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Abstract

Characterization of probabilistic distributions has been an important topic in sta-

tistical theory for decades. Although there have been many well known results, some

new characterizations of commonly used distributions, such as normal or gamma dis-

tributions, are found useful in many applications. In practice, such characteristic

properties can be used to represent the observed data. In this paper we restrict our

attention to the recent works of characterizations of the gamma distribution and

the gamma renewal process, as well as to some related studies on the corresponding

parameter estimation based on the characterization properties. Simulation studies

are presented to demonstrate how these characterization techniques can be used to

help determine the distributions of the observed data sets.
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1. Introduction

The gamma distribution plays a crucial role in mathematical statistics and many

applied areas. A random variable X is said to have a gamma distribution with three

parameters α, β, γ, denoted by X ∼ Γ(α, β, γ), if X has the probability density

function (pdf)

f(x) =
βα(x− γ)α−1e−β(x−γ)

Γ(α)
I(γ,∞)(x),

where α > 0, β > 0, γ are the shape, scale and location parameters, respectively,

and Γ(·) is the gamma function defined by

Γ(t) =
∫ ∞

0
xt−1e−xdx, t > 0.

In the classical system of densities introduced by K. Pearson (1894), the gamma

density is characterized as Type III. In most cases, the two-parameter gamma dis-

tribution with γ = 0 is considered. We denote it by X ∼ Γ(α, β) and it has the

pdf

f(x) =
βαxα−1e−βx

Γ(α)
I(0,∞)(x). (1)

In this work we consider only the class of two-parameter gamma distributions in

which some well-known distributions are included. When the gamma distribution

has an integral parameter α, it is called the Erlang distribution. In particular, if

α = 1, we have an exponential distribution. The exponential distribution can be

characterized by a constant failure rate. That is, the reliability for a given operation

interval is the same, no matter from what portion of the useful life of a device the

interval is taken. Another important distribution in this class is the chi-squared

distribution with degrees of freedom 2α, χ2
2α, when β = 1/2 and α > 0.

Followings are some of the interesting and important properties of the gamma

distribution, X ∼ Γ(α, β):

1.The variance of a random sample with size n from a normal population N(µ, σ2)

has a Γ((n− 1)/2, (n− 1)/(2σ2)) distribution.

2.The Laplace transform of X is E(exp(sX)) = (1− s/β)−α, s ≤ 0.

3.Special transformation 2βX ∼ χ2
2α.

4.The r-th moment of X is E(Xr) = Γ(α+ r)/(Γ(α)βr), r > −α.
5.Reproductive property and infinitely divisible property.

These properties provide very useful theoretical tools while studying gamma distri-

butions or using it in real application.

The gamma distribution has been used in the areas such as engineering and

business. The applications include queuing systems, reliability assessment, inven-

tory control, computer evaluations, and biological studies in which the occurrence of
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an event depends on a series of independent sub-events whose occurrence times are

independent and identically distributed (iid) exponential random variables. In spite

of many uses of the gamma distribution, there have been very few distributional

assessment procedures developed. The gamma distribution is one of the most fre-

quently used distributions to model lifetime data. This is due to its flexibility in the

choice of the shape and scale parameters. It is also commonly used in the waiting

time problems. For example, the waiting time for the k-th occurrence of a Poisson

process follows a gamma distribution. In reliability studies and in life testing, the

gamma distribution is used as a generalization of the exponential distribution which

is also a popular choice for the modeling purpose. Over the last few decades, the

gamma distribution has become one of the most important techniques for modeling

life-testing situations.

On the other hand, reliability has been an important topic in industry. The

gamma distribution has been suggested as the failure time model for a system under

continuous maintenance, where the reliability may experience some initial growth

or decay but eventually reaches a steady state. The gamma family provides an ap-

plicable class of distributions for testing reliability and performing survival analysis.

The shape parameter is especially interesting since whether α− 1 is negative, zero,

or positive corresponds to a decreasing failure rate (DFR), constant failure rate, or

increasing failure rate (IFR), respectively.

Scientists have observed that, under repeated observation or sampling, the sam-

ple coefficient of variation approaches a deterministic constant. If the underlying

model behaves like a gamma distribution, then having the knowledge of the coeffi-

cient of variation implies having the knowledge of α.

The situation that the shape parameter is known happens when the number

of sub-events needed to activate the occurrence is known. For example, consider a

computer buffer which stores six messages before transmitting them to the processor.

The waiting time for a transmission then has a gamma distribution with a shape

parameter of six if the inter-arrival times of the messages are iid exponential random

variables. The case that the shape parameter is unknown sometimes happens. For

example, it is usually assumed that the lifetime of a component that fails after k

shocks and the time between two shocks are iid exponential random variables, while

the value of k is unknown.

