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Abstract

In this work we investigate the generalized skew-symmetric distributions. Suppose Y is an absolutely continuous random

variable symmetric about 0 with probability density function f and cumulative distribution function F. If a random

variable X satisfies X 2¼
d

Y 2, then X is said to have a generalized skew distribution of F (or f). The generalized skew-Cauchy

(GSC) distribution are considered and special examples of GSC distribution are presented. Some of these examples are

generated from generalized skew-normal or generalized skew-t distributions.
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1. Introduction

The univariate skew-normal distribution has been studied by many authors, see e.g. Azzalini (1985, 1986),
Henze (1986), Chiogna (1998) and Gupta et al. (2004b). Following Azzalini (1985), a random variable X is
said to have a skew-normal distribution with parameter l, denoted by X�SNðlÞ, if the probability density
function (p.d.f.) is given by

f X ðxÞ ¼ 2fðxÞFðlxÞ; l;x 2 R, (1)

where f and F are the p.d.f. and cumulative distribution function (c.d.f.) of the standard normal distribution,
respectively.

By letting the p.d.f. of the random variable X be

f X ðxÞ ¼ 2fðxÞF
l1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2x2
p

 !
; l1; x 2 R; l2X0, (2)
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Arellano-Valle et al. (2004) defined a so-called skew-generalized normal distribution, they denoted this
distribution by SGNðl1; l2Þ.

The multivariate skew-normal distribution has also been considered by Azzalini and Dalla Valle (1996),
Azzalini and Capitanio (1999), Gupta and Kollo (2003), and Gupta et al. (2004a). Here a p-dimensional
random vector X is said to have a multivariate skew-normal distribution, denoted by X�SNpðX; aÞ, if it is
continuous and its p.d.f. is given by

f X ðxÞ ¼ 2fpðx;XÞFða
0xÞ, (3)

where X40, a 2 Rp, fpðx;XÞ is the p.d.f. ofNpð0;XÞ distribution (the p-dimensional normal distribution with
zero mean vector and correlation matrix XÞ. Quadratic forms of skew-normal random vectors have been
studied by Azzalini (1985), Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), Loperfido (2001),
Genton et al. (2001), and Gupta and Huang (2002). Based on Gupta and Huang (2002), some parallel results
for the class of multivariate skew normal-symmetric distributions have also been obtained by Huang and Chen
(2006).

If the p.d.f. of a random variable X has the form

f X ðxÞ ¼ 2f ðxÞGðxÞ; x 2 R, (4)

where f is a p.d.f. of a random variable symmetric about 0, and G is a Lebesque measurable function satisfying
0pGðxÞp1 and GðxÞ þ Gð�xÞ ¼ 1 a.e. on R, then X is said to have the so-called skew-symmetric distribution.
Gupta et al. (2002) studied the models in which f is taken to be the p.d.f. from one of the following
distributions: normal, Student’s t, Cauchy, Laplace, logistic, and uniform distribution, and G is a distribution
function such that G0 is symmetric about 0. Nadarajah and Kotz (2003) considered the models that f is taken
to be a normal p.d.f. with zero mean, while G is taken to come from one of the above continuous symmetric
distributions. Multivariate skew-symmetric distributions have also been studied by Gupta and Chang (2003)
and Wang et al. (2004a). The multivariate skew-Cauchy distribution and multivariate skew t-distribution are
studied by Arnold and Beaver (2000), and Gupta (2003), respectively.

It is known that the square of each of the Nð0; 1Þ, SNðlÞ and SGNðl1; l2Þ distribution is w21 distributed.
Based on this observation, in this paper, first we introduce the generalized skew-symmetric model in Section 2.
Then in Section 3, we introduce the generalized skew-Cauchy (GSC) distribution. In Section 4, some examples
as well as their p.d.f.s of GSC distribution generated by the ratio of two independent generalized skew
normally distributed random variables will be given. Finally, in Section 5, several of the possible shapes of the
p.d.f. of a main example in Section 4 under various choices of parameters will be illustrated.

2. Generalized skew distributions

First we give a definition.

Definition 1. Suppose Y is an absolutely continuous random variable symmetric about 0 with p.d.f. f and
c.d.f. F. Assume random variable X satisfies

X 2¼
d

Y 2. (5)

Then X is said to have a generalized skew distribution of F (or f).

