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Abstract

Given two independent non-degenerate positive random variables X and Y , Lukacs (1955)
proved that X=(X + Y ) and X + Y are independent if and only if X and Y are gammally
distributed with the same scale parameter.

In this work, properties of bivariate gamma distribution are studied. Certain regression version
of Lukacs’s theorem are given for the bivariate case. Furthermore, characterization of bivariate
gamma distribution by the conditions of constancy regression of quadratic statistics is also given.
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1. Introduction

Let X and Y be two independent non-degenerate positive random variables. Lukacs
(1955) proved that X=(X + Y ) and X + Y are independent if and only if X and Y
are gammally distributed with the same scale parameter. However, in the bivariate case
such a property does not hold in general. Note that a positive random vector <X=(X1; X2)
has a bivariate gamma distribution BG(p; <�) (denote it by <X ∼ BG(p; <�)), with shape
parameter p and scale parameter <� = (�1; �2; �3), if it has the Laplace transform of
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the form,

E(exp(s1X1 + s2X2)) = (1− �1s1 − �2s2 + �3s1s2)−p; s1; s26 0;

�1s1 + �2s2 − �3s1s2¡ 1;

where p; �1; �2¿ 0 and �1�2¿ �3¿ 0. The case �1�2 = �3 and �3 = 0 corresponds to
the condition that X1; X2 are independent and P(X2 = (�2=�1)X1) = 1, respectively.
Let <X = (X1; X2) and <Y = (Y1; Y2) be independent non-degenerate positive random

vectors.
Bobecka (2002) gave a bivariate version of Lukacs theorem by showing that (X1=(X1+

Y1); X2=(X2+Y2)) and (X1+Y1; X2+Y2) are independent, if and only if <X∼BG(p; <�); <Y∼
BG(q; <�) with P(X2 = (�2=�1)X1) = P(Y2 = (�2=�1)Y1) = 1, or <X ; <Y have independent
gamma components. On the other hand, when <X ∼ BG(p; <�) and <Y ∼ BG(q; <�), for
r = 1; 2;−1, or −2, if r ¿− p, Bobecka (2002) proved that for some constants cr:

E
((

Xj
Xj + Yj

)r∣∣∣∣ <X + <Y
)
= cr; j = 1; 2: (1)

Conversely, for (u; v) = (1; 2), (1;−1) or (−1;−2), under the assumptions,

E
((

Xj
Xj + Yj

)u∣∣∣∣ <X + <Y
)
= aj; (2)

E
((

Xj
Xj + Yj

)v∣∣∣∣ <X + <Y
)
= bj; (3)

hold for some constants aj and bj; j = 1; 2. Bobecka (2002) characterized <X and <Y
to be bivariate gammally distributed with the same scale parameter. This generalized
the results of Bolger and Harkness (1965), Wesolowski (1990) and Li et al. (1994),
where univariate cases were considered. Instead of (2) and (3), under the following
weaker assumptions, a characterization of bivariate gamma distribution in a much more
general form is given: For some Gxed integer r,

E

((
Xj

Xj + Yj

)r+1
∣∣∣∣∣ <X + <Y

)
= �jE

((
Xj

Xj + Yj

)r∣∣∣∣ <X + <Y
)
; (4)

E

((
Xj

Xj + Yj

)r+2
∣∣∣∣∣ <X + <Y

)
= �jE

((
Xj

Xj + Yj

)r+1
∣∣∣∣∣ <X + <Y

)
; (5)

hold for some constants �j; �j; j=1; 2. Note that (1) holds for every integer r ¿−p,
and (u; v) = (1; 2); (1;−1) and (−1;−2) in (2) and (3) corresponds to r = 0;−1 and
−2, respectively. This also extends the result of Huang and Su (1997) in the univariate
case.
In Bobecka (2002), the following two equations has also been used to characterize

bivariate gamma distribution:

E

((
Xj

Xj + Yj

)2∣∣∣∣∣ <X + <Y

)
= dj; (6)
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and

E

((
Yj

Xj + Yj

)2∣∣∣∣∣ <X + <Y

)
= ej; (7)

hold for some constants dj and ej; j = 1; 2. Note that under the next two equations
with conditions of constancy of quadratic regression

E(ajX 2
j + bjXjYj + cjY 2

j | <X + <Y ) = 0; (8)

and

E(djX 2
j + ejXjYj + fjY 2

j | <X + <Y ) = 0; (9)

hold for some constants aj; bj; cj; dj; ej and fj, with vectors (aj; bj; cj) linearly
independent of (dj; ej; fj); j=1; 2, it can also characterize bivariate gamma distribution.
It is interesting to Gnd that although the forms in (8) and (9) seem to be more general,
they are actually equivalent to (6) and (7).
The case that <X i=(Xi1; Xi2); i=1; 2; : : : ; n, are independent and identically distributed

(i.i.d.) has also been considered by some authors. For example, Huang and Hu (1999,
2000) and Theorems 6.2.8 and 6.2.9 of Kagan et al. (1973) characterized univariate
gamma distribution, while Theorem 3 of Pusz (2002) characterized bivariate gamma
distribution using the following assumptions:

E

(
n∑
i=1

n∑
k=1

aikXi1Xk1 +
n∑
i=1

biXi1

∣∣∣∣∣
n∑
i=1

<X i

)
= 0; (10)

and

E

(
n∑
i=1

n∑
k=1

cikXi2Xk2 +
n∑
i=1

diXi2

∣∣∣∣∣
n∑
i=1

<X i

)
= 0; (11)

with aik = cik ; bi = di for all i; k = 1; : : : ; n. In Section 5, without assuming that aik =
cik ; bi = di; i; k = 1; : : : ; n, we give a similar characterization.

2. Preliminaries

In this section, we list three lemmas which will be used in proving our theorems,
where Lemma 1 is due to Kagan et al. (1973) and Lemma 3 is due to Bobecka (2002).

Lemma 1. Let U be a positive random variable and <V =(V1; : : : ; Vn) a random vector
with positive components. Suppose that E(U ) and E( <V )exist. Then U has a linear
regression on <V ,

E(U | <V ) = �+
n∑
i=1

�iVi;
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if and only if the relation

E

(
U exp

(
n∑
i=1

siVi

))
= �E

(
exp

(
n∑
i=1

siVi

))
+

n∑
i=1

�iE

(
Vi exp

(
n∑
i=1

siVi

))
;

holds for all vectors <s = (s1; : : : ; sn), si6 0; i = 1; : : : ; n, where �; �i; i = 1; : : : ; n, are
constants.

Lemma 2. Let <X = (X1; X2) be a non-degenerate positive random vector, with E(X r
1 )

¡∞ for some integer r �= 0. Assume that for some l¡ 0,

E(X r
1 exp(s1X1 + s2X2)) = Br(s2)(1 + A(s2)s1)l;

for every s1; s26 0, where Br(s2)¿ 0 and A(s2)¡ 0 for every s26 0. Then

(i) l¡− r,
(ii) E(X i

1 exp(s1X1 + s2X2)) = Bi(s2)(1 + A(s2)s1)l+r−i, where

Bi(s2) =




[(l+ 1)(l+ 2) · · · (l+ r − i)]−1

× (A(s2))i−rBr(s2); i = 0; 1; : : : ; r − 1;

r ¿ 0;

l(l− 1) · · · (l+ r − i + 1)

× (A(s2))i−rBr(s2); i = r + 1; r + 2; : : : ; 0;

r ¡ 0:

Proof. First as E(X r
1 )¡∞, for every s1; s26 0, E(X i

1 exp(s1X1 + s2X2)) exists, for
06 |i|6 |r|; ir¿ 0. For convenience, denote E(X i

1 exp(s1X1 + s2X2)) by Hi(s1; s2) if
it exists. Hence 0¡Hi(s1; s2)¡∞, ∀06 |i|6 |r|; ir¿ 0, since X1¿ 0. Throughout
this proof, we only consider s1; s26 0.
The proof will be divided into the following two cases.
Case 1: r ¿ 0.
From the assumption, we have

