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Quadratic forms in skew normal variates✩
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Abstract

In this paper first a characterization of the multivariate skew normal distribution is
given. Then the joint moment generating functions of two quadratic forms, and a linear
compound and a quadratic form in skew normal variates, have been derived and conditions
for their independence are given. Distribution of the ratios of quadratic forms in skew
normal variates has also been studied.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The multivariate skew normal distribution has been studied by Azzalini and
Dalla Valle [2] and its applications are given in Azzalini and Capitanio [1]. This
class of distributions includes the normal and has some properties like the normal
and yet is skew. The random vectorZ(p × 1) is said to have a multivariate skew
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normal distribution if it is continuous and its probability density function (p.d.f.)
is given by

fZ(z)= 2φp(z;Ω)Φ(α′z), z ∈ �p, (1)

whereΩ > 0, α ∈ �p, φp(z;Ω) is thep-dimensional normal p.d.f. with zero
mean vector and correlation matrixΩ andΦ(·) is the standard normal cumulative
distribution function (c.d.f.). We will denote it byZ ∼ SNp(Ω,α), to mean that
the random vectorZ hasp-variate skew normal p.d.f. (1). The moment generating
function (m.g.f.) ofZ is

M(t)= 2 exp

{
1

2
t ′Ωt

}
Φ

(
α′Ωt

(1+ α′Ωα)1/2

)
, t ∈ �p. (2)

The mean vector and the covariance matrix ofZ are given by

µ =E(Z)=
√

2

π
δ, (3)

Cov(Z)= Ω − µµ′, (4)

whereδ = (1+ α′Ωα)−1/2Ωα. Note that the mean vector given by Azzalini and
Capitanio [1] is in error. However, it is a typo and does not affect the rest of that
paper.

In this paper, we first give a characterization of the multivariate skew normal
distribution in Section 2. Then in Section 3 we discuss the m.g.f. of a quadratic
form in the noncentral case. In Section 4, independence of a linear compound
and a quadratic form, and two quadratic forms are studied, and in Section 5 an
application is given.

2. Characterization

In this section a characterization of the multivariate skew normal distribution is
proved which is similar to the characterization of multivariate normal distribution.
Azzalini and Capitanio [1] have stated that ifZ ∼ SNp(Ω,α), thenh′Z, h ∈ �p,
is univariate skew normal. The converse of this result is also true as given in the
theorem below.

Theorem 1. Let the mean of Z be µ and the covariance matrix be Σ . Let Ω =
Σ + µµ′. Suppose that for any h ∈ �p such that h′Ωh = 1, h′Z is univariate
skew normal . Then Z is multivariate skew normal.

Proof. For anyh ∈ �p,

E(h′Z)= h′µ, Cov(h′Z)= h′Σh.
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If h′Ωh = 1 andh′Z is univariate skew normal with m.g.f. 2 exp{t2/2}Φ(δht),
t ∈R, then

Mh′Z(t)=E
(
eth

′Z) =MZ(th)= 2 exp
{
t2/2

}
Φ(δht). (5)

Note thatE(h′Z)= bδh = h′µ, whereb = √
2/π .

Let

α = Ω−1µ√
b2 − µ′Ω−1µ

. (6)

We now prove that

α′Ωh

(1+ α′Ωα)1/2
= δh. (7)

This can be obtained by noting that

1+ α′Ωα = 1+ µ′Ω−1ΩΩ−1µ

b2 − µ′Ω−1µ
= b2

b2 − µ′Ω−1µ
, (8)

and

α′Ωh = µ′Ω−1√
b2 − µ′Ω−1µ

Ωh = µ′h√
b2 − µ′Ω−1µ

= bδh√
b2 − µ′Ω−1µ

. (9)

Therefore (note thath′Ωh = 1),

Mh′Z(t)= 2 exp

{
1

2
t2h′Ωh

}
Φ

(
α′Ωht

(1+ α′Ωα)1/2

)
. (10)

Now sett = 1. Since the right-hand side of (10) is then the m.g.f. ofSNp(Ω,α),
the result is proved. ✷

3. M.G.F. of (Z − a)′A(Z − a)

In this section we derive the m.g.f. of the quadratic formQ= (Z − a)′A(Z −
a), A′ =A. For this we need the following lemma (see Zacks [10, pp. 53–59]).