In the above definition, if Y has a common distribution, such as Nð0; 1Þ distribution, then X is said to have
a generalized skew-Nð0; 1Þ distribution. The p.d.f. of a generalized skew distribution can be obtained by using
the following lemma.

Lemma 1 (Huang et al., 2005). Let n be a positive integer, and hðtÞ, t 2 A, a continuous p.d.f. Also assume

A � ½0;1Þ, when n is even. Then X n has h as its p.d.f., if and only if the p.d.f. of X is

f X ðxÞ ¼
nxn�1hðxnÞ; n is odd ;

njxjn�1hðxnÞGðxÞ; n is even;

(
(6)
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where x 2 B ¼ fxjx 2 R;xn 2 Ag, and GðxÞ is a Lebesgue measurable function which satisfies 0pGðxÞp1 and

GðxÞ þ Gð�xÞ ¼ 1 a.e., 8x 2 B.

According to the above lemma, the following theorem is obtained immediately.

Theorem 1. Assume the random variable Y is defined as in Definition 1, and X has a generalized skew distribution

of f. Then the p.d.f. of X is

f X ðxÞ ¼ 2f ðxÞGðxÞ; x 2 R, (7)

or equivalently,

f X ðxÞ ¼ f ðxÞð1þHðxÞÞ; x 2 R, (8)

where G, the skew function, is a Lebesque measurable function satisfying

0pGðxÞp1 and GðxÞ þ Gð�xÞ ¼ 1 a:e: on R, (9)

and HðxÞ ¼ 2GðxÞ � 1, satisfying

�1pHðxÞp1 and Hð�xÞ ¼ �HðxÞ a:e: on R. (10)

Proof. Let hðtÞ be the p.d.f. of X 2. Then hðtÞ ¼ t�1=2f ðt1=2Þ, t40. By Lemma 1,

f X ðxÞ ¼ 2jxj
1

jxj
f ðjxjÞGðxÞ ¼ 2f ðxÞGðxÞ; x 2 R,

as required, where f ðjxjÞ ¼ f ðxÞ is by the fact that f is symmetric about 0. The rest of the proof is obvious
hence is omitted. &

There are infinitely many functions satisfy (9). For example G is the distribution function corresponding to a
symmetric random variable (in particular G can be taken as F), GðxÞ ¼ ð1þ sin xÞ=2 (hence G is not necessary
to be increasing), GðxÞ � 1

2
(in this case f X ðxÞ ¼ f ðxÞ;x 2 R), etc. The p.d.f. given in (7) has the same form as in

(4). In fact, Arnold and Lin (2004) have used f X in (7) with f ¼ f to define the generalized skew-Nð0; 1Þ
distribution. SNðlÞ, SGNðl1; l2Þ, the skew-normal symmetric models of Nadarajah and Kotz (2003) all
belong to the class of generalized skew-Nð0; 1Þ distribution.

Let ðY 1;Y 2Þ be BVNð0; 0; 1; 1;rÞ distributed, jrja1. Denote Y ð1Þ ¼ minfY 1;Y 2g and Y ð2Þ ¼ maxfY 1;Y 2g.
Loperfido (2002) pointed out that Y ð1Þ�SNð�gÞ and Y ð2Þ�SNðgÞ, where g ¼ ½ð1� rÞ=ð1þ rÞ�1=2. For the
minimum and maximum of a random sample of size two, we have the following result.

Proposition 1. Suppose X 1 and X 2 are two independent and identically distributed random variables with the common

absolutely continuous c.d.f. F and p.d.f. f, where f is assumed to be symmetric about 0. Let X ð1Þ ¼ minfX 1;X 2g,
X ð2Þ ¼ maxfX 1;X 2g. Then X ð1Þ and X ð2Þ are both generalized skew distributions of f with p.d.f.s

f X ð1Þ
ðy1Þ ¼ 2f ðy1ÞF ð�y1Þ; y1 2 R, (11)

and

f X ð2Þ
ðy2Þ ¼ 2f ðy2ÞF ðy2Þ; y2 2 R, (12)

respectively. Also jX ð1Þj¼
d
jX ð2Þj¼

d
jX 1j.