Hr(s1; s2) = Br(s2)(1 + A(s2)s1)l;

and in view of the deGnition of Hi(s1; s2), it yields

Hr−1(s1; s2) =
∫ s1

−∞
Hr(t; s2) dt

=

{
(A(s2))−1Br(s2) log(1 + A(s2)t)|s1−∞; l=−1;

(l+ 1)−1(A(s2))−1Br(s2)(1 + A(s2)t)l+1|s1−∞; l �= −1:

We conclude immediately (recall that Br(s2)¿ 0; A(s2)¡ 0 and l¡ 0) that l¡− 1,
otherwise Hr−1(s1; s2) cannot be Gnite. Consequently

Hr−1(s1; s2) = (l+ 1)−1(A(s2))−1Br(s2)(1 + A(s2)s1)l+1:
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It follows

Hr−1(s1; s2) = Br−1(s2)(1 + A(s2)s1)l+1;

where

Br−1(s2) = (l+ 1)−1(A(s2))−1Br(s2)¿ 0:

Along the lines of the above discussion, we obtain l¡− r, and

Hi(s1; s2) = Bi(s2)(1 + A(s2)s1)l+r−i ; i = 0; 1; : : : ; r − 1;

where

Bi(s2) = [(l+ 1)(l+ 2) · · · (l+ r − i)]−1(A(s2))i−rBr(s2)¿ 0:

This proves Case 1.
Case 2: r ¡ 0.
Obviously, assertion (i) holds in this case. Next, we have

Hr+1(s1; s2) =
@Hr(s1; s2)

@s1
= lA(s2)Br(s2)(1 + A(s2)s1)l−1:

It follows

Hr+1(s1; s2) = Br+1(s2)(1 + A(s2)s1)l−1;

where

Br+1(s2) = lA(s2)Br(s2)¿ 0:

As in Case 1, it yields

Hi(s1; s2) = Bi(s2)(1 + A2(s2)s1)l+r−i ; i = r + 1; r + 2; : : : ;−1; 0;

where

Bi(s2) = l(l− 1) · · · (l+ r − i + 1)(A(s2))i−rBr(s2)¿ 0:

The proof is completed.

Lemma 3. Let M1; N1; M2 and N2 be real functions de6ned on (−∞; 0], where N1; N2

are non-positive and M1(0) �= 0. Suppose that for some t1; t2¿ 0,

M1(s1)(1 + N1(s1)s2)t1 =M2(s2)(1 + N2(s2)s1)t2 ; (12)

holds for every s1; s26 0. Denote M1(0); N1(0); M2(0) and N2(0) by m1; n1; m2 and
n2, respectively. Then m1 = m2 = m; M1(s1) = m(1 + n2s1)t2 ; M2(s2) = m(1 + n1s2)t1 ,
∀s1; s26 0, and there are two possible cases: either

(i) t1 = t2, then

N1(s1) =
fs1

1 + n2s1
+ n1; N2(s2) =

fs2
1 + n1s2

+ n2; ∀s1; s26 0;

where f is a constant; or
(ii) t1 �= t2, then N1(s1) = n1; N2(s2) = n2; ∀s1; s26 0.
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3. Constant regression property of bivariate gamma distribution

In this section, we prove a constant regression property of bivariate gamma
distribution.

Proposition 1. Let <X = (X1; X2) ∼ BG(p; <�) and <Y = (Y1; Y2) ∼ BG(q; <�) be indepen-
dent. Then (1) holds for all integers r ¿− p, where c0 = 1, and

cr =




p(p+ 1) · · · (p+ r − 1)
(p+ q)(p+ q+ 1) · · · (p+ q+ r − 1)

; r ¿ 0;

(p+ q− 1)(p+ q− 2) · · · (p+ q+ r)
(p− 1)(p− 2) · · · (p+ r)

; −p¡r¡ 0:

Proof. The case for r = 0 is obvious. We now prove the case for r �= 0. Also by
symmetry, we only need to prove for every non-zero integer r ¿− p,

E
((

X1

X1 + Y1

)r∣∣∣∣ <X + <Y
)
= cr: (13)

First note that both E( <X + <Y ) and E(X1=(X1 + Y1))r exist for every integer r ¿ 0. By
using the Binomial Theorem and the independence of X1 and Y1, we have

E
(

X1

X1 + Y1

)r
= E

(
1 +

Y1
X1

)−r

=
−r∑
i=0

C−r
i (EY i

1)(EX
−i
1 ); −p¡r¡ 0:

Here every term in the right side is Gnite as for a random variable W having a *(�; �)
distribution, �; �¿ 0, with density function

+�;�(dx) =
x�−1e−x=�

*(�)��
I(0;∞)(x) dx;

E(Wk) exists, for every k ¿−�. Thus E(X1=(X1+Y1))r exists for every integer r ¿−p
and Lemma 1 can be applied (with U = (X1=(X1 + Y1))r and <V = <X + <Y ).
By Lemma 1 and the independence of <X and <Y , Eq. (13) is equivalent to

E
((

X1

X1 + Y1

)r
exp(s1X1 + s2X2 + s1Y1 + s2Y2)

)

=crE(exp(s1X1 + s2X2))E(exp(s1Y1 + s2Y2)); ∀r ¿− p; s1; s26 0: (14)

Since <X ∼ BG(p; <�) and <Y ∼ BG(q; <�), we have

E(exp(s1X1 + s2X2)) = (1− �1s1 − �2s2 + �3s1s2)−p (15)

and

E(exp(s1Y1 + s2Y2)) = (1− �1s1 − �2s2 + �3s1s2)−q; ∀s1; s26 0: (16)
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Substituting (15) and (16) in (14) it follows that (13) is equivalent to

E
((

X1

X1 + Y1

)r
exp(s1X1 + s2X2 + s1Y1 + s2Y2)

)

=cr(1− �1s1 − �2s2 + �3s1s2)−(p+q); ∀r ¿− p; s1; s26 0: (17)

Note that E(X i
1 exp(s1X1 + s2X2))6E(X i

1)¡∞, ∀i¿− p; s1; s26 0, we have

E(X r
1 exp(s1X1 + s2X2))

=




@r

@sr1
E(exp(s1X1 + s2X2)); r ¿ 0;

∫ s1

−∞

∫ t−.

−∞
· · ·
∫ t2

−∞
E(exp(t1X1 + s2X2)) dt1 · · · dt−r−1 dt−r ; −p¡r¡ 0;

∀s1; s26 0. This together with (15) and (16) imply

E(X r
1 exp(s1X1 + s2X2 + s1Y1 + s2Y2))

=




p(p+ 1) · · · (p+ r − 1)(�1 − �3s2)r

× (1− �1s1 − �2s2 + �3s1s2)−(p+q+r); r ¿ 0;

((p− 1)(p− 2) · · · (p+ r))−1(�1 − �3s2)r

× (1− �1s1 − �2s2 + �3s1s2)−(p+q+r); −p¡r¡ 0;

∀s1; s26 0. Again by using the Binomial Theorem and the independence of X1 and Y1,
we have for s1; s26 0, 06 |i|6 |r| and ir¿ 0,

E
(

X r
1

(X1 + Y1)i
exp(s1X1 + s2X2 + s1Y1 + s2Y2)

)
6E

(
X r
1

(X1 + Y1)i

)
¡∞:

Using a similar argument, we obtain for every s1; s26 0,

E
((

X1

X1 + Y1

)r
exp(s1X1 + s2X2 + s1Y1 + s2Y2)

)

=E(X r
1 (X1 + Y1)−r exp(s1X1 + s2X2 + s1Y1 + s2Y2))

=




∫ s1

−∞

∫ t.