Lemma 1. Let U ∼Np(0,Ω). Then, for any scalar u and v ∈ �p , we have

E
[
Φ(u+ v′U)

] =Φ

{
u

(1+ v′Ωv)1/2

}
. (11)

Theorem 2. The m.g.f. of Q= (Z − a)′A(Z − a), a ∈ �p, is given by
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M(t)= 2 exp{a′[tA+ 2t2A(Ω−1 − 2tA)−1A]a}
|I − 2tAΩ|1/2

×Φ

[
− 2tα′(Ω−1 − 2tA)−1Aa

(1+ α′(Ω−1 − 2tA)−1α)1/2

]
, t ∈ �1. (12)

Proof. For t ∈ �1, the m.g.f. ofQ is

M(t)= 2
∫
�p

exp
{
t (z − a)′A(z − a)

}
φp(z;Ω)Φ(α′z) dz

= 2

(2π)p/2|Ω|1/2
∫
�p

exp

{
−1

2

(
z′Ω−1z − 2t (z − a)′A(z − a)

)}

×Φ(α′z) dz

= 2 exp{a′[tA+ 2t2A(Ω−1 − 2tA)−1A]a
|I − 2tAΩ|1/2

×EU

{
Φ

(−2tα′(Ω−1 − 2tA
)−1

Aa + α′(Ω−1 − 2tA
)−1/2

U
)}

= 2 exp{a′[tA+ 2t2A(Ω−1 − 2tA)−1A]a}
|I − 2tAΩ|1/2

×Φ

[
− 2tα′(Ω−1 − 2tA)−1Aa

(1+ α′(Ω−1 − 2tA)−1α)1/2

]
,

whereU ∼Np(0, I ), and the result follows from Lemma 1.✷
3.1. Special cases

Case (i). Q1 = Z′Ω−1Z.

Substitutea = 0, andA= Ω−1 in (12) to get the m.g.f. ofQ1 as

M1 = (1− 2t)−p/2, t ∈ �1. (13)

HenceZ′Ω−1Z ∼ χ2
p. This result is also given by Proposition 7 of Azzalini and

Dalla Valle [2]. A more general result can be found in Proposition 7 of Azzalini
and Capitanio [1].

Case (ii). Q2 = Z′AZ, whereAΩ = diag(δ1, . . . , δp).

Substitutea = 0, andAΩ = diag(δ1, . . . , δp) in (12) to get the m.g.f. ofQ2 as

M2(t)=
p∏
j=1

(1− 2tδj )−1/2, t ∈ �1. (14)
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HenceZ′AZ ∼ ∑p

j=1 δjXj , whereXj ∼ χ2
1 , j = 1,2, . . . , p, are independently

distributed (e.g. see Press [9]).

Case (iii). Q3 = (Z − a)′Ω−1(Z − a).

SubstituteA= Ω−1 in (12) to get the m.g.f. ofQ3 as

M3(t)= 2 exp{[t + 2t2/(1− t2)p]a′Ω−1a}
(1− 2t)p/2

×Φ

[ −2t

(1− 2t)p
α′α

(1+ a′Ωa/(1− 2t)p)1/2

]
, t ∈ �1. (15)

Case (iv). Q4 = Z′AZ.

Substitutea = 0 in (12) to get the m.g.f. ofQ4 as

M4(t)= |I − 2tAΩ|−1/2, Ω−1 − 2tA > 0, t ∈ �1. (16)

AsM4(t) does not depend onα, hence the distribution ofQ4 is the same as in the
usual multivariate normal case. Consequently, properties ofQ4 can be obtained
by using known results for the usual multivariate normal case; see for instance
Box [3] and the more general account in Chapter 29 of Johnson and Kotz [7].

FromM4(t) we find therth cumulant ofZ′AZ as

Kr = 2r−1(r − 1)! tr(AΩ)r , r = 1,2, . . . .

In particular E(Z′AZ) = trAΩ, and Var(Z′AZ) = 2 tr(AΩ)2. These two
moments are also given by Proposition 2 of Genton et al. [4].