Proof. For independent and identically distributed random variables, the marginal p.d.f.s of X ð1Þ and X ð2Þ can
be obtained immediately. By using 1� F ðy1Þ ¼ F ð�y1Þ, y1 2 R, it yields (11). The rest of this proposition is
obvious. &

It can be seen easily, that in the above proposition, neither the minimum nor the maximum has a generalized
skew distribution of f, if the sample size of random variables is greater than two. Also when ðX 1;X 2Þ is
BVNð0; 0; 1; 1; 0Þ distributed, namely X 1 and X 2 are independent Nð0; 1Þ distributed, then Proposition 1
implies X ð1Þ and X ð2Þ are SNð�1Þ and SNð1Þ distributed, respectively, which coincides with the result by
Loperfido (2002).

The next property for generalized skew-Nð0;s2Þ distribution is also immediate.
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Proposition 2. Let X 1; . . . ;X nþm, n;mX1, be independent random variables each has a generalized skew-
Nð0;s2Þ distribution. ThenPn

i¼1X 2
i =nPnþm

i¼nþ1X 2
i =m
�Fn;m,

where Fn;m has an F distribution with n and m degrees of freedom.

Note that it is allowed that the random variables X 1; . . . ;X nþm in the above proposition are not necessary to
be identically distributed. The following is an equivalent condition to (5).

Proposition 3 (Wang et al., 2004b). If X�2f ðxÞGðxÞ and Y�2 ~f ðxÞ ~GðxÞ, where 2f ðxÞGðxÞ and 2 ~f ðxÞ ~GðxÞ are

two p.d.f.s of generalized skew distributions, then

f ðxÞ ¼ ~f ðxÞ3tðX Þ ¼d tðY Þ; for every even function t,

3X 2¼
d

Y 2.

It should be mentioned here, one even function t, such that tðX Þ ¼d tðY Þ is enough to imply X 2¼
d

Y 2. We
give a simple proposition below, which can be compared with Proposition 3 of Arellano-Valle et al. (2004).

Proposition 4. Let X be generalized skew-Nð0;s2Þ distributed, Y be Nð0;s2Þ distributed, and Z be w21
distributed, s40. Then jX j ¼

d
jY j ¼

d s
ffiffiffiffi
Z
p
�HNð0;s2Þ, where HNð0; s2Þ denotes the half-normal distribution

with parameter s.

Although there are some parallel properties between non-skew and skew distributions, there also have many
properties hold for non-skew distributions but not for skew distributions. We list some examples below:

Let X 1 and X 2 be independent and identically distributed random variables with Nð0; s2Þ being their
common distribution. Then

(i) X 2
1 þ X 2

2 and X 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

1 þ X 2
2

q
are independent,

(ii) X 2
1 þ X 2

2 and X 1=X 2 are independent,
(iii) X 1 � X 2 and X 1 þ X 2 are independent.

But none of these properties hold for any other generalized skew-Nð0;s2Þ distributions.

3. The GSC models

We now use Definition 1 to define the generalized skew-Cauchy distribution.
X is said to have a generalized skew-Cð0; sÞ distribution, denoted by GSCðsÞ, where s40, if X 2¼

d
Y 2, where

Y has a Cð0;sÞ distribution. That is X 2 has the p.d.f.

hðtÞ ¼
s

p½
ffiffi
t
p
ðs2 þ tÞ�

; tX0; s40. (13)

Denote the distribution of X 2 by C2ð0;sÞ.
By Theorem 1, X has a GSCðsÞ distribution, if and only if the p.d.f. of X has either of the following forms:

f X ðxÞ ¼
2s

pðs2 þ x2Þ
GðxÞ; x 2 R; s40, (14)

or

f X ðxÞ ¼
s

pðs2 þ x2Þ
ð1þHðxÞÞ; x 2 R; s40, (15)

where G and H are Lebesque measurable functions satisfying (9) and (10), respectively. There are some simple
properties for the distribution of GSCðsÞ.
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Proposition 5. ðiÞ The only symmetric GSCðsÞ distribution is Cð0; sÞ distribution.
ðiiÞ Let X�GSCðsÞ, and r 2 R. Then EjX jr exists if and only if jrjo1.
ðiiiÞ X�GSCðsÞ3X 2�C2ð0;sÞ3 1

X 2�C
2ð0; 1sÞ3

1
X
�GSCð1sÞ.

Gupta et al. (2002) gave three examples of GSC distribution. The first example is defined in a similar way
as the skew-normal distribution defined by Azzalini (1985, 1986). That is the p.d.f. of X is 2f ðxÞF ðlxÞ,
where f ð�Þ and F ð�Þ are the p.d.f. and c.d.f. of Cð0;sÞ distribution, respectively. More precisely, the p.d.f.
of X is given by

f 1ðxÞ ¼
s

pðs2 þ x2Þ
1þ

2 arctanðlx=sÞ
p

� �
; l;x 2 R; s40. (16)

As Cð0; 1Þ distribution is exactly the T1 distribution, inspired by this, the second example of GSC
distribution is based on the skew-T1 distribution, the latter is defined in a similar way as t distribution.

