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SUMMARY. It is known there are some similarities between order statistics and record

values, moreover, when viewed as point processes, the two processes both share the order

statistics property. These motivated us to investigate some intrinsic properties within the

class of order statistics point processes, which in turn lead to some useful characterizations

by using certain conditional moment of the spacings of the jump times. Our results explain

not only why order statistics and record values have parallel characterizations when using the

backward conditional expectations, but also generalize several existing characterization results.

1. Introduction

It is known that record values and order statistics are closely related. As
mentioned in Nagaraja (1988a), record values can be viewed as order statistics
from a sample whose size is determined by the values and the order of occurrence
of the observations. On the other hand, based on the fact that exponential dis-
tribution can be characterized respectively by using the independence of certain
functions of record values and similar functions of order statistics, Deheuvels
(1984) and Gupta (1984) established some relationships between the conditional
distribution of forward record values and that of forward order statistics. Their
results enable us to understand why there are many parallel characterizations of
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exponential distribution, by using some properties of constant regression of the
spacings of forward record values and the spacings of forward order statistics.
Excellent reviews of the properties and characterizations related to record values
and order statistics can be found in books by Arnold et al. (1992) and Rao and
Shanbhag (1994). In this work, we will look at the problem from another point
of view. Note that when record values and order statistics are viewed as point
processes, the two processes both share the order statistics property (defined in
the next section). These motivated us to investigate some instrinsic properties
within the class of order statistics point processes in order to see why record
values and order statistics have similar characterizations.

Now we introduce the formal definitions of record values and sample pro-
cesses. Let {Wi, i ≥ 1} be a sequence of independent and identically distributed
(i.i.d.) random variables having a continuous distribution function H with
H(0) = 0. Define the sequence of record times {L(n), n ≥ 1} by L(1) = 1
and L(n) = min{j|Wj > WL(n−1)}, n ≥ 2. Let Yn = WL(n), then {Yn, n ≥ 1}
is called the sequence of record values corresponding to {Wi, i ≥ 1}. Also de-
note N(t) as the number of Yn ≤ t, t ≥ 0. Shorrock (1972) proved that the
point process {N(t), t ≥ 0} is a nonhomogeneous Poisson process with mean
value function E(N(t)) = − ln(1 −H(t)). On the other hand, for every n ≥ 1,
denote X1,n ≤ X2,n ≤ · · · ≤ Xn,n, as the order statistics from a random sam-
ple X1, X2, ..., Xn having distribution function F . Then {Mn(t), t ≥ 0}, where
Mn(t) is the number of Xk,n ≤ t, 1 ≤ k ≤ n, is called the sample process
generated by n and F .

Huang and Li (1993) gave the following result. Let G be a monotone function
and j ≥ 1, k ≥ 0, be two fixed integers. Under certain conditions, if

E(G(Yj+k+1 − Yj+k)|Yj = x) = constant, . . . (1.1)

or
E(G(Yj+k+2 − Yj+k)|Yj = x) = constant, . . . (1.2)

then H is exponential. On the other hand, Gupta (1984) showed

E((Xj+1,n −Xj,n)r|Xj,n = x) = constant, . . . (1.3)

if and only if F is exponential. It also can be shown that for the order statistics,
we can use conditions similar to (1.1) or (1.2) to characterize F to be exponential.

For a sequence of order statistics, if F is exponential, then the sequence of
spacings {Xi+1,n−Xi,n} are independent yet are not identically distributed. In
fact independence of the spacings is a characteristic property of the exponential
distribution (see Ferguson (1967)), while identically distributed property of the
spacings implies F is uniform (see Huang et al. (1979)). It can be seen that for
the order statistics case, conditions such as (1.3) or similar to (1.1) or (1.2) are
weaker than the independence assumption of the spacings. In Theorem 7, we will
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give a result based on the forward conditional expectations, yet the condition
used there originates from the identically distributed property of the spacings.

