (gn,i(x) − gn,i−1(x))f (x), a < x < b,

and (22) follows. �

In Theorem 5, if n = i = 1, condition (21) yields g1,0(x) = �(x) and condition (20) is equivalent to

g1,1(x) = E(�(Y1+l )|Yl = x), a < x < b, (24)

where l�1. Hence we can obtain the result reported by Gupta and Ahsanullah (2004), that is, F can be uniquely
determined by (24). Some other characterizations based on conditional expectations of two adjacent record values can
also be found in Nagaraja (1977, 1988) and Franco and Ruiz (1996).

In the following, we describe some applications of Theorem 5. Note that Corollary 1 with n = i = 1 can deduce the
result of Nagaraja (1977).

Corollary 1. Assume that for some positive integers n and i,

E(Yn+i |Xn:n = x) = c1x + d1, a < x < b, (25)

and

E(Yn+i−1|Xn:n = x) = c2x + d2, a < x < b, (26)
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where c1, c2, d1 and d2 are independent of x. Then only the following three cases are possible:

(i) c1 = c2 = 1, a > − ∞, b = ∞ and F(x) = 1 − e−�(x−a), a < x < ∞, where � = 1/(d1 − d2) > 0,
(ii) 0 < c1 < c2 �1, a > − ∞, b = (d1 − d2)/(c2 − c1) and F(x) = 1 − ((b − x)/(b − a))�, a < x < b, where

� = c1/(c2 − c1),
(iii) c1 > c2 �1, a > (d1 −d2)/(c2 −c1), b=∞ and F(x)=1−((x+�)/(a+�))�, a < x < ∞, where �=c1/(c2 −c1)

and � = (d1 − d2)/(c1 − c2).

Proof. For n�1, l�1 and a < x < b, it is obtained that

E(Yn+l |Xn:n = x) =
∫ b

x

y

n∑
k=1

pn,k

(n + l − k − 1)! (R(y) − R(x))n+l−k−1 f (y)

1 − F(x)
dy

=
∫ ∞

0
R−1(R(x) + u)

n∑
k=1

pn,k

(n + l − k − 1)!u
n+l−k−1e−u du, (27)

where the transformation u=R(y)−R(x) is used. (Note that R′(y)=r(y) > 0, a < y < b, then R(y) is strictly increasing
in (a, b) and hence the inverse function R−1(y), 0 < y < ∞, exists.) From (27), it can be seen that E(Yn+l |Xn:n = x) is
a strictly increasing function of x over (a, b). Similarly, it can also be shown that E(Yn|Xn:n = x) is strictly increasing
in (a, b). Consequently, in view of (25) and (26), it follows c1 > 0 and c2 > 0.

Using Theorem 5, (25) and (26) imply

F(x) = 1 − exp

{
−
∫ x

a

c1

(c1 − c2)y + d1 − d2
dy

}
, a < x < b. (28)

First, consider the case c1 = c2. From (28) and the fact that F(x) is non-decreasing, 0 < F(x) < 1, a < x < b, and
limx↑bF (x) = 1, it turns out that d1 > d2, a > − ∞, b = ∞ and

F(x) = 1 − e−�(x−a), a < x <∞, (29)

where � = c1/(d1 − d2). An expression for E(Yn+i−1|Xn:n = x) can be easily derived for the exponential distribution
given in (29), and then from (26), c2 = 1 follows. The proof of assertion (i) is complete.

Next consider the case c1 �= c2. From (28), a > − ∞, a �= (d1 − d2)/(c2 − c1) and

F(x) = 1 −
∣∣∣∣x + (d1 − d2)/(c1 − c2)

a + (d1 − d2)/(c1 − c2)

∣∣∣∣
�

, a < x < b, (30)

can be obtained, where �=c1/(c2−c1).Assume c1 < c2. This implies � > 0. Using (30) and the fact that limx↑bF (x)=1
yields b = (d1 − d2)/(c2 − c1) and

F(x) = 1 −
(

b − x

b − a

)�

, a < x < b. (31)

The formula of E(Yn+i−1|Xn:n = x) with respect to a distribution function as in (31) can also be easily calculated, and
then from (26), it can be shown that

c2 =
n∑

k=1

pn,k

(
�

� + 1

)n+i−1−k

�
n∑

k=1

pn,k = 1.