In theoretical calculations, the gamma distribution arises as the sum of iid ex-

ponential random variables. It can be used for testing the equality of variances for

several independent normal distributions. The nice property of the reproductivity

and infinitely divisibility of the gamma distribution also makes it much easier to deal

with. Johnson and Kotz (1994) provides a good review of the gamma distribution

in which several applications in various fields are discussed.
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In Section 2 characterizations of the gamma distribution are obtained. In Sec-

tion 3 characterizations of the Poisson process are given. Characterizations of the

bivariate gamma distribution, and GIG and beta distributions are given in Sections

4 and 5, respectively. By using our results we present the parameter estimation for

gamma population in Section 6. Finally a brief discussion is given in Section 7.

2. Characterizations of the gamma distribution

It is known that if X and Y are independent gamma random variables with

the same scale parameter, i.e., X ∼ Γ(αX , β), Y ∼ Γ(αY , β), then the two random

variables

X + Y and X/(X + Y )

are mutually independent and have Γ(αX + αY , β) and Be(αX , αY ) distributions

respectively. The notation Be(p, q) denotes the beta distribution having the pdf

f(x) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1I(0,1)(x). (2)

Lukacs (1955) showed that this property can be used to characterize the gamma

distributions in the following sense. If X and Y are independent non-degenerate

positive random variables and X + Y and X/(X + Y ) are mutually independent,

then X and Y must have gamma distributions with a common scale parameter, but

possibly with different values of the shape parameter.

By setting V = X + Y and U = X/(X + Y ) in Lukacs type characterization, we

get another form of characterization using the independence between U and V and

independence between UV and (1 − U)V. Note that X = UV, X, V, have gamma

distributions and U has a beta distribution in this case. Since UV is part of V,

an interesting characterization result for Poisson distributions is derived by Patil

and Seshadri (1964): Let N = X + Y where X and Y are two random variables

with common support {0, 1, 2, · · ·}. Given N = n, n ≥ 1, and assume that X has a

binomial distribution B(n, θ), 0 < θ < 1, then N has a Poisson distribution if and

only if X and Y are independent.

Denote the equivalence in distribution by “
d
=”. Some related characterizations

of the gamma distribution were done by Huang and Chen (1989) using

M∑
i=1

Yi
d
= U1

K∑
i=1

Yi (3)

or

M∑
i=1

Yi
d
=

K∑
i=1

UiYi,
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where K > M,Ui, i = 1, · · · , K, are iid from the common distribution Be(r, 1), r =

M/(K−M), and Yi, i = 1, · · · , K, are iid non-negative random variables. Character-

ization of multivariate random variables was also discussed in that paper. Further,

Huang and Chen (1991) proved that under the condition that

Z
d
= U1X, (4)

the distribution of Z can uniquely determine the distribution of X. Furthermore,

they gave an implicit relationship between the Laplace tranfoms of Z and that of X.

Other related works were done by Yeo and Milne (1991), Alzaid and Al-Osh (1991),

Pakes ( 1992a), Pakes and Khattree (1992). Analogously, Pakes (1992b) considered

the continuous version of equation (3) by using

Zu
d
= UZu+v,

where {Zt, t ≥ 0} is a Lévy process and U has all values in [0, 1]. Pakes (1994)

considered {Zt} as a self-similar process and showed that the solution exists only

when U is a constant.

Let X, Y and U be random variables where U is independent of Y and has

support on [0, 1]. As mentioned by Alzaid and Al-Osh (1991), the formula that

X = UY is of paramount importance in many fields. For example, in economic

modeling, Y may represent the actual income of an individual and X stands for his

reported income.

Similar to Lukacs type characterization, preserving independence under some

other transformations are also used to characterize distributions. Among others,

Letac and Wesolowski (2000) (LW (2000) in the sequel) proved that 1/(X + Y )

and 1/X − 1/(X + Y ) are independent if and only if X and Y have a generalized

inverse Gaussian (GIG) distribution and a gamma distribution, respectively. In

addition, Seshadri and Wesolowski (2003) characterized beta distributions of X and

Y by the independence of (1 − Y )/(1 − XY ) and 1 − XY. Both of the above two

characterizations will be discussed in Section 5. Note that if

(u1, u2) = (f1(x, y), f2(x, y)),

where

f1(x, y) = 1/(x+ y), f2(x, y) = 1/x− 1/(x+ y),

then we have that

f1(u1, u2) = x, f2(u1, u2) = y.

Also, if

(v1, v2) = (g1(x, y), g2(x, y)),
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where

g1(x, y) = (1− y)/(1− xy), g2(x, y) = 1− xy,

then we have that

g1(v1, v2) = x, g2(v1, v2) = y.

Extensions of the above Lukacs type characterizations are also developed. For

example, assume that X1 and X2 are identically distributed with finite second mo-

ment, it suffices to show that the regression

E[
aX2

1 + bX1X2 + cX2
2

(X1 +X2)2
|X1 +X2], a+ c 6= b,

is a constant in order to guarantee that the common distribution of X1 and X2 is

gamma (see Laha (1964)). Note that here the condition of independence is replaced

by constancy of regression, which is the tradeoff with the existence of the second

moments.

In addition to the results mentioned above, there are many further investigations.

