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SUMMARY. In this work we characterize two independent non-degenerate positive
random variables X and Y to be gamma distributed with the same scale parameter by
the assumptions E(X" X +Y) = a(X + V)E(X"|X +Y) and E(X"™ X +7Y) =
b(X + Y)E(X"|X 4+ Y) for some fixed integer r and s = 2. Furthermore, let A =
{A(t),t > 0} be a renewal process with {Si,k > 1} being the sequence of arrival times,
under the assumptions E(S;T'|A(t) = n) = atE(S;|A(t) = n) and E(S; T A(t) = n) =
th(S,’;+S|A(t) = n) for fixed integers r, k,n, where 1 < k < n, and s = 2, we prove that A
has to be a Poisson process. In the case that s = 1 the above two results were proved by
Huang and Su (1997).

On the other hand, recently characterizations of gamma distribution by the so-called
dual regression schemes were investigated by Bobecka and Wesolowski (2001). More pre-
cisely, they considered the constancy of regressions of X and Y, while independence of
X/(X+Y) and X +Y is assumed instead of independence of X and Y. They characterized
X and Y to be gamma distributed by the assumptions E(Y*|X) = ¢ and E(Y"|X) = d,
for (u,v) = (1,2),(1,—1) or (—1,—2), where ¢ and d are constants. As a generalization,
we prove that X and Y are gamma distributed with the same scale parameter under the
assumptions E(Y"H|X) = cE(Y"|X) and E(Y"?|X) = dE(Y""!|X), for some fixed
integer r, where ¢ and d are constants. Note that (u,v) = (1,2),(1,—1) and (-1, —2)

corresponds to » = 0, —1 and —2, respectively.

1. Introduction

Given two independent non-degenerate positive random variables X and
Y, Lukacs (1955) proved that X/(X +Y) and X + Y are independent
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if and only if X and Y are gamma distributed with the same scale parameter.
Since then many papers considered different extensions. Among others, Bol-
ger and Harkness (1965), Wesolowski (1990) and Li et al. (1994) replaced the
independence condition of X/(X +Y) and X +Y by the following regression
assumptions:

EX"X+Y)=a(X+Y)",
and
EX’|X+Y)=bX+Y)",

where (u,v) = (1,2),(1,—1) or (—1,—2). Huang and Su (1997) generalized
the above results, and obtained similar characterization, under the weaker
conditions:

EX™NX4+Y)=a(X +Y)BE(X"|X +Y),
and
EX™THX +Y) =X +Y)E(X"|X +7Y),

with s = 1, r being some fixed integer, and a and b being some constants.
Note that (u,v) = (1,2),(1,—1) and (—1,—2) corresponds to r = 0, —1 and
—2, respectively. In this work we prove the case of s = 2.

There are also parallel characterizations for Poisson process. Let A =
{A(t),t > 0} be a renewal process, with {S;,k > 1} being the sequence of
arrival times, and F' being the common distribution function of the inter-
arrival times. Li et al. (1994) characterized A to be a Poisson process by
the assumptions:

E(Sp|A(t) =n) = at”,
and

E(S}IA() = n) = bt",
for some fixed integers £ and n,1 < k < n, and constants a and b, where
(u,v) = (1,2),(1,—1) or (—1,—2). Huang and Su (1997) characterized A to

be Poisson under the weaker conditions:

B(SpHA(®) = n) = atB(SFIA(t) = n),
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and
E(S; T A() = n) = btE(S; P A(t) = n),

with s = 1, , k, n being some integers, where 1 < k£ < n, and a, b being some
constants. Again, we prove the case of s = 2.

On the other hand, Hall and Simons (1969) and Huang and Su (1997),
characterized gamma distributions by using

EX“X+Y)=a(X+Y)",
and
EY"'X4+Y)=bX+Y)",

for u =2 or —1.