Regarding the backward conditional expectations, for record values, there
are some results which also use conditions in the spirit of identically distributed
property. For example, Huang and Li (1993) characterized H by some properties
based on the conditional expectations of Yi − Yi−1 given Yj , where i ≤ j, or
N(t). On the other hand, the following are results based on the conditional
expectations of a sequence of order statistics. Ferguson (1967) characterized F
using the condition that

E(Xi,n|Xi+1,n = x) = ax + b, . . . (1.4)

where a and b are constants and i+1 ≤ n. Beg and Kirmani (1974) characterized
F through the condition

E(X1|Xn,n = x) = ax + b. . . . (1.5)

Beg and Balasubramanian (1990) studied a similar problem through the follow-
ing property

E

(
1

j − 1

j−1∑

i=1

g(Xi,n)|Xj,n = x

)
=

g(x) + g(α+)
2

, ∀ x ∈ (α, β), . . . (1.6)

where g is a suitable function and 2 ≤ j ≤ n. Das Gupta et al. (1993) charac-
terized F to be uniformly distributed by

E(X1|X1,n = x,Xn,n = y) =
1
2
(x + y). . . . (1.7)

In contrast to the case of forward conditional expectations, the similarity be-
tween order statistics and record values regarding backward conditional expec-
tations, has seldom been considered. Nagaraja (1988b) pointed out that for
every n ≥ 1, given Yn+1, Yn behaves like the sample maximum from certain
distribution. Using this, Nagaraja (1988b) gave parallel results for characteri-
zations based on some properties of regressions of adjacent order statistics and
record values. Actually it is known when H is exponential, {N(t), t ≥ 0} be-
comes a homogeneous Poisson process. Hence given N(t) = n, Y1, · · · , Yn are
distributed as the order statistics of n i.i.d. random variables with the common
U [0, t] distribution. From this it can be seen that if there is a characterization
for H to be exponentially distributed in the case of record values, there will be
a corresponding characterization for F to be uniformly distributed in the case
of order statistics. Furthermore, inspired by the fact that both sample processes
and nonhomogeneous Poisson processes have the order statistics property, in this
paper first we will investigate properties for the order statistics point processes.
Then we establish some characterizations using certain conditional moment of
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the spacings of the jump times within the class of order statistics point processes.
Many of the characterization results in the literature for the order statistics or
record values are immediate consequences of our theorems. In particular, our
results can be applied to characterize uniform distribution, for the sequence of
order statistics, and exponential distribution, for the sequence of record values,
respectively.

2. Order Statistics Property

Let {A(t), t ≥ 0} with A(0) = 0, A(t) < ∞, ∀ t ≥ 0, be a point process with
right continuous sample paths having successive unit steps at times S1, S2, ....
For convenience, let S0 = 0. The process {A(t), t ≥ 0} is said to have the order
statistics property (and {A(t), t ≥ 0} is called an order statistics point process)
if for every t > 0 and integer k ≥ 1, whenever P (A(t) = k) > 0, given A(t) = k,
the successive jump times (S1, ..., Sk) are distributed as the order statistics of k
i.i.d. random variables with distribution function Ft(·) supported on [0, t].

Properties and characterizations of point processes with the order statis-
tics property have been studied by Nawrotzki (1962), Westcott (1973), Crump
(1975), Kallenberg (1976), Feigin (1979) and Puri (1982). Among other results,
it was proved by the above authors that the order statistics point processes
are Markovian, and for every t > 0, the associated distribution function Ft(·)
is continuous, Ft(x) = E(A(x))/E(A(t)), ∀ 0 ≤ x ≤ t, if E(A(t)) < ∞. Also
the class of order statistics point processes with E(A(t)) < ∞, ∀t > 0, is
characterized by mixed Poisson processes (up to a time-scale transformation)
if limt→∞E(A(t)) = ∞, or mixed sample processes if limt→∞E(A(t)) is finite.
Here {A(t), t ≥ 0} is called the mixed sample process based on Z and F , if Z is a
random variable taking values in the non-negative integers, F (·) is a continuous
distribution function with F (0) = 0, and

A(t) =

{
0 , if Z = 0 ,

#{j|Tj ≤ t, j = 1, ..., k}, if Z = k ≥ 1,

where Tj , j = 1, ..., k, are i.i.d. random variables with F being their common
distribution function.