We list some of them in the following. (i) Weakening the independence condition to

constancy of regressions (see Bolger and Harkness (1965), Hall and Simon (1969),

Wesolowski (1990), Li et al. (1994), Huang and Su (1997), Bobecka and Wesolowski

(2002a), Chou and Huang (2003), Huang and Chou (2004)). (ii) Considering the

renewal process (see Wesolowski (1989), Li et al. (1994), Huang and Su (1997),

Chou and Huang (2003), Huang and Chou (2004)). (iii) Considering the bivariate

cases (see Wang (1981), Bobecka (2002), Pusz (2002), Chou and Huang (2004a)).

(iv) Considering the matrix variates (see Olkin and Rubin (1962), Casalis and Letac

(1996), Letac and Massam (1998), Bobecka and Wesolowski (2002b)). We will

discuss (i) in this section, (ii) in Section 3 and (iii) in Section 4.

Given two independent and non-degenerate positive random variables X and Y ,

Bolger and Harkness (1965), Wesolowski (1990) and Li et al. (1994) characterized X

and Y to have gamma distributions, where the condition of independence between

X/(X + Y ) and X + Y was replaced by

E(Xu|X + Y ) = a(X + Y )u

and

E(Xv|X + Y ) = b(X + Y )v,

where (u, v) = (1, 2), (1,−1) or (−1,−2). Huang and Su (1997) generalized these

results and obtained a similar characterization under the weaker conditions that

E(Xr+1|X + Y ) = a(X + Y )E(Xr|X + Y )
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and

E(Xr+s+1|X + Y ) = b(X + Y )E(Xr+s|X + Y ),

where s = 1, r is a fixed integer and a and b are constants. Note that (u, v) =

(1, 2), (1,−1) and (−1,−2) corresponds to r = 0,−1 and −2, respectively. Chou

and Huang (2003) proved that this statement remains true when s = 2.

A technique of change of measure for the traditional Laplace transform methods

was used by Huang and Chou (2004) to extend the result to that r needs only to be

a fixed real number and s = 1 or 2.

On the other hand, Hall and Simons (1969) and Huang and Su (1997) charac-

terized gamma distributions using

E(Xu|X + Y ) = a(X + Y )u

and

E(Y u|X + Y ) = b(X + Y )u,

where u = 2 or −1.

It is easy to see that for the case u = 1, the above two equations reduce to only

one equation and can not be used to characterize gamma distribution.

Huang and Chou (2004) considered the case that one ofX and Y is assumed to be

gamma distributed. It seems reasonable that we can reduce the number of equations

in the above case to obtain similar characterization results. More specifically, given

that X or Y has a gamma distribution and the equation that

E(Xr+1|X + Y ) = a(X + Y )E(Xr|X + Y )

or

E(Xr+2|X + Y ) = b(X + Y )2E(Xr|X + Y ),

where a, b are some constants, they characterized that Y or X also has a gamma

distribution with the same scale parameter.

Another result was shown by Bobecka and Wesolowski (2002) who generalized

the Lukacs theorem under the so-called dual regression schemes. In their study

the constancy of regressions for X and Y as well as independence of X + Y and

X/(X + Y ) were assumed. More precisely, they characterized X and Y to have

gamma distributions by

E(Y u|X) = a and E(Y v|X) = b
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or

E(Xu|Y ) = a and E(Xv|Y ) = b,

where (u, v) = (1, 2), (1,−1) or (−1,−2). The theorems were proven using the

method of moments since the moments can uniquely determine a gamma distribution

and a beta distribution from the sufficient condition due to Carleman (see Chung,

2001, p.103).

Chou and Huang (2003) extended the above results by using

E(Y r+1|X) = aE(Y r|X) and E(Y r+2|X) = bE(Y r+1|X),

or

E(Xr+1|Y ) = aE(Xr|Y ) and E(Xr+2|Y ) = bE(Xr+1|Y )

for some fixed integer r and constants a and b, to characterize that X and Y have

gamma distributions. Again, (u, v) = (1, 2), (1,−1) and (−1,−2) corresponds to

r = 0,−1 and −2, respectively. However, using change of measure, Huang and

Chou (2004) proved that r needs only to be a fixed real number.

3. Characterizations of the Poisson process

The process version of Lukacs type characterizations is studied in this section.

Let A ≡ {A(t), t ≥ 0} be a renewal process and {Sk, k ≥ 1} be the sequence of

arrival times. Li et al. (1994) characterized A to be a Poisson process by assuming

that

E(Su
k |A(t) = n) = atu

and

E(Sv
k |A(t) = n) = btv

for some fixed integers k and n, 1 ≤ k ≤ n, and constants a and b where (u, v) =

(1, 2), (1,−1) or (−1,−2). Huang and Su (1997) extended the above result under

the weaker conditions that

E(Sr+1
k |A(t) = n) = atE(Sr

k|A(t) = n)

and

E(Sr+s+1
k |A(t) = n) = btE(Sr+s

k |A(t) = n),

where s = 1, r, k, n are some fixed integers, 1 ≤ k ≤ n and a, b are some constants.

The case that s = 2 was proved by Chou and Huang (2003). Again, using change
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of measure, Huang and Chou (2004) gave an extension to that s = 1 or 2 and r is

a fixed real number.