Recently, Bobecka and Wesolowski (2001) generalized the Lukacs theo-
rem in another direction, namely, under the so-called dual regression schemes.
That is, they assumed the constancy of regressions for X and Y, while in-
dependence of U = X/(X +Y) and V = X +Y is assumed instead of
independence of X and Y. More precisely, they characterized X and Y to
be gamma distributed by the assumptions:

E(Y"X) =c, and E(Y'X)=d,

or

E(X"|Y) =c, and E(X"|Y) =d,

where (u,v) = (1,2),(1,—1) or (—1,—2). In Section 3, we extend the above
results by using

B(Y"™|X) =cBE(Y'|X), and  B(Y"7|X)=dBE(Y"|X),
or
E(X™Y) = cB(X"|Y), and  E(X"P?Y)=dEX"M|Y),
for some fixed integer r and constants ¢ and d, to characterize gamma distri-

butions of X and Y. Again (u,v) = (1,2),(1,—1) and (—1, —2) corresponds
to r =0,—1 and —2, respectively.
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2. Characterizations of Gamma Distribution and Poisson
Process by Conditional Moments

Introduce first the notation for two distributions which play the impor-
tant role in this paper. Denote by I'(a,b) the gamma distribution defined
by the density

baxaflefb:r

f(z) = Wf(o,oo)(i),

where a,b are positive numbers with a being the shape parameter and b
being the scale parameter,
Be(p, q) the beta distribution defined by the density

_Tlp+a) ,- -
flz) = sz’ "1 = 2) g 1 (=),

where p, ¢ are positive numbers.
We now state and prove a lemma, which will be used to prove the main
results of this section.

LEMMA 1. Suppose that Q is a twice differentiable positive function of 6
on [0,00), with Q'(0) < 0,Y0 > 0. Furthermore, assume that limg_, o, Q(6) =
limg_,00 Q' () = 0 and Q" (0) = cQ'(9), where ¢ and | are two constants with
[ #1. Then

(i) c>0and [ > 1;

2

(i) Q(0) = (c10 + ¢2) 71, where ¢; = 5L li—cl and ¢y is some positive
constant.
PROOF. From the assumption Q" (0) = ¢Q'(0), it yields

Q0 =20 0)Q" (9) = 2:Q'0)Q (6).

This in turn implies

! . iCZH—I(O) + Cla l 7£ _]-7
o= { e 00 1271 o
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where C1,Cy are constants. Letting § — oo in (1) and using the assump-
tion limy_,oo Q(0) = limy_,oo Q () = 0, we obtain [ # —1 and C; = 0.
Consequently, we have l?l—_cl > 0, and

/ 2¢c \ 2 1
= _ 2 (). 2
Qo --(5) ¥ ©)
Solving (2), yields
=1 =1 2c
Q)] = = 5 l+—19 + C2, (3)
where co is a constant. As Q(0) > 0,V0 > 0, we have [ > 1,¢ > 0 and ¢y > 0.
By letting ¢; = I_TI li—cl, it follows

Q(0) = (c16 + ¢2) T, (4)

This completes the proof.

The following lemma is due to Huang and Su(1997).

LEMMA 2. Let the common distribution function of the inter-arrival
times of the renewal process A be T'(c, B) distributed. Given integers s,r,k,n,
where s > 0,7 > —ka and 1 < k < n, if for some constant a > 0,

E(STH|A(t) = n) = at* E(SA(t) = n), ¥t > 0, (5)

. C
then a = 1, namely A becomes a Poisson process, and a = ’”;—Sk‘kﬂj-:l(n +
Ty

r+5)"t, where for u =1 orr +s,
1;-‘&(k+j) ,uz(l),
Cuk = U =V,
[ 0—0) ' =12 u> k.

THEOREM 1. Let X and Y be two independent non-degenerate positive
random variables with E(X™3) < oo and E(X") < oo for some integer r. If
the conditions

EX™NX4+Y)=a(X +Y)E(X"|X +Y), (6)

and
EX™IX4+Y)=bX+Y)E(X"|X +Y) (7)

hold for some constants a # b, then
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(i) 0 <a,b<1;

(i) X and Y have gamma distributions with the same scale parameter.