−∞
· · ·
∫ t2

−∞
E(X r

1 exp(t1(X1 + Y1)

+ s2(X2 + Y2)) dt1 · · · dtr−1 dtr ; r ¿ 0;

@(−r)

@s(−r)
1

E(X r
1 exp(s1X1 + s2X2 + s1Y1 + s2Y2)); −p¡r¡ 0:
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This in turn implies for every s1; s26 0,

E
((

X1

X1 + Y1

)r
exp(s1X1 + s2X2 + s1Y1 + s2Y2)

)

=




p(p+ 1) · · · (p+ r − 1)
(p+ q)(p+ q+ 1) · · · (p+ q+ r − 1)

× (1− �1s1 − �2s2 + �3s1s2)−(p+q); r ¿ 0;

(p+ q− 1)(p+ q− 2) · · · (p+ q+ r)
(p− 1)(p− 2) · · · (p+ r)

× (1− �1s1 − �2s2 + �3s1s2)−(p+q); −p¡r¡ 0:

This proves (17) and the proposition follows.

4. Characterizations of bivariate gamma distribution by conditional moments

In Section 3, we have proved a constant regression property of bivariate gamma
random vectors. Next we will investigate whether this constant regression property can
characterize bivariate gamma distribution. Theorem 1 extends Theorems 7, 8, and 9 of
Bobecka (2002) simultaneously.

Theorem 1. Let <X =(X1; X2) and <Y =(Y1; Y2) be independent non-degenerate bivariate
positive random vectors such that for some 6xed integer r, E(Yj)¡∞, E(X r

j )¡∞,
E(X r+2

j )¡∞, j = 1; 2, and the conditions (4), (5) hold for some real �j; �j, j = 1; 2.
Let

pj =
�j − �j�j
�j − �j

− r; qj =
�j − �j�j
�j − �j

1− �j
�j

; j = 1; 2:

Then pj, qj are well de6ned, pj ¿ 0, qj ¿ 0, and there are two possible cases: either

(i) �1 = �2 and �1 = �2 and then <X ; <Y have bivariate gamma distributions BG(p; <�),
BG(q; <�), where p= pj, q= qj, j = 1; 2, or

(ii) �1 �= �2 or �1 �= �2 and then <X ; <Y have independent gamma components Xj ∼
+�j;pj , Yj ∼ +�j;qj , j = 1; 2.

Proof. Assumptions (4) and (5) imply that for s1; s26 0,

E(X r+1
j exp(s1X1 + s2X2) exp(s1Y1 + s2Y2))

=�jE(X r
j (Xj + Yj) exp(s1X1 + s2X2) exp(s1Y1 + s2Y2)); (18)

and

E(X r+2
j exp(s1X1 + s2X2) exp(s1Y1 + s2Y2))

=�jE(X r+1
j (Xj + Yj) exp(s1X1 + s2X2) exp(s1Y1 + s2Y2)); j = 1; 2: (19)
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Let

Fj(s1; s2) = E(X r
j exp(s1X1 + s2X2)); j = 1; 2;

FY (s1; s2) = E(exp(s1Y1 + s2Y2));

and

FX (s1; s2) = E(exp(s1X1 + s2X2)); s1; s26 0:

Using the independence of <X and <Y and in view of the deGnition of Fj(s1; s2) and
FY (s1; s2), after some routine computations, (18) and (19) imply

1− �j
�j

@Fj(s1; s2)
@sj

FY (s1; s2) = Fj(s1; s2)
@FY (s1; s2)

@sj
; (20)

and

1− �j
�j

@2Fj(s1; s2)
@s2j

FY (s1; s2) =
@Fj(s1; s2)

@sj

@FY (s1; s2)
@sj

; j = 1; 2: (21)

For j = 1, solving (20) and (21) yield

F1(s1; s2) = C1(s2)(1 + C(s2)s1)(�1−�1�1)=(�1−�1); (22)

and

FY (s1; s2) = C2(s2)(1 + C(s2)s1)(�1−�1�1)=(�1−�1)(1−�1)=�1 ; (23)

for some functions C1(s2); C2(s2)¿ 0 and C(s2)¡ 0. In view of Lemma 2 and (22),
it turns out that