4. Characterizations of the bivariate gamma distribution

As mentioned before, if X and Y are two independent gamma random variables

with the same scale parameter, then X +Y and X/(X +Y ) are independent. How-

ever, in the bivariate case such a property does not always hold. Note that a positive

random vector X̃ = (X1, X2) has a bivariate gamma distribution BG(p, λ̃) (denote

it by X̃ ∼ BG(p, λ̃)) with shape parameter p and scale parameter λ̃ = (λ1, λ2, λ3) if

it has the following Laplace transform:

E(exp(s1X1 + s2X2)) = (1− λ1s1 − λ2s2 + λ3s1s2)
−p, s1, s2 ≤ 0 and

λ1s1 + λ2s2 − λ3s1s2 < 1,

where p, λ1, λ2 > 0 and λ1λ2 ≥ λ3 ≥ 0. The case that λ1λ2 = λ3 and λ3 = 0

corresponds to the condition that X1, X2 are independent and P (X2 = λ2

λ1
X1) = 1,

respectively. It is easy to see that this class of bivariate gamma distributions has

the reproductive and infinitely divisible property.

Let X̃ = (X1, X2) and Ỹ = (Y1, Y2) be mutually independent and non-degenerate

positive random vectors. Bobecka (2002) gave a bivariate version of Lukacs theorem

by showing that (X1/(X1 + Y1), X2/(X2 + Y2)) and (X1 + Y1, X2 + Y2) are indepen-

dent if and only if that X̃ ∼ BG(p, λ̃), Ỹ ∼ BG(q, λ̃) with P (X2 = λ2

λ1
X1) = P (Y2 =

λ2

λ1
Y1) = 1, or X̃, Ỹ have independent gamma components. Furthermore, she proved

that the whole class of BG distributions has the property of constancy for regres-

sions, i.e. when X̃ ∼ BG(p, λ̃) and Ỹ ∼ BG(q, λ̃), there exists some constants cr

such that

E((
Xj

Xj + Yj

)r|X̃ + Ỹ ) = cr, j = 1, 2, (5)

where r = 1, 2,−1,−2, and r > −p. However, Chou and Huang (2004a) proved that

equation (5) holds for every integer r > −p. Conversely, for (u, v) = (1, 2), (1,−1)

or (−1,−2) with the assumption that

E((
Xj

Xj + Yj

)u|X̃ + Ỹ ) = aj (6)

and

E((
Xj

Xj + Yj

)v|X̃ + Ỹ ) = bj (7)
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hold for some constants aj and bj, j = 1, 2, Bobecka (2002) characterized X̃ and Ỹ to

have bivariate gamma distributions with the same scale parameter. This generalizes

the results by Bolger and Harkness (1965), Wesolowski (1990) and Li et al. (1994) in

which univariate cases were considered. Instead of (6) and (7), the following weaker

assumption was given by Chou and Huang (2004a): For some fixed integer r,

E((
Xj

Xj + Yj

)r+1|X̃ + Ỹ ) = αjE((
Xj

Xj + Yj

)r|X̃ + Ỹ )

and

E((
Xj

Xj + Yj

)r+2|X̃ + Ỹ ) = βjE((
Xj

Xj + Yj

)r+1|X̃ + Ỹ )

hold for some constants αj, βj, j = 1, 2. Note that (u, v) = (1, 2), (1,−1), (−1,−2)

in (6) and (7) corresponds to that r = 0,−1,−2, respectively. This also genaralizes

the result by Huang and Su (1997) for the univariate case.

The following two formulas were used by Bobecka (2002) to characterize the

bivariate gamma distribution:

E((
Xj

Xj + Yj

)2|X̃ + Ỹ ) = dj (8)

and

E((
Yj

Xj + Yj

)2|X̃ + Ỹ ) = ej (9)

for some constants dj and ej, j = 1, 2. Chou and Huang (2004a) also characterized

the bivariate gamma distribution using the constancy of the quadratic regressions

E(ajX
2
j + bjXjYj + cjY

2
j |X̃ + Ỹ ) = 0 (10)

and

E(djX
2
j + ejXjYj + fjY

2
j |X̃ + Ỹ ) = 0 (11)

for some constants aj, bj, cj, dj, ej, fj, where vectors (aj, bj, cj) are linearly indepen-

dent of (dj, ej, fj), j = 1, 2. It can be found interestingly that equations (10) and

(11) are actually equivalent to equations (8) and (9).

The case that X̃i = (Xi1, Xi2), i = 1, 2, · · · , n, are iid has also been considered in

literature. For example, Pusz (2002) characterized the bivariate gamma distribution

using the assumption that

E(
n∑

i=1

n∑
k=1

aikXi1Xk1 +
n∑

i=1

biXi1|
n∑

i=1

X̃i) = 0 (12)
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and

E(
n∑

i=1

n∑
k=1

cikXi2Xk2 +
n∑

i=1

diXi2|
n∑

i=1

X̃i) = 0, (13)

where aik = cik, bi = di for all i, k = 1, · · · , n. Chou and Huang (2004a) also gave a

similar characterization without assuming that aik = cik, bi = di, i, k = 1, · · · , n.