PROOF. From (6) and (7), the assertion (i) is obtained immediately. We
now prove the assertion (ii). First (6) and (7) imply

E(X e 0y — o B((XT + XTY)e X)), (8)

and
E(Xr—l—?)e—ﬂ(X—i—Y)) _ bE((XH-?) + Xr+2Y)e_0(X+Y)). (9)

Note that
Q(O) = (1) (H(©)™),r >0, (10)

and

Q)" = (1) H(0),r <0. (11)

After some simple computations, (8) and (9) imply

~
—

@t -2 IO (12)

©) 1)’

~

and

(bil - 1) %N ((90)) = % (]_3)

1(9)
As a and b both are less than 1, (12) and (13) in turn imply

nr

Q'(0) b—abQ(0)
T0) ~a—ab Q) (14)

iFrom this we obtain

b—ab

Q" (0) = cQ=e1(0),

which, by Lemma 1, has the solution Q(0) = (m10 + m3)®, where mq,ms
are constants and e = 2(a —ab)/(a —b). This together with (10), if » > 0, or
(11), if » <0, imply H(0) = (1 + 60/8)~%, where « and § are some positive
constants, and the assertion(ii) follows.
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REMARK 1. In Theorem 1, if @ = b, then 0 < a < 1 and P(X =¢) =
P(Y =c(a~!' — 1)) =1, where c is a positive constant.
The following is the process version of Theorem 1.
THEOREM 2. Assume for some fized integers r, k,n, where 1 <k <mn,
B(SIA(t) = n) = at B(SEIA() = n), (15)

and
B(S]HA(t) = n) = bE(S}*?|A(t) = n) (16)

hold for some constants a # b, for every t > 0 whenever P(A(t) = n) > 0.
Also assume E(X]™) < oo if r > 0, or E(S}) < oo and E(S}™?) < oo if
r < 0. Then we have

i) r>-ka=((k+r)/(n+r+1),b=(k+r+2)/(n+r+3);
(ii) A is a Poisson process.

PROOF. From (15) and (16), it follows
[ Fu st =) = F 4t - 2R
= ot [t = 0) ~ Fasli - 0)BG), (7)
and
[ E e = )~ Bt = ) ()
=00 [ AT B )~ By gl )R, (1)
where for j > 0, F; is the j-fold convolution of F' with itself. Taking the

Laplace transformations of both sides of (17) and (18) with respect to 6,
respectively, we obtain, after some simple computations, for every 8 > 0,

(0 )y P 0)

o - mEe)e - re) 1
and

(140 - @) P)

@e -y 0 Ve
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where
P(0) = / o e AR (x),
0
and
o0
H(0) = / e 07 qF (x)
0
Again
P(9) = (=1)"(H*(6))"",r > 0,
and

(P(6))7 = (-1)"H"(0),r <0.

Also, from (15) and (16) it can be seen immediately that both a and b are
less than 1. Hence " .

P (0) b—abP ()

P"(#) a—abP(H)’
a differential equation which exactly has the same form as (14). Along the
lines of the proof of Theorem 1, we obtain the solution H(6) = (1+60/5)~¢,
where o and 3 are some positive constants. The assertions (i) and (ii) now
follow from Lemma 2.

(21)

3. Characterization of the Gamma Distribution by Dual
Regression Schemes

Let U = X/(X +Y) and V = X +Y, where X and Y are two non-
degenerate positive random variables. In this section we consider the dual
regression schemes, while independence of U and V is assumed instead
of independence of X and Y. We now give an extension of Bobecka and
Wesolowski (2001):

THEOREM 3.  Let U and V be independent. Assume for some fixed
integer 1, E(Y") < 0o, and E(U™") < co. Also assume

E(Y"™X) = cE(Y"|X), (22)

and
E(Y™2|X) =dE(Y"|X) (23)

hold for some constants ¢ and d. Then
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(i) d> ¢
(i) V is ['(a, (d — ¢)~!) distributed, where a = (d — ¢) " EV;

(iii) U is Be(p,q) distributed, and X and Y are independent and have
T'(p,(d —¢) ') and T'(q,(d — ¢)~ ') distribution, respectively, where
p=a—c(d—c)'+r>0,and g=c(d—c)~' —r > 0.