Example 1. Let X ¼ U=
ffiffiffiffiffiffi
W
p

, where U has a generalized skew-Nð0; 1Þ distribution and W independent of U is
w21 distributed. Then X has a GSCð1Þ distribution.

Note that the random variable X given above satisfies X 2¼
d

X 2
1, where X 1 ¼ U1=

ffiffiffiffiffiffiffiffi
W 1

p
, U1 has a Nð0; 1Þ

distribution, and W 1 independent of U1 is w21 distributed. That is X 1 isT1 distributed. Hence GSCð1Þ is also a
generalized skew-T1 distribution.

For a special case, let U have a SNðl1Þ distribution. Then the p.d.f. of X is given by

f 2ðxÞ ¼
1

pð1þ x2Þ
1þ

l1xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
2
64

3
75; l1;x 2 R, (17)

which is the second example of GSC distribution given by Gupta et al. (2002).

4. More examples of GSC distribution

First we give another GSC example below, which is a slight generalization of the second example given by
Gupta et al. (2002).

Example 2. Let U and V be two independent random variables both are generalized skew-Nð0;s2Þ
distributed. Then X ¼ U=jV j has a GSCð1Þ distribution.

In particular, let U be SNðlÞ distributed, and V be generalized skew-ð0; 1Þ distributed. Then X ¼ U=jV j
has the p.d.f. given in (17).

The reason that the two X’s defined in Example 1 and this example are equally distributed is due to
Proposition 4.

Suppose that U and V are two independent random variables and both are Nð0;s2Þ distributed, s40. It is
known that not only U=jV j but also U=V is Cð0; 1Þ distributed. The next example indicates similar result holds
for generalized skew-normal distributions. This example nevertheless is a slight generalization of Examples 1
and 2. Note that both

ffiffiffiffiffiffi
W
p

in Example 1 and jV j in Example 2 are generalized skew-Nð0; 1Þ distributed.

Example 3. Let U and V be two independent random variables both distributed as generalized skew-Nð0;s2Þ
distribution. Then X ¼ U=V has a GSCð1Þ distribution.

The third way of Gupta et al. (2002) to define GSC distribution is by letting X ¼ U=V , where U and V are
independent random variables both distributed as SNðlÞ. Obviously X has a GSCð1Þ distribution. Although
Gupta et al. (2002) failed to obtain the closed form of the p.d.f. of X, the p.d.f. actually can be obtained. The
following theorem indicates that the closed form of the p.d.f. of X can be derived, even under a more general
setting.
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Theorem 2. Let U and V be independent random variables distributed as SNðl1Þ and SNðl2Þ, respectively,
l1; l2 2 R. Then X � X ðl1; l2Þ ¼ U=V has a GSCð1Þ distribution with p.d.f.

f X ðxÞ ¼
1

pð1þ x2Þ
1þ

2l2 arctanðl1x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q þ
2l1x arctanðl2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
0
B@

1
CA,

x 2 R. ð18Þ

Before proving this theorem, we give some preliminary results below about the integrations with regard to
the p.d.f. f and c.d.f. F of the Nð0; 1Þ distribution. The first lemma can be found in Gupta and Brown (2001).