5. Characterizations of the GIG and beta distributions

Similar to Lukacs type characterization, there are some other characterizations

using the property of preserving independence under the transformation for in-

dependent random variables. Among others, LW (2000) proved that given two

independent non-degenerate positive random variables X and Y, 1/(X + Y ) and

1/X − 1/(X + Y ) are independent if and only if X and Y have a generalized in-

verse Gaussian (GIG) distribution and a gamma distribution, respectively. Seshadri

and Wesolowski (2003) characterized the beta distributions of two independent and

non-degenerate random variables X, Y, valued in (0, 1), by the independence of

(1 − Y )/(1 − XY ) and 1 − XY. The readers may refer to Pusz (1997) and Mat-

sumoto and Yor (2003) for some related works on GIG distributions.

Extensions of the LW (2000) characterization results are also developed. There

are two main directions afterward: (i) Weakening the independence condition to

constancy of regressions (see Seshadri and Wesolowski (2001) (SW (2001) in the

sequel), Wesolowski (2002), Chou and Huang (2004b)). (ii) Considering the matrix

variates (see Wesolowski (2002)).

5.1. Introduction to inverse Gaussian distribution

We first introduce a subclass of GIG distributions, namely the inverse Gaussian

(IG) distributions. Let X(t) be a Wiener process starting at x0 with drift ν > 0 and

variance σ2. Let T be the first time the process hits a, a > x0. That is,

X(0) = x0, X(t) < a, 0 < t < T and X(T ) = a.

Then T has an IG(θ, λ) distribution with the pdf

f(t) = (
λ

2πt3
)

1
2 exp(−λ(t− θ)2

2θ2t
)I(0,∞)(t), (14)

where θ = (a−x0)/ν and λ = (a−x0)
2/σ2 > 0. The parameter θ is the mean of the

distribution and λ is a scale parameter. The Laplace transform of T is then given

by

E(exp(sT )) = exp{λ
θ
[1− (1− 2θ2

λ
s)1/2]}, s ≤ 0.
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Given that T < ∞, the conditional distribution of T with ν < 0 is IG(−θ, λ).

On the other hand, the distribution of T with ν = 0 is a reciprocal of a gamma

distribution. The name “inverse Gaussian”, named by Tweedie (1945), is based

on the inverse relationship between the cumulant-generating functions (cgfs) of the

time to cover unit distance (IG law) and that of the distance covered in unit time

(normal law) in Wiener process. Note that for a random variable T, the cgf of T

is defined by ϕ(s) = logE(exp(sT )). Also two random variables X, Y are called

inverse random variables and the corresponding distributions are called a pair of

inverse distributions if their cgfs ϕX(s) and ϕY (s) satisfy the condition that

c1ϕX(s) is the inverse function of c2ϕY (s)

for some fixed constants c1, c2. Tweedie (1945) showed three pairs of inverse dis-

tributions: (i) Normal and IG; (ii) Binomial and negative binomial; (iii) Poisson

and gamma. Apart from the inverse-distribution relationship, IG has many other

statistical properties similar to that of normal law. We list some of them in the

following. Assume X ∼ IG(θ, λ), then (a) cX ∼ IG(cθ, cλ) for positive constant

c. (b) Linear combination of independent IG random variables with suitable coeffi-

cients is also IG distributed. (c) The sample mean X and
∑n

i=1(X
−1
i − (X)−1) are

independent. (d) λ(X− θ)2/(θ2X) ∼ χ2
1. (e) D = λ

∑n
i=1(X

−1
i − (X)−1) ∼ χ2

n−1 and

when n = 2r, r is a positive integer, D can be decomposed into the sum of n − 1

independent chi-squared random variables with one degree of freedom.

IG distributions can be used in a wide range of statistical methods and seem to

be suitable for model fitting especially when the data are skewed. For the details,

readers can refer to the works by Chhikara and Folks (1989), Seshadri (1999), etc.

5.2. Introduction to GIG distribution

Next, a generalized class of the GIG distributions µp,a,b is defined by the pdf

f(x) = Cxp−1 exp(−ax− b/x)I(0,∞)(x),

where C is an appropriately chosen constant. The family of the GIG distributions

can be partitioned into the following three subclasses:

(i) Class I: a > 0, b > 0, p ∈ R.

(ii) Class II: a > 0, b = 0, p > 0.

(iii) Class III: a = 0, b > 0, p < 0.

Note that if X is µp,a,b distributed, then X−1 is µ−p,b,a distributed. Class I contains

the IG (with p = −1/2), reciprocal inverse Gaussian (RIG) (p = 1/2), hyperbolic
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(p = 1) and hyperbola distributions (p = 0). Class II is the class of gamma distri-

butions. Class III is the class of reciprocal gamma distributions. A random variable

X is RIG (or reciprocal gamma) distributed, if and only if X−1 is IG (or gamma)

distributed.