PROOF. First (22) and (23) imply

EWV™ (1 -0 \VU) = cEV"(1 -U)"|VU), (24)
and
E(WV™2(1 —U)2|VU) =dE(V"™(1 = U)THVT). (25)
JFrom (24) and (25) we have for every integer k > 0,
E(WVHL(1 —U)y Uk = cE(VF(1 - U)'UF ), (26)
and
E(Vk+2(1 - U)H—QUk:—r) — dE(Vk—l—l(l - U)H_lUk_r). (27)

We prove that both E(V*) and E[(%)’"Uk] exist, Vk > 0, in the following.

First the assumptions that Y = V(1 —U),U and V are independent, and
E(Y") < oo, imply E(V") < co and E(1 —U)" < oo, which together with
the assumption that E(U ") < oo, yield for every k > 0,

s[(F) ) <r () < { B T, T2

Next by using the fact that E(V") < oo and E(1 — U)" < oo we will
prove that E(V*) < oo, Vk > 0, by induction. Assume E(V™) < oo for
some integer m > r, then

EV™1-0)U™ ") <EV™1-U)")=EV™El-U)" < oc.
This together with (22) imply

E(vm+1(1 o U)T+1Umf1“) — E(YT+1(Uv)m7T)
=cEY"(UV)" ") =cE(V™(1-U)"U"") < . (29)
Consequently E(V™*+1) < co. This proves that E(V*) < oo, Vk > r. Now,

if » < 0 then E(VF) < oo,Vk > 0, and if » > 0 then E(V?) < oo,i =
0,1,---,r — 1, which in turn yields that E(V*) < co,Vk > 0, in either case.
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Now (26) and (27) can be rewritten as
E(VHYHYE K%)r Uk(1 - U)] =cE(VHE [(%)r Uk] . (30)
and

E(vk+2)E

(%)r Ukl —2U + UZ)}
=dE(VMYHYE K%)r Uk(1 - U)} , (31)

respectively. For every k& > 0, let

and

Then (30) and (31) lead to
¢ = h(k)[1 —g(k)], (33)
and

dh(k)[1 — g(k)] = h(k)h(k + 1)[1 —2g(k) + g(k)g(k + 1)],V & > 0. (34)
Comparing (33) and (34) we have
cd = h(k)h(k +1)[1 = g(k) = g(k)(1 = g(k + 1))] = ch(k + 1) = ch(k)g(k),

V k > 0. Hence h(k + 1) — h(k) = d — ¢, VE > 0. Consequently, h(k) =
h(0) + k(d — ¢), where h(0) = E(V).

As h(k) > 0, Vk > 0, we have d > c. If d = ¢, then h(k) = h(0),Vk > 0.
By (32), the constancy of h(k) implies Var(V) = E(V?)—E*(V) = 0. Hence
V' is degenerate, namely Y = e — X, a.s., for some constant e. Substitute
Y = e—X into (22) yields X = e, a.s., or X = e—c, a.s., which contradicts to
the assumption that X is non-degenerate. Therefore d # ¢ and the assertion
(i) follows.

Let b= (d—c)~! and a = bE(V) > 0. Then by using (32) recursively we
obtain

Vk > 0. (35)
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Hence, by the uniqueness of the moments sequence for the gamma distri-
bution, we obtain that V is I'(a,b) distributed. This proves the assertion

(u)‘Next, we prove the assertion (iii). From (24) we have
E(VTHEHUk (1 — Uyt VU) = cB(VTTRUR (1 — U)"|VU),VE > 0.
Thus
E(WV™HYEUR1 - U) Y = cB(VTHRE[UR (1 - U)"),VE > 0.

This in turn implies

E((1 — r+177k E r+k b
(AL=0)"UF) _ cBE(V™) b Yk > 0. (36)
E((1- U)rUk) E(VTJrkJrl) a+r+k
Therefore
E((I_U)TU]C+1) be a+r+k—bc
—1_ — vk > 0. 37
E((1-U)rU¥) a+r+k at+r+k T &0

Since U is a random variable between 0 and 1, we have

be

< —<1,VEk>0.
a+r+k

This leads to a +r > bc > 0. Let Fyy denote the distribution function of U.
Define a new probability measure on (0,1) by

n(l —u)" Fy(du) = G(du), (38)

where n~! = E(1 — U)" < oco. It yields that G is a distribution function.
Let Z be a random variable having a distribution function G. Then (37) and
(38) yield

E(Z¥1)  EMmA-U)U*Y)  a+r+k—bc
E(ZF) — E(n(-U)yU%* = a+r+k

m(k),Vk > 0.