FX (s1; s2) = C3(s2)(1 + C(s2)s1)(�1−�1�1)=(�1−�1)+r ; (24)

for some functions C3(s2)¿ 0, where (�1 − �1�1)=(�1 − �1) + r ¡ 0. Denote (�1 −
�1�1)=(�1 − �1)(1 − �1)=�1 by q1¿ 0, and (�1 − �1�1)=(�1 − �1) − r by p1¿ 0, re-
spectively. We rewrite (23) and (24) as

FY (s1; s2) = C2(s2)(1 + C(s2)s1)−q1 ; (25)

and

FX (s1; s2) = C3(s2)(1 + C(s2)s1)−p1 : (26)

On the other hand, for j=2 in (20) and (21), along the lines of the above arguments
it yields for some functions D2(s1); D3(s1)¿ 0; D(s1)¡ 0,

FY (s1; s2) = D2(s1)(1 + D(s1)s2)−q2 ; (27)

and

FX (s1; s2) = D3(s1)(1 + D(s1)s2)−p2 ; (28)

where q2=(�2−�2�2)=(�2−�2)(1−�2)=(�2)¿ 0 and p2=(�2−�2�2)=(�2−�2)−r ¿ 0.
Combining (25)–(28) and Lemma 3, the theorem follows immediately.
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5. Characterizations by the conditions of constancy regression of sampling quadratic
statistics on sample mean

For a sequence of i.i.d. random vectors, we can characterize bivariate gamma distri-
bution by the conditions of constancy of quadratic regression with a similar argument
as in Theorem 1. We state the theorem without proof.

Theorem 2. Let <X i =(Xi1; Xi2); i=1; 2; : : : ; n; n¿ 2, be i.i.d. non-degenerate bivariate
positive random vectors. Assume that E(X 2

11)¡∞, E(X 2
12)¡∞, and (10) and (11)

hold for some constants aik ; bi; cik and di; i; k = 1; 2; : : : ; n, with




a2 + b2 �= 0;

c = 0;

d2 + e2 �= 0;

f = 0;

where




a=
n∑
i=1

aii; d=
n∑
i=1

cii;

b=
∑
i �=k

aik ; e =
∑
i �=k

cik ;

c =
n∑
i=1

bi; f =
n∑
i=1

di:

Then ab �= 0 and cd �= 0. Furthermore, let

l1 =
1

−b=a− 1
; l2 =

1
−e=d− 1

:

Then lj ¿ 0; j = 1; 2, and there are two possible cases: either

(i) l1 = l2 = l, that is b=a= e=d, then <X 1 ∼ BG(l; <�); or
(ii) l1 �= l2, that is b=a �= e=d, then <X 1 has independent gamma components X1j ∼

+lj ; �j ; j = 1; 2.

Remark. Case (i) of Theorem 2 is essentially given in Theorem 4.2 of Bar-Lev et al.
(1994).
Next, as a special case of Theorem 2, we characterize bivariate gamma distribution

by the conditions of constancy regression of sample coeMcient of variation on sample

mean. First let Zj =
∑n

i=1 Xij=n and Sj =
√∑n

i=1 (Xij − Zj)2=(n− 1); j = 1; 2.

Corollary. Let <X i = (Xi1; Xi2); i=1; 2; : : : ; n; n¿ 2, be i.i.d. non-degenerate bivariate
positive random vectors. Assume that E(X 2

11)¡∞, E(X 2
12)¡∞, and the conditions

E

((
Sj
Zj

)2∣∣∣∣∣ (Z1; Z2)
)

= ej;

hold for some constants ej; j = 1; 2. Let

lj =
1
ej

− 1
n
; j = 1; 2:
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Then lj ¿ 0; j = 1; 2, and there are two possible cases: either

(i) l1 = l2 = l, that is e1 = e2, then <X 1 ∼ BG(l; <�); or
(ii) l1 �= l2, that is e1 �= e2, then <X 1 has independent gamma components X1j ∼

+lj ;�j ; j = 1; 2.
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