Note that when {A(t), t ≥ 0} has the order statistics property and associated
with the distribution function Ft(·), it is easy to show that for any 0 < t1 < t2
and integer k ≥ 1, whenever P (A(t2)−A(t1) = k) > 0, given A(t2)−A(t1) = k,
the successive k jump times in the interval (t1, t2] are also distributed as the
order statistics of k i.i.d. random variables with distribution function (Ft2(·)−
Ft2(t1))/(1− Ft2(t1)) supported on (t1, t2]. Using this, the concept of the order
statistics property can be extended to the point processes defined in (−∞,∞).
Yet as the number of points in (−∞, t] may not be finite, instead of considering
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the jumps happened before time t, we restrict our attention to the consideration
of jumps in the interval (t1, t2], t1 < t2 (and denoting this by A(t1, t2]).

We now give a simple lemma which indicates that for an order statistics
point process, the sequence of jump times {Sn, n ≥ 1} also forms a sequence
with order statistics property. In the following for any two random vectors X
and Y, let PX|Y denote the conditional distribution of X given Y. Part (i) of
the following lemma is a consequence of part (iii), as it will be used often later,
we still state it.

Lemma 1. Assume {A(t), t ≥ 0} has the order statistics property. Then
(i) for every t > 0 and integer n ≥ 1, whenever P (t− δ < Sn+1 ≤ t + δ) > 0,

∀δ > 0,
PS1,...,Sn|Sn+1=t = PS1,...,Sn|A(t)=n,

(ii) for every s > 0 and integers k ≥ 1, n ≥ k + 1, whenever P (s− δ < Sk ≤
s + δ) > 0, ∀δ > 0,

PSk+1,...,Sn|Sk=s = PSk+1,...,Sn|A(s)=k,

(iii) for every 0 < s < t and integers k ≥ 1, n ≥ k + 1, whenever P (s− δ1 <
Sk ≤ s + δ1, t− δ2 < Sn+1 ≤ t + δ2) > 0, ∀δ1, δ2 > 0,

PSk+1,...,Sn|Sk=s,Sn+1=t = PSk+1,...,Sn|A(s)=k,A(t)=n = PS1,...,Sn−k|A(s)=0,A(t)=n−k.

Proof. We only prove part (i), the other two parts can be proved similarly.
For every 0 < t1 < t2 < · · · < tn < t, let C be the event

C = {ti < Si ≤ ti + dti, i = 1, 2, ..., n}.

Then

P (C|Sn+1 = t) = limδ↓0 P (C|t− δ < Sn+1 ≤ t + δ)
= limδ↓0 P (C|A(t− δ) = n,A(t + δ) = n + 1)
= limδ↓0 P (C|A(t− δ) = n)
= P (C|A(t) = n),

. . . (2.1)

where the first equality is due to the definition of the conditional probability, the
second equality is obvious, the third equality is because {A(t), t ≥ 0} is Marko-
vian, and the last equality is due to the fact that the associated distribution
function Ft(·) is continuous.

From part (iii) of the above lemma, we find that given A(s) = k and A(t) = n,
the conditional distribution of Sk+1, ..., Sn depends on k and n only through
n− k, namely the difference of A(t) and A(s).
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3. Characterizations by the Conditional Expectations of the
Spacings for the Order Statistics Point Processes

Suppose that {Yi, i ≥ 1} forms the sequence of upper record values from a
sequence of i.i.d. random variables {Wi, i ≥ 1} having a continuous distribution
function H with H(0) = 0 and H(x) < 1,∀ x > 0. Then as mentioned it before,
N(t) = #{i|Yi ≤ t} is a nonhomogeneous Poisson process with E(N(t)) =
− ln(1−H(t)). By convention Y0 is defined to be 0.