4. Independence of linear forms and quadratic forms

In this section we study the conditions for determining when linear functions
of skew normal variable are independent of a quadratic form of skew normal
variables. We also give conditions when two quadratic forms are independent.
HereZ ∼ SNp(Ω,α), and we derive the joint m.g.f.’s for this purpose.

Theorem 3. For h ∈ �p , the linear form h′Z and the quadratic form Z′AZ are
independent if and only if AΩh = 0, and AΩα = 0.

Proof. The joint m.g.f. ofh′Z andZ′AZ is

M(t1, t2)= 2
∫
�p

exp
{−1

2[z′Ω−1z − 2t1h′z − 2t2z′Az]}
(2π)p/2|Ω|1/2 Φ(α′z) dz
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= 2 exp
{ 1

2t
2
1h′(Ω−1 − 2t2A)−1h

}
|I − 2t2AΩ|1/2

×EUΦ
[
t1α

′(Ω−1 − 2t2A
)−1

h + α′(Ω−1 − 2t2A
)−1/2

U
]

= 2 exp
{ 1

2t
2
1h′(Ω−1 − 2t2A)−1h

}
|I − 2t2AΩ|1/2

×Φ

[
t1

α′(Ω−1 − 2t2A)−1h

(1+ α′(Ω−1 − 2t2A)−1α)1/2

]
, t1, t2 ∈ �1, (17)

whereU ∼Np(0, I ) and the last step is obtained using Lemma 1.
Now note that

(
Ω−1 − 2t2A

)−1 = Ω

∞∑
j=0

(2t2)j (AΩ)j , (18)

for ‖2 trAΩ‖ < 1 where‖ · ‖ is a matrix norm. Hence the expansion (18) is
always valid in the neighborhood oft2 = 0 (see Horn and Johnson [6, p. 301]).
Finally from (17) and (18) it follows that the necessary and sufficient conditions
for independence areAΩh = 0 andAΩα = 0. This completes the proof.✷
Theorem 4. The quadratic forms Z′AZ and Z′BZ are independent if and only if
AΩB = 0.

Proof. The joint m.g.f. ofZ′AZ andZ′BZ is

M(t1, t2)= 2
∫
�p

exp
{−1

2[z′Ω−1z − 2t1z′Az − 2t2z′Bz]}
(2π)p/2|Ω|1/2 Φ(α′z) dz

= 2

|I − 2t1AΩ − 2t2BΩ|1/2
×EYΦ

[
α′(Ω−1 − 2t1A− 2t2B

)−1/2
Y

]
= ∣∣I − 2(t1A+ t2B)Ω

∣∣−1/2
, t1, t2 ∈ �1, (19)

whereY ∼Np(0, I ). The last step is obtained by using Lemma 1. Now from (19)
for independence we get the conditionAΩB = 0. ✷
Corollary 1. The quadratic forms Z′AiZ, i = 1, . . . , n, are mutually independent
if AiΩAj = 0, i �= j .

Note that the conditions for independence in Corollary 1 weaken those required
by Proposition 8 of Azzalini and Capitanio [1].
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5. An application

Applications of quadratic forms in normal random variables are given in John-
son and Kotz [8], and Gupta and Nagar [5]. Recently an application comes from
the time series context and is given by Genton et al. [4]. LetX1,X2, . . . ,Xn de-
note a series of observations fromSNk(Ω,α). Then the sample serial covariance
of lag-k is

c
(n)
k = 1

n

n−k∑
i=1

(
Xi − X̄

)(
Xi+k − X̄

)
, k = 1,2, . . . , n− 1,

where X̄ = n−1 ∑n
i=1Xi and n denotes the length of the series under obser-

vation. Further lettingX = (X1, . . . ,Xn)
′, ε = (1, . . . ,1)′, V = (In − 1

n
εε′),

Ak = VCkV , whereCk(n × n) is a null matrix except for values 1/(2n) every-
where on thekth upper and lower diagonal, we can write

c
(n)
k = X′AkX.

The m.g.f. ofc(n)k is given as a special case by (16).
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