LW (2000) considered only Class II and a subclass of Class I, that is, the gamma

distribution Γ(q, c) (i.e. µq,c,0) and the GIG distribution µ−p,a,b with the pdf

f(x) =
(a/b)−p/2

2K−p(2
√
ab)

x−p−1 exp(−ax− b/x)I(0,∞)(x), (15)

where p, a, b > 0 and K−p is a modified Bessel function

K−p(z) =
1

2
(
1

2
z)−p

∫ ∞

0
up−1 exp(−u− z2

4u
)du.

Note that the pdf of µ−p,a,b given in equation (15) is the same as that given by

Wesolowski (2002), but somewhat different from that given by SW (2001). In fact,

it is the same as the pdf of µ−p,2a,2b given by SW (2001).

5.3. Characterization results of GIG and gamma distributions

Let X and Y be two independent and non-degenerate positive random variables.

LW (2000) proved that U = 1/(X +Y ) and V = 1/X − 1/(X +Y ) are independent

if and only if X has a GIG distribution and Y has a gamma distribution with

suitable parameters. Similar characterizations were shown by SW (2001), where

the independence of U and V is replaced by the constancy of the regression of V

(or V −1) on U under suitable moment conditions and the distribution of Y or X is

given. More precisely, given Y ∼ Γ(p, a), SW (2001) characterized that X ∼ µ−p,a,b

under the assumption that

E(V r+1|U) = crE(V r|U) (16)

for r = 0,−1, r > −p, and cr is some constant. Using change of measure, Chou

and Huang (2004b) proved that the above result holds for some fixed real number

r > −p. On the other hand, SW (2001) characterized that Y ∼ Γ(p, a) ifX ∼ µ−p,a,b,

and (16) holds for r = 0 or −1, r > −p, with c0 = E(V ), c−1 = 1/E(V −1). Again,

Chou and Huang (2004b) proved that the result is true for some fixed real number

r > −p.
Simultaneous characterization of the distributions of X and Y were considered

by Wesolowski (2002). He characterized X to have a GIG distribution and Y to

have a gamma distribution under the assumption that, for r = −1, equation (16)

and

E(V r+2|U) = cr+1E(V r+1|U), (17)
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hold for some constants cr and cr+1. The extension for r to be some fixed real number

was given by Chou and Huang (2004b).

5.4. Characterization results of beta distributions

Recently, Seshadri and Wesolowski (2003) gave a characterization of beta distri-

butions. It was proved that two independent random variables X and Y, with all

values in (0, 1), can be characterized to have beta distributions by using equations

(16) and (17), where U = 1−XY, V = (1− Y )/(1−XY ) and r = 0 or −1.

We believe that the result may hold for some r 6= 0,−1, since there are some

similar characterization results for other distributions just mentioned before. How-

ever, this needs to be further examined.

6. Parameter estimation for gamma populations by using the character-

ization results

6.1. Parameter estimation on one population

Let X1, X2, · · · , Xn, n ≥ 3, be a sequence of iid random variables. Denote the

sample mean and sample variance by

X̄ =
1

n

n∑
i=1

Xi and S2
X =

1

n− 1

n∑
i=1

(Xi − X̄)2.

We say that X has a Γ(α, β) distribution with shape parameter α and scale param-

eter β, if the pdf of X is as given in (1). Note that if X1, X2, · · · , Xn are Γ(α, β)

distributed, then

E(X̄) =
α

β
(18)

and

E(S2
X) =

α

β2
. (19)

For a gamma population, Wang (1981) proved that X̄ is independent of the

statistic T (X1, X2, · · · , Xn) which is invariant under the scale transformation, i.e.

T (cX1, cX2, · · · , cXn) = T (X1, X2, · · · , Xn) ∀c 6= 0. This implies that X̄ is inde-

pendent of SX/X̄. Conversely, Hwang and Hu (1999) characterized the common

distribution of X ′
is to be gamma by using the independence of X̄ and SX/X̄. Later

on Hwang and Hu (2000) also gave some extensions. More specifically, they charac-

terized the gamma distribution using the independence of X̄ and

(SX/X̄) exp(ψ(λ1, · · · , λn)), (20)
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where ψ is a real-valued function defined on a proper domain, and λ1, · · · , λn are

the studentized order statistics defined by

λi =
X(i) − X̄

SX

, 1 ≤ i ≤ n,

where X(1) ≤ · · · ≤ X(n) are the order statistics of X1, X2, · · · , Xn. Note that the

statistic shown in (20) is invariant under the scale transformation. In the rest of

this section, we assume that X1, X2, · · · , Xn are iid Γ(α, β) random variables.

Hwang and Huang (2002) used the independence between X̄ and SX/X̄ to obtain

that

E(
S2

X

X̄2
) =

E(S2
X)

E(X̄2)
=

n

1 + nα
. (21)

Combined with equation (18), the estimators for α and β were given by

α̂c =
X̄2

S2
X

− 1

n
and β̂c =

α̂c

X̄
. (22)

They also compared these estimators with the usual moment estimators

α̂m =
X̄2

S2
X

and β̂m =
α̂m

X̄
(23)

through a simulation study. The results indicate that (α̂c, β̂c) are better estimators

of (α, β) than (α̂m, β̂m) under the cases that α = 0.5, 1.0, 1.5, 2.0, β = 1, 2, 4, and

n = 5, 10, 15, 20, 25 while the mean squared error (MSE) was used to carry out the

comparison.