The proof of assertion (ii) is finished. On the other hand, suppose c1 > c2. It turns out � < − 1. The rest of the proof of
assertion (iii) is omitted since it is similar to that of assertion (ii). �

Characterizations based on conditional expectations of non-adjacent record values were investigated by Dembińska
and Wesołowski (2000), Wu and Lee (2001), Raqab (2002) and Gupta and Ahsanullah (2004). In particular, Gupta and
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Ahsanullah (2004) proved that F is uniquely determined by g(x)=E(�(Y2+l )|Yl = x), a < x < b, where l�1, and this
result can also be obtained from the following theorem with n = 1 and i = 2.

Theorem 6. Assume that f is continuously differentiable and for some integers n�1 and i�2,

gn,i(x) = E(�(Yn+i )|Xn:n = x), a < x < b, (32)

and

gn,i−2(x) = E(�(Yn+i−2)|Xn:n = x), a < x < b, (33)

where gn,i is twice continuously differentiable and gn,i−2, � are continuous functions. Then F can be uniquely deter-
mined.

Proof. From (32), we have for a < x < b,

gn,i(x)(1 − F(x)) =
∫ b

x

�(y)

n∑
k=1

pn,k

(n + i − k − 1)! (R(y) − R(x))n+i−k−1f (y) dy. (34)

After differentiating both sides of (34) with respect to x twice and some manipulations, using (33), it yields for a < x < b,

g′
n,i(x)

f ′(x)

f (x)
+ 3g′

n,i(x)r(x) − g′′
n,i(x) − (gn,i(x) − gn,i−2(x))(r(x))2 = 0. (35)

It can be seen that (35) is essentially the same as (4.7) of Gupta andAhsanullah (2004). Therefore, the proof is completed
along the lines of the proof in Gupta and Ahsanullah (2004). �

4. Further characterizations based on record values and Xn:n

In this section, for l, n�1, let Sl =Yl −Xn:n, S−
l =min{0, Sl} and S+

l =max{0, Sl}. It is clear that for l�n, S−
l =0 and

S+
l =Sl . Balakrishnan and Stepanov (2004) recently gave characterizations of distributions based on the independence

of S−
2 and Xn:n, S+

2 and Xn:n, or S2 and Xn:n. We now characterize F using the independence of S−
l and Xn:n, where

l < n.

Theorem 7. S−
l and Xn:n are independent for some positive integers l < n if and only if F(x)= e�(x−b), −∞ < x < b,

where � > 0 and b are constants.

Proof. The sufficiency part can be verified directly, we only prove the necessity part. For l < n and a < x < b, the
conditional distribution of S−

l given Xn:n = x can be derived from Theorem 1 as

P(S−
l �y|Xn:n = x) =

⎧⎨
⎩

n−1∑
k=l

pk−1,l−1

(
1

k
− 1

n

)(
F(y + x)

F (x)

)k

, y < 0,

1, y�0.

(36)

The independence of S−
l and Xn:n implies that the right side of (36) does not depend on x, i.e.

n−1∑
k=l

ck

(
F(y + x)

F (x)

)k

= H(y), y < 0, a < x < b,

where ck = pk−1,l−1(1/k − 1/n) > 0 and H(y) is some continuous function. Following the lines of the proof of
Theorem 3.2 in Balakrishnan and Stepanov (2004) yields the necessity part. �

In the above theorem, if l = n − 1, the independence condition can then be weakened. More precisely, as indicated
by the following theorem with r = 0, independence of x for E(S−

n−1|Xn:n = x) is sufficient.
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Theorem 8. Assume that for some integers n�2 and r �0,

E((S−
n−1)

r+1|Xn:n = x) = �E((S−
n−1)

r |Xn:n = x), a < x < b, (37)

where � is independent of x. Then � < 0, a=−∞, b < ∞ and F(x)=e�(x−b), −∞ < x < b, where �=−1/(n!�(n−1))

for r = 0, and � = −(r + 1)/(�(n − 1)) for r �1.