Kirmani and Gupta (1989) and Huang and Li (1993) proved that E(N(t)) is
a linear function of t, or equivalently H is an exponential distribution function,
by using the equality of the conditional expectations of the spacings such as

E(G(Yi − Yi−1)|N(t) = n) = E(G(Yi−1 − Yi−2)|N(t) = n), ∀ t > 0, . . . (3.1)

for some integers 2 ≤ i ≤ n, or

E(G(Y1)|N(t) = n) = E(G(t− Yn)|N(t) = n), ∀ t > 0, . . . (3.2)

for some integer n ≥ 1, where G is a non-decreasing function such that for any
x > 0, G has a point of increase in (0, x).

In this section, we will extend the above results. Within the more general
order statistics point processes class (recall that nonhomogeneous Poisson pro-
cess has the order statistics property), we present some similar characterizations.
Throughout this section, let {A(t), t ≥ 0} be an order statistics point process
with E(A(t)) = m(t) < ∞, t ≥ 0. Also let {Si, i ≥ 1} denote the sequence of
successive jump times of {A(t), t ≥ 0}. Again S0 is defined to be 0.

Theorem 1. Let G be a non-decreasing function such that for any x > 0, G
has a point of increase in (0, x), 0 ≤ η ≤ ∞.

(i) Assume m′(t) > 0, ∀ 0 < t < η and m′(0+) exists. Also assume for some
fixed integers 2 ≤ j ≤ n,

E(G(Sj − Sj−1)|A(t) = n) = E(G(S1)|A(t) = n), ∀ 0 < t < η. . . . (3.3)

Then m(t) = λt, ∀ 0 < t < η, where λ = m′(0+).
(ii) Assume m′(·) is positive and continuous in (0, η), and for some fixed

integers 2 ≤ j ≤ n,

E(G(Sj − Sj−1)|A(t) = n) = E(G(Sj−1 − Sj−2)|A(t) = n), ∀ 0 < t < η.
. . . (3.4)

Then m(t) = λt, ∀ 0 < t < η, where λ = m′(0+).
(iii) Assume m′(0+) exists and for some fixed integer n ≥ 1,

E(G(t− Sn)|A(t) = n) = E(G(S1)|A(t) = n), ∀ 0 < t < η, . . . (3.5)

whenever P (A(t) = n) > 0. Then m(t) = λt, ∀ 0 < t < η, where λ = m
′
(0+).
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(iv) Assume m(·) is positive with a continuous derivative in (0, η), and for
some fixed integer n ≥ 1,

E(G(t− Sn)|A(t) = n) = E(G(Sn − Sn−1)|A(t) = n), ∀ 0 < t < η, . . . (3.6)

whenever P (A(t) = n) > 0. Then m(t) = λt, ∀ 0 < t < η, where λ = m
′
(0+).

Proof. As the other parts can be proved similarly we only prove part (i).
By the order statistics property, we have

E(G(Sj − Sj−1)|A(t) = n)
=

∫ t

0
P (Sj − Sj−1 > u|A(t) = n)dG(u)

= n!
(j−2)!(n−j)! (m(t))−n

· ∫ t

0

∫ t

u

∫ v−u

0
mj−2(w)(m(t)−m(v))n−jm′(v)m′(w)dwdvdG(u).

. . . (3.7)
Similarly,

E(G(S1)|A(t) = n) = n(m(t))−n

∫ t

0

∫ t

u

(m(t)−m(v))n−1m′(v)dvdG(u).

. . . (3.8)
Therefore, (3.3) is equivalent to

(n−1)!
(j−2)!(n−j)!