Consequently, all the moments of Z are uniquely determined, hence its dis-
tribution is uniquely determined by the function m since Z is in (0,1), which
together with the fact that @ — bc +r > 0 and bc > 0 yield that Z is
Be(a — be + r,bc) distributed. In view of (38), we obtain bc > r. This in
turn implies U is Be(a — bc + r,bc — r) = Be(p, q) distributed, where p =
a—bctr=a—c(d—c) '4+r>0and g=bc—r =c(d—c) ' —r > 0. Finally,
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by computing the joint density of (X,Y) = (UV,(1—U)V), we conclude that
X and Y are independent and have T'(p, (d — ¢) ') and T'(g, (d — ¢) ') dis-
tribution, respectively. This completes the proof.

We also have the following generalization of Theorems 2,4 and 6 of
Bobecka and Wesolowski (2001).

THEOREM 4. As in Theorem 3, assume for some integer r, E(X") < oo,
and E(1 —U)™" < oco. Also assume

E(X"™Y) = cE(X"|Y),
and
E(X"™2|Y) = dE(X" 1Y)
hold for some constants ¢ and d. Then
(i) d> ¢
(i) V is ['(a, (d — ¢)~!) distributed, where a = (d — ¢) ' EV;

(iii) U is Be(q,p) distributed, and X and Y are independent and have
I'(¢,(d — ¢)~') and I'(p,(d — ¢)~!) distribution, respectively, where
p=a—cld—c)t+r>0andg=c(d—c) ' —r>0.

Acknowledgements. We are grateful to the referee for his valuable com-
ments and suggestions which helped improve the presentation of the paper,
as well as for suggesting a much shorter proof of Theorem 3. Also, we are
grateful to Professor Wesolowski for sending us the preprint of Bobecka and
Wesolowski (2001). Support for the research leading to this paper was pro-
vided in part by the National Science Council of the Republic of China,
Grant No. NSC 89-2118-M390-001.

References

BoBECKA, K. and WESOLOWSKI, J. (2002). Three dual regression schemes for the Lukacs
theorem. Metrika, 56, 55-72.

BOLGER, E.M. and HARKNESS, W.L. (1965). A characterization of some distributions
by conditional moments. Ann. Math. Statist. 36, 703-705.

HarLL, W.J. and SIMONS, G. (1969). On characterizations of the gamma distribution.
Sankhya Ser. A 31, 385-390.



CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION 283

Huang, W.J. and Su, J.C. (1997). On a study of renewal process connected with certain
conditional moments. Sankhya Ser. A 59, 28-41.

Li, S.H., HuaNG, W.J. and HuanG, M.N.L. (1994). Characterizations of the Poisson
process as a renewal process via two conditional moments. Ann. Inst. Statist.
Math. 46, 351-360.

LukAcs, E. (1955). A characterization of the gamma distribution. Ann. Math. Statist.
26, 319-324.

WEsoLowsKI, J. (1989). A characterization of the gamma process by conditional mo-
ments. Metrika. 36, 299-309.

WEsOLOWSKI, J. (1990). A constant regression characterization of the gamma law. Adv.
Appl. Prob. 22, 488-490.

CHAO-WEI CHOU WEN-JANG HUANG

DEPARTMENT OF APPLIED MATHEMATICS DEPARTMENT OF APPLIED MATHEMATICS
NATIONAL SUN YAT-SEN UNIVERSITY NATIONAL UNIVERSITY OF KAOHSIUNG
Kaonsiung, TAtwaN 804, R.O.C. Kaonsiung, TAatwaN 811, R.O.C.

E-mail: choucw@math.nsysu.edu.tw E-mail: huangwj@nuk.edu.tw