Lemma 2. For any b 2 R,Z 1
0

fðtÞFðbtÞdt ¼
1

4
þ

1

2p
arctanðbÞ. (19)

Lemma 3. For sX0, integer rX1 and a1; . . . ; ar 2 R;
Pr

i¼1a
2
i a0,Z 1

0

vsfða1vÞ � � �fðarvÞdv ¼
Gððsþ 1Þ=2Þ2ðs�1Þ=2

ð2pÞr=2ð
Pr

i¼1a2
i Þ
ðsþ1Þ=2

. (20)

Proof. Since fða1vÞ � � �fðarvÞ ¼ ð
ffiffiffiffiffiffi
2p
p
Þ
�ðr�1Þfðð

Pr
i¼1a

2
i Þ

1=2vÞ, without loss of generality, it suffices to prove the
case r ¼ 1. Now by letting t ¼ a2

1v2, we haveZ 1
0

vsfða1vÞdv ¼
1ffiffiffiffiffiffi
2p
p

Z 1
0

vse�a2
1
v2=2 dv

¼
1

2
ffiffiffiffiffiffi
2p
p
ða2

1Þ
ðsþ1Þ=2

Z 1
0

tðs�1Þ=2e�t=2 dt

¼
Gððsþ 1Þ=2Þ2ðs�1Þ=2ffiffiffiffiffiffi

2p
p
ða2

1Þ
ðsþ1Þ=2

as desired. &

The next lemma is an extension of the above two lemmas.

Lemma 4. For sX2, integer rX1 and a1; . . . ; ar; b 2 R;
Pr

i¼1a
2
i a0, we have the following recursive formula:Z 1

0

vsfða1vÞ � � �fðarvÞFðbvÞdv ¼
bGðs=2Þ2s=2�1

ð2pÞðrþ1Þ=2ð
Pr

i¼1a
2
i Þð
Pr

i¼1a
2
i þ b2

Þ
s=2

þ
s� 1Pr

i¼1a2
i

Z 1
0

vs�2fða1vÞ � � �fðarvÞFðbvÞdv. ð21Þ

Also

Z 1
0

fða1vÞ � � �fðarvÞFðbvÞdv ¼
1

ð2pÞðrþ1Þ=2ð
Pr

i¼1a
2
i Þ

1=2

p
2
þ arctan

b

ð
Pr

i¼1a
2
i Þ

1=2

 ! !
, (22)

and

Z 1
0

vfða1vÞ � � �fðarvÞFðbvÞdv ¼
1

2ð2pÞr=2ð
Pr

i¼1a
2
i Þ

1þ
b

ð
Pr

i¼1a
2
i þ b2

Þ
1=2

 !
. (23)
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Proof. Again it suffices to prove the case r ¼ 1. For sX2, by integration by parts and Lemma 3, it yields

Z 1
0

vsfða1vÞFðbvÞdv ¼

Z 1
0

vs 1ffiffiffiffiffiffi
2p
p e�a2

1
v2=2FðbvÞdv

¼
�1ffiffiffiffiffiffi
2p
p

a2
1

vs�1FðbvÞe�a2
1
v2=2
���1
0
�

Z 1
0

e�a2
1
v2=2d vs�1FðbvÞ

� �� �

¼
bffiffiffiffiffiffi
2p
p

a2
1

Z 1
0

vs�1e�a2
1
v2=2fðbvÞdvþ

s� 1ffiffiffiffiffiffi
2p
p

a2
1

Z 1
0

vs�2e�a2
1
v2=2FðbvÞdv

¼
b

a2
1

Z 1
0

vs�1fða1vÞfðbvÞdvþ
s� 1

a2
1

Z 1
0

vs�2fða1vÞFðbvÞdv

¼
bGðs=2Þ2s=2�1

2pa2
1ða

2
1 þ b2

Þ
s=2
þ

s� 1

a2
1

Z 1
0

vs�2fða1vÞFðbvÞdv.

This proves (21) for the case r ¼ 1.
Next by letting t ¼ ja1jv, from Lemma 2 we have

Z 1
0

fða1vÞFðbvÞdv ¼
1

ja1j

Z 1
0

fðtÞF
b

ja1j
t

� 	
dt ¼

1

4ja1j
þ

1

2pja1j
arctan

b

ja1j

� 	
,

this is exactly (22) for r ¼ 1.
Finally, again by integration by parts and Lemma 3,

Z 1
0

vfða1vÞFðbvÞdv ¼
�1ffiffiffiffiffiffi
2p
p

a2
1

FðbvÞe�a2
1
v2=2
���1
0
�

Z 1
0

e�a2
1
v2=2 dFðbvÞ

� �

¼
�1ffiffiffiffiffiffi
2p
p

a2
1

�
1

2
� b

Z 1
0

e�a2
1
v2=2fðbvÞdv

� �

¼
1

2
ffiffiffiffiffiffi
2p
p

a2
1

þ
b

a2
1

Z 1
0

fðavÞfðbvÞdv

¼
1

2
ffiffiffiffiffiffi
2p
p

a2
1

þ
b

a2
1

Gð1=2Þ2�1=2

2pða2
1 þ b2

Þ
1=2

¼
1

2
ffiffiffiffiffiffi
2p
p

a2
1

1þ
b

ða2
1 þ b2

Þ
1=2

" #
.