∫ t

0

∫ t

u

∫ v−u

0
mj−2(w)(m(t)−m(v))n−jm′(v)m′(w)dwdvdG(u)

=
∫ t

0

∫ t

u
(m(t)−m(v))n−1m′(v)dvdG(u) .

. . . (3.9)
Differentiating both sides of (3.9) (n− j + 1) times with respect to t, yields

∫ t

0

∫ t−u

0

mj−2(w)m′(w)dwdG(v) =
∫ t

0

∫ t

u

(m(t)−m(v))j−2m′(v)dvdG(u) ,

. . . (3.10)
which is equivalent to

∫ t

0

mj−1(t− u)dG(u) =
∫ t

0

(m(t)−m(u))j−1dG(u) . . . . (3.11)

Now (3.11) has the same form as (2.5) of Huang and Li (1993). Hence as in the
proof of Theorem 1 of Huang and Li (1993), we obtain m(t) = λt, ∀ 0 < t < η,
where λ = m′(0+). This completes the proof.

Note that by (i) of Lemma 1, the conditions (3.3)-(3.6) of Theorem 1 can be
replaced by

E(G(Sj − Sj−1)|Sn+1 = t) = E(G(S1)|Sn+1 = t), ∀ 0 < t < η, . . . (3.12)
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E(G(Sj − Sj−1)|Sn+1 = t) = E(G(Sj−1 − Sj−2)|Sn+1 = t), ∀ 0 < t < η,
. . . (3.13)

E(G(Sn+1 − Sn)|Sn+1 = t) = E(G(S1)|Sn+1 = t), ∀ 0 < t < η, . . . (3.14)

and

E(G(Sn+1 − Sn)|Sn+1 = t) = E(G(Sn − Sn−1)|Sn+1 = t), ∀ 0 < t < η,
. . . (3.15)

respectively. Thus, by using of Lemma 1, most of the results in this paper have
two versions. One is conditional on the number of jumps at some time (such
as given A(t) = n), the other is conditional on some jump time (such as given
Sn+1 = t). In the following we will only state the first version of the results.

If {A(t), t ≥ 0} is a nonhomogeneous Poisson process which satisfies any one
of the conditions (i)-(iv) of Theorem 1 with η = ∞, then E(A(t)) = λt, ∀ t ≥ 0,
for some λ > 0. Consequently, {A(t), t ≥ 0} is a homogeneous Poisson process
(this corresponds to H is exponentially distributed for the case of record values).
Hence Theorem 1 is indeed an extension of Theorems 1, 7 and 8 of Huang and
Li (1993). On the other hand, let {Mn(t), t ≥ 0} be the (non-mixed) sample
process generated by a distribution function F (Z ≡ n in this case), where F
is assumed to be absolutely continuous with F (0) = 0 and F (η) = 1, where
η ≤ ∞. For this order statistics point process, Puri (1982, p.42) showed that
the associated distribution function is given by

Ft(x) =
m(x)
m(t)

=
F (x)
F (t)

, 0 ≤ x ≤ t , . . . (3.16)

for 0 < t < η. Now since m(t) = nF (t),∀ 0 < t < η, m(t) = λt,∀ 0 < t < η,
implies η < ∞ and F (t) is also linear in (0, η). Therefore, for the sequence of
order statistics {Xj,n, 1 ≤ j ≤ n}, under suitable conditions, one of the equalities
(3.3)-(3.6) implies F has a uniform distribution in (0, η). In fact some results
related to order statistics in the literature (e.g. Huang et al. (1979), Shimizu
and Huang (1983), Nagaraja (1988b)) will become the immediate consequences
of Theorem 1 or some theorems given later.