Proof. First, consider the case r = 0. From (37), we have∫ x

a

(y − x)(F (y) )n−2f (y) dy = n!�
n − 1

(F (x))n−1, a < x < b. (38)

It is easy to see from (38) that � < 0. Differentiating both sides of (38) with respect to x yields

f (x) = �F(x), a < x < b, (39)

where � = −1/(n!�(n − 1)). This implies F(x) = ce�x , a < x < b, where c > 0 is a constant. Using the fact that
limx↓aF (x) = 0 and limx↑bF (x) = 1, it then turns out a = −∞, b < ∞ and c = e−�b. The assertion for r = 0 follows.

Next, consider the case r �1. From (37), the following is obtained:∫ x

a

(y − x)r+1(F (y))n−2f (y) dy = �
∫ x

a

(y − x)r(F (y))n−2f (y) dy, a < x < b. (40)

We observe � < 0 from (40). Differentiate both sides of (40) with respect to x (r + 1) times to arrive at (39) with
� = −(r + 1)/(�(n − 1)). The assertion for r �1 can then be obtained immediately. �

When F(x) = e�(x−b), −∞ < x < b, where � > 0 and b < ∞, one can deduce that

E((S−
n−1)

2|Xn:n = x) = 2(n!)(E(S−
n−1|Xn:n = x))2, −∞ < x < b. (41)

Inspired by this, we give the following characterization theorem, which also indicates that if Var(S−
n−1|Xn:n = x) is

proportional to (E(S−
n−1|Xn:n = x))2, then F can be determined.

Theorem 9. Assume that f is differentiable and for some integer n�2,

E((S−
n−1)

2|Xn:n = x) = �(E(S−
n−1|Xn:n = x))2, a < x < b, (42)

where � is independent of x. Then only the following three cases are possible:

(i) � = 2(n!), a = −∞, b < ∞ and F(x) = e�(x−b), −∞ < x < b, where � > 0 is a constant,
(ii) n! < � < 2(n!), −∞ < a < b < ∞ and F(x) = ((x − a)/(b − a))�, a < x < b, where � = 2(� − n!)/((n − 1)

(2(n!) − �)),
(iii) � > 2(n!), a = −∞, b < ∞ and F(x) = (1 + 	(b − x))�, −∞ < x < b, where � = 2(� − n!)/((n − 1)(2(n!) − �))

and 	 > 0 is a constant.

Proof. We know that (42) implies

(F (x))n−1
∫ x

a

(y − x)2(F (y))n−2f (y) dy = �(n − 1)

n!
(∫ x

a

(y − x)(F (y))n−2f (y) dy

)2

, a < x < b. (43)

Differentiating both sides of (43) with respect to x yields

f (x)

∫ x

a

(y − x)2(F (y))n−2f (y) dy = 2(n! − �)

n!(n − 1)
F (x)

∫ x

a

(y − x)(F (y))n−2f (y) dy, a < x < b. (44)

In view of (43) and (44), we obtain � > n! and∫ x

a

(y − x)(F (y))n−2f (y) dy = 2(n! − �)

�(n − 1)2

(F (x))n

f (x)
, a < x < b. (45)
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Again differentiating both sides of (45) with respect to x yields

f ′(x)

f (x)
=
(

n + �(n − 1)

2(n! − �)

)
f (x)

F (x)
, a < x < b,

and this implies

f (x) = �(F (x))n+�(n−1)/(2(n!−�)), a < x < b, (46)

where � > 0 is a constant.
First, consider the case � = 2(n!). Then solving (46) yields F(x) = ce�x , a < x < b, where c > 0 is a constant. As

F(x) is a distribution function, it turns out that a = −∞, b < ∞ and c = e−�b. The proof of assertion (i) is complete.
Next, consider the case � �= 2(n!). The general solution of (46) is

F(x) = (c1x + c2)
�, a < x < b, (47)

where � = 2(� − n!)/((n − 1)(2(n!) − �)) and c1 = �/�, c2 are constants. Assume that n! < � < 2(n!). This, in turn,
implies that � > 0 and c1 > 0. Again as F(x) is a distribution function, from (47), it can be seen that a = −c2/c1 and
b = (1 − c2)/c1. On the other hand, suppose � > 2(n!). Then � < 0 and c1 < 0 follows. From (47), it can be shown that
a = −∞ and b = (1 − c2)/c1. The remaining assertions (ii) and (iii) can be obtained immediately. �
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