Note that α̂m − α̂c = 1/n and β̂m − β̂c = 1/(nX̄). Thus, both the difference

between α̂m and α̂c and that between β̂m and β̂c will converge to zero almost surely

as n → ∞. But for a finite n, there are very few analytical comparisons made for

these estimators.

Chou and Huang (2004c) compared α̂c with α̂m in a theoretical approach. Specif-

ically, they proved that for every α, β and n, MSE(α̂c) < MSE(α̂m). This justifies

the above simulation results for the parameter α.

6.2. Parameter estimation on two populations

Consider the situation that we have an estimation problem of two gamma popu-

lations with a common scale parameter. This may arise when analyzing the lifetime

distributions of two independent components, as mentioned at the end of Section 1.

We can estimate the parameters using either (22) or the following method given by

Chou and Huang (2004c).

Chou and Huang (2004c) presented a scheme for estimating the parameters of

the two populations X ∼ Γ(αX , β) and Y ∼ Γ(αY , β). Some estimators were given
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according to the property that the original gamma populations X and Y can be

transformed into a beta population using Z = X/(X + Y ). More specifically, they

proposed the estimators for αX , αY and β by

α̂X,b =
Z̄(Z̄ − Z2)

Z2 − (Z̄)2
, α̂Y,b =

(1− Z̄)(Z̄ − Z2)

Z2 − (Z̄)2
,

β̂X,b =
α̂X,b

X̄
, β̂Y,b =

α̂Y,b

Ȳ
, (24)

where

Z̄ =
1

n

n∑
i=1

Zi, Z2 =
1

n

n∑
i=1

Z2
i ,

and showed that these estimators converge to the true parameters almost surely as

n→∞. This also implies that these estimators are consistent.

Now we compare these estimators with those proposed by Hwang and Huang

(2002). The simulation results are based on αX , αY = 0.5, 1.0, · · · , 6.0, αX ≤ αY , β =

1, 2, n = 10, 20, 30, 40. For each n, we have (
(

12
2

)
+12)×2 = 156 cases of (αX , αY , β)

combination. For each case a random sample (Xi, Yi) of size n, n = 10, 20, 30, 40,

is generated and the procedure is repeated 1, 000 times. For an estimator in (24),

if the MSE and MAB are both larger than that of Hwang and Huang (2002), then

we say that estimator in (24) is worse; if just one of the MSE and MAB is larger

and the other is smaller, then we say that the comparison is even; if both MSE and

MAB are smaller, then we say that the estimator in (24) is better. The simulation

results indicate that: For n = 10 the estimators by Hwang and Huang (2002) are

in general better, while for n = 20, 30, 40, respectively, the estimators in (24) are

better in most cases. The larger n, the better the estimators in (24) are. Besides,

when the ratio αY /αX is closer to 1, the estimators in (24) seem to be better. To

clarify this observation, for each n we extract and analyze among the 156 cases by

adding the constrain that either αX ≤ αY < 2αX (84 cases) or αX ≤ αY < 1.5αX

(60 cases), respectively, and list the results in the tables. Note that when n = 10,

the effect of the ratio αY /αX is not very obvious, but when n = 20, 30 or 40, the

effect is very obvious, especially for the estimators of αY and βY . To conclude, our

estimators are better when:

(i) The true parameters are small, or

(ii) n is large, or

(iii) αY /αX is close to 1.

We list the simulation results in Tables 1 to 4.
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Tables 1 to 4: the numbers of cases the estimators given in (24) are worse/even/better.