Theorem 2 states that given A(t) = n, the conditional mean function of Sn

can determine the mean function of A(t). The proof is standard and is omitted.
Theorem 2. Assume for some fixed integer n ≥ 1,

E(Sn|A(t) = n) = g(t) ,∀ 0 < t < η, . . . (3.17)

whenever P (A(t) = n) > 0, where 0 < η ≤ ∞. Also assume (t − g(t))−1 is

integrable. Then m(t) = (t− g(t))−
1
n e

∫
1
n (t−g(t))−1dt, ∀ 0 < t < η.

Of course, in the above theorem, in order that there are solutions for {A(t), t ≥
0}, g must be a function such that m(·) is non-decreasing and non-negative in
(0,∞).
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On the other hand, the following Theorem 3 is parallel to Theorem 4 of
Huang and Li (1993), where nonhomogeneous Poisson is considered; Theorem 4
uses more general condition (3.19) to determine the mean function m(t). Both
theorems can be proved along the lines of Theorems 4 and 5 of Huang and Li
(1993), respectively.

Theorem 3. Let G be a non-constant and non-decreasing differentiable
function with G(t) > 0, ∀ 0 < t < η, where 0 < η ≤ ∞. Also assume m(·) is
positive and differentiable in (0, η). If for some fixed integer n ≥ 1,

E(G(Sn)|A(t) = n) = cG(t), ∀ 0 < t < η, . . . (3.18)

whenever P (A(t) = n) > 0, c > 0 is a constant, then
(i) 0 < c < 1;
(ii) m(t) = λ(G(t))c/[n(1−c)], 0 < t < η, for some constant λ > 0.
Theorem 4. Let G and m satisfy the conditions in Theorem 3. If for some

fixed integers 0 ≤ l < m ≤ n− 1 and k = n, n− 1,

E(G(Sm − Sl)|A(t) = k) = ckG(t), ∀ 0 < t < η, . . . (3.19)

where cn and cn−1 are positive constants, then
(i) cn−1 > cn,
(ii) m(t) = λ(G(t))cn/[n(cn−1−cn)], ∀ 0 < t < η, for some constant λ.
For the current life t − SA(t), we do not have result which is as general as

Theorem 3. Yet we have the following partial result.
Theorem 5. Assume m(·) is differentiable in (0, η), where 0 < η ≤ ∞. If

for some fixed integer n ≥ 1,

E((t− Sn)2|A(t) = n) = at2, ∀ 0 < t < η, . . . (3.20)

where 0 < a < 1 is a constant, then m(t) = λth(a),∀ 0 < t < η, where h(a) =
(−3a+

√
a2 + 8a)/(2an) and λ is a constant. In particular, if a = 2/[(n+1)(n+

2)], then m(t) = λt, ∀ 0 < t < η.

4. Characterizations by the Conditional Expectations
based on Order Statistics

Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the order statistics based on n (fixed)
samples X1, ..., Xn having distribution F . Here we do not assume that Xi is
non-negative, that is F (0) may not be equal to zero. Under certain conditions,
Das Gupta et al. (1993) proved that for some n ≥ 1, the property

E(X1|X1,n, Xn,n) =
1
2
(X1,n + Xn,n) . . . (4.1)
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implies F has a uniform distribution on some interval. Das Gupta et al. (1993)
also pointed out that (4.1) is equivalent to

E(
1

n− 2

n−1∑

i=2

Xi,n|X1,n, Xn,n) =
1
2
(X1,n + Xn,n) . . . . (4.2)

In this section we will discuss some similar characterizations within the class of
order statistics point processes defined in the real line.

As mentioned in Section 1, for each interval (t1, t2] in the real line, let A(t1, t2]
denote the number of jumps in (t1, t2], and m(t1, t2] = E(A(t1, t2]). The point
process A = {A(t1, t2], t1 < t2} is said to have the order statistics property
if for every t1 < t2 and integer n ≥ 1,whenever P (A(t1, t2] = n) > 0, given
A(t1, t2] = n, the successive jump times S(t1,t2],i, i = 1, ..., n, are distributed
as the order statistics of n i.i.d. random variables with distribution function
F(t1,t2](·) supported on (t1, t2]. It can be shown easily that

F(t1,t2](x) = m(t1, x]/m(t1, t2] , t1 < x < t2 . . . . (4.3)

Let K(m) denote the support of m, that is

K(m) = {x|x ∈ R, m(x− ε, x + ε] > 0 ,∀ ε > 0} . . . . (4.4)

We now give the following theorem which is a generalization of Theorem 3.2 of
Das Gupta et al. (1993).