This completes the proof of this lemma. &

We also have an extended corollary.

Corollary 1. For integer rX1, and a1; . . . ; ar; b1; b2 2 R,
Pr

i¼1a2
i a0,

Z 1
0

vfða1vÞ � � �fðarvÞFðb1vÞFðb2vÞdv

¼
1

2ð2pÞðrþ2Þ=2ð
Pr

i¼1a
2
i Þ

pþ
b1ðpþ 2 arctanðb2=ð

Pr
i¼1a2

i þ b2
1Þ

1=2
ÞÞ

ð
Pr

i¼1a2
i þ b2

1Þ
1=2

"

þ
b2ðpþ 2 arctanðb1=ð

Pr
i¼1a

2
i þ b2

2Þ
1=2
ÞÞ

ð
Pr

i¼1a
2
i þ b2

2Þ
1=2

#
. ð24Þ
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Proof. Again it suffices to prove the case r ¼ 1. By integration by parts and Lemma 4, it yields

Z 1
0

vfða1vÞFðb1vÞFðb2vÞdv

¼

Z 1
0

v
1ffiffiffiffiffiffi
2p
p e�a2

1
v2=2Fðb1vÞFðb2vÞdv

¼
�1ffiffiffiffiffiffi
2p
p

a2
1

Fðb1vÞFðb2vÞe
�a2

1
v2=2
���1
0
�

Z 1
0

e�a2
1
v2=2dðFðb1vÞFðb2vÞÞ

� �

¼
�1ffiffiffiffiffiffi
2p
p

a2
1

�
1

4
�

Z 1
0

e�a2
1
v2=2½b1fðb1vÞFðb2vÞ þ b2fðb2vÞFðb1vÞ�dv

� �

¼
1

4
ffiffiffiffiffiffi
2p
p

a2
1

þ
b1

a2
1

Z 1
0

fða1vÞfðb1vÞFðb2vÞdvþ
b2

a2
1

Z 1
0

fða1vÞfðb2vÞFðb1vÞdv

¼
1

4
ffiffiffiffiffiffi
2p
p

a2
1

þ
b1

a2
1

1

ð2pÞ3=2ða2
1 þ b2

1Þ
1=2

p
2
þ arctan

b2

ða2
1 þ b2

1Þ
1=2

 ! !" #

þ
b2

a2
1

1

ð2pÞ3=2ða2
1 þ b2

2Þ
1=2

p
2
þ arctan

b1

ða2
1 þ b2

2Þ
1=2

 ! !" #

¼
1

2ð2pÞ3=2a2
1

pþ
b1ðpþ 2 arctanðb2=ða2

1 þ b2
1Þ

1=2
ÞÞ

ða2
1 þ b2

1Þ
1=2

þ
b2ðpþ 2 arctanðb1=ða2

1 þ b2
2Þ

1=2
ÞÞ

ða2
1 þ b2

2Þ
1=2

" #
: &

Proof of Theorem 2. That X has a GSCð1Þ distribution is obvious. We derive the p.d.f. of X in the following.
First the joint p.d.f. of U and V is

f U ;V ðu; vÞ ¼ 4fðuÞfðvÞFðl1uÞFðl2vÞ; u; v 2 R.

Hence the p.d.f. of X is

f X ðxÞ ¼ 4

Z 1
�1

jvjfðxvÞfðvÞFðl1xvÞFðl2vÞdv

¼ 4

Z 1
0

vfðxvÞfðvÞFðl1xvÞFðl2vÞdvþ 4

Z 1
0

vfðxvÞfðvÞFð�l1xvÞFð�l2vÞdv.