Table 1: n = 10

scope of α-parameter α̂X α̂Y β̂X β̂Y

αX ≤ αY 116/20/20 137/11/8 84/28/44 109/18/29

αX ≤ αY < 2αX 67/7/10 69/7/8 45/13/26 57/12/15

αX ≤ αY < 1.5αX 49/4/7 48/6/6 33/8/19 41/9/10

Table 2: n = 20

scope of α-parameter α̂X α̂Y β̂X β̂Y

αX ≤ αY 32/33/91 106/23/27 14/12/130 70/20/66

αX ≤ αY < 2αX 19/19/46 38/19/27 7/6/71 14/16/54

αX ≤ αY < 1.5αX 16/14/30 26/10/24 6/5/49 13/7/40

Table 3: n = 30

scope of α-parameter α̂X α̂Y β̂X β̂Y

αX ≤ αY 8/10/138 79/23/54 2/5/149 52/12/92

αX ≤ αY < 2αX 7/9/68 16/17/51 2/4/78 7/5/72

αX ≤ αY < 1.5αX 7/8/45 11/12/37 2/3/55 5/3/52

Table 4: n = 40

scope of α-parameter α̂X α̂Y β̂X β̂Y

αX ≤ αY 3/7/146 68/9/79 1/0/155 42/13/101

αX ≤ αY < 2αX 3/6/75 5/6/73 1/0/83 0/3/81

αX ≤ αY < 1.5αX 3/5/52 2/4/54 1/0/59 0/2/58

The power for testing the hypothesis

H0 : αY = αYH0
v.s. H1 : αY = αYH1

,

was also given by Chou and Huang (2004c) based on the simulation. In their

study, 18 null hypotheses with the combination of β = 1, 2, αX = 3, 4, 5 and

αYH0
= αX − 1, αX , αX + 1, were considered. For each null hypothesis, there are

7 corresponding alternative hypotheses with αYH1
= αYH0

− 1.5, αYH0
− 1.0, αYH0

−
0.5, αYH0

, αYH0
+ 0.5, αYH0

+ 1.0, αYH0
+ 1.5, respectively, where β and αX remain

the same as in the null hypothesis. Hence we have 18 × 7 = 126 hypotheses on a

set of parameters (β, αX , αYH0
, αYH1

). To calculate the power of the test, each time

a random sample (Xi, Yi) of size n, n = 10, 20, 30, 40, 50, 60, is generated and the
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procedure is repeated 1, 000 times. Theoretical 95% confidence intervals are con-

structed based on Zi = Xi/(Xi +Yi), i = 1, 2, · · · , n. According to the Central Limit

Theorem, since Z̄ is approximately normal with mean µ = αX/(αX +αY ) and vari-

ance σ2 = αXαY /(n(αX + αY )2(αX + αY + 1)) for large n. The constructed 95%

confidence intervals for µ is (Z̄−1.96σ, Z̄+1.96σ). The testing powers are computed

and part of the results are shown in Tables 5 and 6. Note that when αYH1
= αYH0

,

the power is referred to the type I error.

We summarize the simulation results in the following:

(i) The change of the scale parameter β seems not influence the power, this is due

to that the distribution of Z is irrelevant to the parameter β.

(ii) The power becomes smaller in general as the shape parameters αX , αYH0
become

larger.

Table 5: The powers for the cases that β = 1, αX = 3.

αYH0
= 2

αYH1
= 0.5 1.0 1.5 2.0 2.5 3.0 3.5

n 30 1.000 0.984 0.463 0.047 0.292 0.788 0.975

40 1.000 0.996 0.571 0.056 0.380 0.893 0.996

50 1.000 1.000 0.662 0.054 0.484 0.959 0.999

60 1.000 1.000 0.748 0.047 0.561 0.987 1.000

αYH0
= 3

αYH1
= 1.5 2.0 2.5 3.0 3.5 4.0 4.5

n 30 0.996 0.806 0.263 0.058 0.167 0.536 0.848

40 0.999 0.907 0.340 0.054 0.261 0.662 0.943

50 1.000 0.956 0.387 0.042 0.289 0.801 0.971

60 1.000 0.972 0.471 0.048 0.389 0.854 0.994

αYH0
= 4

αYH1
= 2.5 3.0 3.5 4.0 4.5 5.0 5.5

n 30 0.943 0.572 0.173 0.049 0.141 0.394 0.663

40 0.980 0.714 0.245 0.048 0.165 0.450 0.817

50 0.991 0.817 0.273 0.042 0.204 0.631 0.895

60 0.997 0.862 0.300 0.045 0.208 0.684 0.993
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Table 6: The powers for the cases that β = 2, αX = 3.

αYH0
= 2

αYH1
= 0.5 1.0 1.5 2.0 2.5 3.0 3.5

n 30 1.000 0.987 0.464 0.040 0.342 0.784 0.986

40 1.000 0.998 0.572 0.051 0.392 0.904 0.995

50 1.000 1.000 0.681 0.046 0.473 0.944 0.999

60 1.000 1.000 0.706 0.048 0.541 0.975 1.000

αYH0
= 3

αYH1
= 1.5 2.0 2.5 3.0 3.5 4.0 4.5

n 30 0.998 0.820 0.261 0.053 0.202 0.542 0.863

40 1.000 0.905 0.350 0.048 0.223 0.679 0.939

50 1.000 0.946 0.402 0.050 0.297 0.731 0.980

60 1.000 0.972 0.454 0.041 0.347 0.848 0.994

αYH0
= 4

αYH1
= 2.5 3.0 3.5 4.0 4.5 5.0 5.5

n 30 0.927 0.606 0.181 0.057 0.142 0.350 0.662

40 0.978 0.765 0.242 0.050 0.169 0.488 0.799

50 0.994 0.807 0.298 0.046 0.201 0.601 0.905

60 0.999 0.883 0.350 0.047 0.254 0.674 0.955

7. Concluding remarks

In this paper we investigate some recent works on characterizations of gamma-

related distributions and the parameter estimation of gamma distributions. What

are left as possible future study are the characterizations of beta distribution us-

ing constancy of certain conditional expectations, as mentioned in Section 5. Some

other statistical inference problems such as testing the hypothesis of αX = αY given

a common scale parameter, or the discriminating method between two gamma pop-

ulations with the same scale parameters will also be investigated.
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