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Abstract

Given two independent non-degenerate positive random variables X and Y , Letac and Wesolowski (Ann.
Probab. 28 (2000) 1371) proved that U=(X+Y )−1 and V=X−1−(X+Y )−1 are independent if and only if X
and Y are generalized inverse Gaussian (GIG) and gamma distributed, respectively. Note that X =(U +V )−1

and Y = U−1 − (U + V )−1. This interesting transformation between (X; Y ) and (U; V ) preserves a bivariate
probability measure which is a product of GIG and gamma distributions.
In this work, characterizations of the GIG and gamma distributions through the constancy of regressions

of V r on U are considered.
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1. Introduction

Lukacs (1955) characterized two independent non-degenerate positive random variables to be
gamma distributed by the independence of their quotient and sum. Since then, there are many
further investigations. Among others the following are some basic directions: (i) Weakening the
independence condition to constancy of regressions—see Bolger and Harkness (1965), Hall and
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Simons (1969), Wesolowski (1990), Li et al. (1994) Huang and Su (1997), Bobecka and Wesolowski
(2002a), Chou and Huang (2003). (ii) considering the renewal process—see Wesolowski (1989),
Li et al. (1994), Huang and Su (1997), Chou and Huang (2003). (iii) Considering the bivariate cases
—see Wang (1981), Bobecka (2002), Pusz (2002), Chou and Huang (2004). (iv) Considering the
matrix variates—see Olkin and Rubin (1962), Casalis and Letac (1996), Letac and Massam (1998),
Bobecka and Wesolowski (2002b).

Letac and Wesolowski (2000) (LW in the sequel) gave a similar characterization of generalized
inverse Gaussian (GIG) and gamma distributions via independence condition: given two independent
non-degenerate positive random variables X and Y , if U =(X +Y )−1 and V =X−1 − (X +Y )−1 are
independent, then X is GIG distributed and Y is gamma distributed. The readers may refer to Pusz
(1997) and Matsumoto and Yor (2003) for some related works of GIG distribution. Again, there are
at least two directions developed after LW: (i) Weakening the independence condition to constancy
of regressions (see Seshadri and Wesolowski (2001) (SW in the sequel), and Wesolowski (2002)).
(ii) Considering the matrix variates (see Wesolowski, 2002).

The GIG distribution �p;a;b is deGned

�p;a;b(dx) = Cxp−1 exp(−ax − b=x)I(0;∞)(x) dx;

where C is the norming constant. The family of GIG distribution can be partitioned into the following
three classes according to the parameter (p; a; b):

(i) Class I: a¿ 0; b¿ 0; p∈R.
(ii) Class II: a¿ 0; b= 0; p¿ 0.
(iii) Class III: a= 0; b¿ 0; p¡ 0.

Note that if X is �p;a;b distributed, then X−1 is �−p;b;a distributed. Class I contains the inverse
Gaussian (IG) (with p = − 1

2), reciprocal inverse Gaussian (RIG) (p = 1
2), hyperbolic (p = 1) and

hyperbola (p = 0) distributions. Class II is the class of gamma distributions. Class III is the class
of reciprocal gamma distributions. For the details of the IG distribution characteristics and vari-
ous statistical methods, see Chhikara and Folks (1989), Seshadri (1999) and the references therein.
A random variable X is RIG (or reciprocal gamma) distributed, if and only if X−1 is IG
(or gamma) distributed.

In this work we consider only Class II and a subclass of Class I. More precisely, we consider the
gamma distribution �(q; c) (i.e. �q;c;0), where q; c¿ 0;

�q;c(dy) =
cq

�(q)
yq−1e−cyI(0;∞)(y) dy; (1)

and the GIG distribution

�−p;a;b(dx) =
(a=b)−p=2

2K−p(2
√
ab)

x−p−1 exp(−ax − b=x)I(0;∞)(x) dx; (2)

where p; a; b¿ 0 and K−p is a modiGed Bessel function with

K−p(z) =
1
2

(
1
2
z
)−p ∫ ∞

0
up−1 exp

(
−u− z2

4u

)
du:

Note that the deGnition in (2) is the same as that in Wesolowski (2002) while somewhat diIerent
from that in SW in parameters a and b. In fact, our �−p;a;b is the same as �−p;2a;2b in SW.
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Given Y ∼ �(p; a), SW characterized that X ∼ �−p;a;b under the assumptions that for r = 0 or
−1; if r ¿− p,

E(V r+1|U ) = crE(V r|U ); (3)

holds for some constant cr . In this work we will prove that the above result holds if (3) is true for
some Gxed real r ¿−p. On the other hand, SW also characterized that Y ∼ �(p; a) if X ∼ �−p;a;b;
and (3) holds for r = 0 or −1, if r ¿− p; with c0 = E(V ); c−1 = 1=E(V−1). Again, we prove that
the result still holds if (3) is true for some r ¿− p.
Simultaneous characterizations of the distributions of X and Y are considered in Wesolowski