By using Corollary 1, it yields

f X ðxÞ ¼ 4 �
1

8p2ð1þ x2Þ
pþ

l2ðpþ 2 arctanðl1x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l22 þ x2

q
2
64

þ
l1xðpþ 2 arctanðl2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1þ l21Þx2

q
3
75

þ 4 �
1

8p2ð1þ x2Þ
pþ
�l2ðpþ 2 arctanð�l1x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l22 þ x2

q
2
64

þ
�l1xðpþ 2 arctanð�l2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð1þ l21Þx2

q
3
75
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¼
1

pð1þ x2Þ
1þ

2l2 arctanðl1x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l22 þ x2

q þ
2l1x arctanðl2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1þ l21Þx2

q
0
B@

1
CA,

l1; l2; x 2 R,

as desired. &

We give another special case of Example 3.

Example 4. Let X ¼ U=V , where U is Nð0; 1Þ distributed, V is SNðlÞ distributed, and U and V are
independent. By noting SNð0Þ ¼

d
Nð0; 1Þ, from (18) we obtain immediately

f X ðxÞ ¼
1

pð1þ x2Þ
; x 2 R.

Consequently, X is Cð0; 1Þ distributed and independent of l. Being Cð0; 1Þ distributed, X and 1=X have the
same distribution. Hence X 1 ¼ V=U is also Cð0; 1Þ distributed.

The following is an extension of Example 4.

Example 5. Let U be Nð0;s2Þ distributed, and V be generalized skew-Nð0;s2Þ distributed. Then X ¼ U=V is
Cð0; 1Þ distributed.

Proof. First the joint p.d.f. of U and V is

f U ;V ðu; vÞ ¼
2

s2
f

u

s


 �
f

v

s


 �
GðvÞ; u; v 2 R; s40,

where GðvÞ is a Lebesque measurable function satisfying condition (9). Hence by letting t ¼ v=s, the p.d.f.
of X is

f X ðxÞ ¼

Z 1
�1

2

s2
f

xv

s


 �
f

v

s


 �
GðvÞjvjdv.

¼

Z 1
�1

2fðxtÞfðtÞGðstÞjtjdt

¼ 2

Z 1
0

tfðxtÞfðtÞGðstÞdtþ 2

Z 1
0

tfðxtÞfðtÞGð�stÞdt

¼ 2

Z 1
0

tfðxtÞfðtÞ½GðstÞ þ Gð�stÞ�dt

¼ 2

Z 1
0

tfðxtÞfðtÞdt ¼
1

pð1þ x2Þ
; x 2 R,

as desired.
Obviously, the result still holds true if U is generalized skew-Nð0;s2Þ distributed and V is Nð0; s2Þ

distributed. &

Finally, limiting distributions of the random variable X ðl1; l2Þ defined in Theorem 2 when l1; l2 tend to
0;1 or �1 can be obtained easily. The details are omitted.

5. Some figures of the p.d.f. of the GSC distribution

In this section, several of the possible shapes of the p.d.f. of the random variable X ðl1; l2Þ in Theorem 2
under various choices of ðl1; l2Þ are illustrated. From Fig. 1, it seems the p.d.f. of the X ðl1; l2Þ distribution
may have one side heavier tail and one side thinner tail than the Cð0; 1Þ distribution. However, it can be seen
easily that for any l1; l2 2 R, the ratio of the p.d.f. of X ðl1; l2Þ to the p.d.f. of Cð0; 1Þ distribution tends to 1 as
x!1 or �1.
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Fig. 1. Probability density function of X ðl1; l2Þ for several values of ðl1; l2Þ: (a) ðl1; l2Þ ¼ ð2; 5Þ, (b) ðl1; l2Þ ¼ ð�6; 1Þ, (c) ðl1; l2Þ ¼ ð3;�7Þ,
(d) ðl1; l2Þ ¼ ð�4;�2Þ, (e) ðl1; l2Þ ¼ ð100; 1Þ, (f) ðl1; l2Þ ¼ ð1; 100Þ, (g) ðl1; l2Þ ¼ ð100; 100Þ, and (h) ðl1; l2Þ ¼ ð100;�100Þ.
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In general, GSC distribution may not have the same tail heaviness as the Cð0; 1Þ distribution also may not be
unimodal. As an example let s ¼ 1 and HðxÞ ¼ sin x in (15), Fig. 2 depicts this p.d.f. curve. Yet our conjecture
is for any l1; l2 2 R, the p.d.f. curve of X ðl1; l2Þ is unimodal. This and some other related problems will be
studied in the future.
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Fig. 2. Probability density function of f ðxÞ ¼ ð1þ sin xÞ=ðpð1þ x2ÞÞ; x 2 R.
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