(2002), he characterized X to be GIG distributed and Y gamma distributed under the assumption
that for r = −1; (3) and

E(V r+2|U ) = cr+1E(V r+1|U ); (4)

hold for some constants cr and cr+1. Some further extension will be given in this work.
Before going into the details, we deGne the following transforms, if they exist,

fX (s) = E(X−r−1esX ); (5)

gX (s) = E(X−r−2esX ); (6)

and

hY (s) = E(Y resY ); (7)

where s6 0. Note that if Y ∼ �(p; a), then for every r ¿− p,

hY (s) = E(Y r)(1 − s=a)−(p+r); s6 0: (8)

2. Characterization of GIG distribution given that Y is gamma distributed

In this section, we characterize X to be GIG distributed given the distribution of Y is gamma and
Eq. (3) holds for some Gxed r ¿− p.

The following theorem generalizes Theorems 1 and 3 of SW.

Theorem 1. Let Y ∼ �(p; a) and for some 9xed r ¿−p; E(X−r−1); E(X−r+1)¡∞. Assume that
(3) holds for some constant cr . Then cr ¿ 0 and X ∼ �−p;a;b, where b= (p+ r)=cr ¿ 0.

Proof. First (3) implies cr ¿ 0 immediately. Next from the deGnitions of U and V; (3) is equivalent
to

E

((
Y

X (X + Y )

)r+1

|(X + Y )−1

)
= crE

((
Y

X (X + Y )

)r
|(X + Y )−1

)
;

which in turns implies

E(X−r−1Y r+1es(X+Y )) = crE(X−r+1Y res(X+Y ) + X−rY r+1es(X+Y )); s6 0: (9)
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In view of (5), (7) and the independence of X and Y , (9) can be rewritten as

fX (s)h′
Y (s) = crf′′

X (s)hY (s) + crf′
X (s)h

′
Y (s); s6 0: (10)

Since Y ∼ �(p; a), substituting (8) into (10) we obtain

(a− s)f′′
X (s) + (p+ r)f′

X (s) − bfX (s) = 0; s6 0; (11)

where b= (p+ r)=cr ¿ 0.
Now let FX denote the distribution function of X;W be a random variable having a distribution

function G with

G(x) =
∫ x

0
#u−r dFX (u); x¿ 0; G(x) = 0; x¡ 0; (12)

where #−1 = E(X−r)¡∞, and deGne the following transform:

kW (s) = E(W−1esW ): (13)

Then (5), (12) and (13) together yield

kW (s) = #fX (s): (14)

Substituting this into (11), yields

(a− s)k ′′
W (s) + (p+ r)k ′

W (s) − bkW (s) = 0: (15)

Since (15) is exactly the same as (4) of SW, where the complete solution is given, we obtain
immediately that W ∼ �−(p+r); a;b. This together with (2) and (12) yield that X ∼ �−p;a;b and the
theorem follows.

3. Characterization of gamma distribution given that X is GIG distributed

In Theorem 1, knowing the distribution of Y can characterize the distribution of X . Alternatively,
in this section we characterize the distribution of Y when the distribution of X is known.

The following theorem generalizes Theorems 2 and 4 of SW.

Theorem 2. Let X ∼ �−p;a;b, with p; a; b¿ 0. Assume that for some 9xed r ¿−p; E(Y r); E(Y r+1)
¡∞, and (3) holds with cr = (p+ r)=b¿ 0. Then Y ∼ �(p; a).

Proof. First deGne W as in Theorem 1. From (2) and (12) it can be seen that W ∼ �−(p+r); a;b. Next
let FY denote the distribution function of Y; Z be a random variable having a distribution function
H with

H (y) =
∫ y

0
'ur dFY (u); y¿ 0; H (y) = 0; y¡ 0; (16)

where '−1 = E(Y r)¡∞, and deGne the Laplace transform

lZ(s) = E(esZ): (17)
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Then (7), (16) and (17) together yield

lZ(s) = 'hY (s): (18)

Since (3) is equivalent to (10), substituting (14) and (18) into (10) we obtain

kW (s)l′Z(s) = crk ′′
W (s)lZ(s) + crk ′

W (s)l
′
Z(s); s6 0; (19)

where cr =(p+ r)=b. Now (19) is exactly the same as Eq. (3) of SW. Note that the role of W and
Z in (19) correspond to that of X and Y , respectively, in (3) of SW. From Theorem 2 of SW we
obtain immediately that Z ∼ �(p + r; a). This together with (16) yield that Y ∼ �(p; a) and the
theorem follows.

4. Simultaneous characterization of GIG and gamma distributions given two conditional
expectations

In this section, we give a simultaneous characterization of the distributions of X and Y .
The following theorem extends Theorem 1 of Wesolowski (2002).

Theorem 3. Assume that E(X−r−2); E(X−r); E(Y r) and E(Y r+2)¡∞ for some 9xed r. If (3) and
(4) hold for some constants cr and cr+1, then

(i) cr+1¿cr ¿ 0;
(ii) there exists a¿ 0 such that X ∼ �−p;a;b and Y ∼ �(p; a), where p = cr=(cr+1 − cr) − r ¿ 0

and b= 1=(cr+1 − cr)¿ 0.

Proof. First (3) and (4) yield that cr+1; cr ¿ 0 immediately. Next from (4) we have

E

((
1
X

− 1
X + Y

)(
Y
X

)r+1

|(X + Y )−1

)
= cr+1E

((
Y
X

)r+1

|(X + Y )−1

)
; (20)

which in turn implies

E

((
1
X

− cr+1

)(
Y
X

)r+1

|X + Y

)
= E

(
1

X + Y

(
Y
X

)r+1

|X + Y

)
: (21)

On the other hand, from (3) we have

crE

(
X (X + Y )

Y

(
Y
X

)r+1

|X + Y

)
= E

((
Y
X

)r+1

|X + Y

)
;

hence

crE

(
X
Y

(
Y
X

)r+1

|X + Y

)
= E

(
1

X + Y

(
Y
X

)r+1

|X + Y

)
: (22)



386 C.-W. Chou, W.-J. Huang / Statistics & Probability Letters 69 (2004) 381–388

Eqs. (21) and (22) yield

E

((
1
X

− cr+1

)(
Y
X

)r+1

|X + Y

)
= crE

(
X
Y

(
Y
X

)r+1

|X + Y

)
: (23)

Furthermore (20) implies

E

(
Y
X

(
Y
X

)r+1

|X + Y

)
= cr+1E

(
(X + Y )

(
Y
X

)r+1

|X + Y

)
;

hence

E

(
Y
(
1
X

− cr+1

)(
Y
X

)r+1

|X + Y

)
= cr+1E

(
X
(
Y
X

)r+1

|X + Y

)
: (24)

From (23) and (24) we have

E

((
1
X

− cr+1

)(
Y
X

)r+1

es(X+Y )
)

= crE

(
X
Y

(
Y
X

)r+1

es(X+Y )
)

(25)

and

E

(
Y
(
1
X

− cr+1

)
=
(
Y
X

)r+1

es(X+Y )
)

= cr+1E

(
X
(
Y
X

)r+1

es(X+Y )
)
; s6 0: (26)

In view of (6) and (7), and independence of X and Y , (25) and (26) can be rewritten as

h′
Y (s)(gX (s) − cr+1g′

X (s)) = crg′′
X (s)hY (s); (27)

and

h′′
Y (s)(gX (s) − cr+1g′

X (s)) = cr+1g′′
X (s)h

′
Y (s): (28)

Now (27) and (28) together imply

h′′
Y (s)
h′
Y (s)

=
cr+1

cr

h′
Y (s)
hY (s)

: (29)

DeGne Z as in Theorem 2. Substituting (18) into (29) yields

l′′Z(s)
l′Z(s)

=
cr+1

cr

l′Z(s)
lZ(s)

: (30)

Solving (30) we obtain cr+1¿cr and

lZ(s) = (1 − s=a)(1−cr+1=cr)−1
; (31)

for some positive constant a. Upon substituting this into (18) yields

hY (s) = '−1(1 − s=a)(1−cr+1=cr)−1
: (32)

From (31) we have Z ∼ �(cr=(cr+1 − cr); a). Once again this together with (16) yield that Y ∼
�(p; a), where p= cr=(cr+1 − cr) − r ¿ 0. Substituting (32) into (27), we arrive at

(a− s)g′′
X (s) + (p+ r)g′

X (s) − bgX (s) = 0; (33)
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where b=1=(cr+1 − cr). Let FX denote the distribution function of X; I be a random variable having
a distribution function J with

J (x) =
∫ x

0
*u−r−1 dFX (u); x¿ 0; J (x) = 0; x¡ 0; (34)

where *−1 = E(X−r−1)¡∞, and deGne the transform

kI (s) = E(I−1esI): (35)

Then (6), (34) and (35) together imply kI (s) = *gX (s). Substituting this into (33) yields

(a− s)k ′′
I (s) + (p+ r)k ′

I (s) − bkI (s) = 0: (36)

Again, (36) is exactly the same as Eq. (4) of SW. We obtain immediately that I ∼ �−(p+r); a;b. This
together with (2) and (34) lead to X ∼ �−p;a;b and the theorem follows.
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