Theorem 6. Assume A has the order statistics property in R, and for any
t1 < t2, m(t1, t2] and

∫ t2
t1

udm(t1, u] both are finite. For some fixed positive
integer n, let

H(t1, t2) = E

(
1
n

n∑

i=1

S(t1,t2],i

∣∣∣∣∣ A(t1, t2] = n

)
, ∀ t1, t2 ∈ K(m) and t1 < t2 .

. . . (4.5)

Then m(t1, t2] = (t2 −H(t1, t2))−1e
∫

(t2−H(t1,t2))
−1dt2 ,∀ t1, t2 ∈ K(m), t1 < t2.

Also if t1 or t2 ∈ R\K(m), then m(t1, t2] can be determined by using that m(t1, t]
is continuous and non-decreasing in t.

Proof. For any t1, t2 ∈ K(m), t1 < t2, given A(t1, t2] = n, the successive
jump times S(t1,t2],i, i = 1, ..., n, are distributed as the order statistics of n i.i.d.
random variables with distribution function m(t1, x]/m(t1, t2], t1 < x < t2. Then

H(t1, t2) =
∫ t2

t1

u

m(t1, t2]
dm(t1, u] . . . . (4.6)

By the integration by parts, (4.6) implies
∫ t2

t1
m(t1, u]du

m(t1, t2]
= t2 −H(t1, t2) . . . . (4.7)
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Solving (4.7), yields

m(t1, t2] = (t2 −H(t1, t2))−1e
∫

(t1−H(t1,t2))
−1dt2 . . . . (4.8)

This completes the proof.
In the above theorem, if m(−∞, t] or m(t,∞) is finite, then (4.5) can be

replaced by

H1(t) = E

(
1
n

n∑

i=1

S(−∞,t],i

∣∣∣∣∣ A(−∞, t] = n

)
, . . . (4.9)

∀ t ∈ K(m), or

H2(t) = E

(
1
n

n∑

i=1

S(t,∞),i

∣∣∣∣∣ A(t,∞) = n

)
, . . . (4.10)

∀ t ∈ K(m), respectively. That is m(−∞, t] and m(t,∞) can be determined by
using H1(·) and H2(·), respectively. As an application of Theorem 6, consider
the order statistics as defined in the beginning of this section and let S(F ) denote
the support of F . Then we have

Corollary 1. (i) Assume
∫ x2

x1
udF (u) < ∞, ∀x1, x2 ∈ S(F ) and x1 < x2.

Then for any integers 0 ≤ m1 < m2 ≤ n and m2 −m1 ≥ 2, the function

P (x1, x2) = E
(

1
m2−m1−1

∑m2−1
i=m1+1 Xi,n

∣∣∣ Xm1,n = x1, Xm2,n = x2

)
,

∀x1, x2 ∈ S(F ), x1 < x2,

. . . (4.11)
can determine F , and

F (x2)−F (x1) = (x2−P (x1, x2))−1e
∫

(x2−P (x1,x2))
−1dx2 , ∀ x1, x2 ∈ S(F ), x1 <x2.

(ii) Assume EX−
i < ∞. Then for any integers 2 ≤ m ≤ n, the function

P1(x) = E

(
1

m− 1

m−1∑

i=1

Xi,n

∣∣∣∣∣ Xm,n = x

)
, ∀ x ∈ S(F ), . . . (4.12)

can determine F , and

F (x) = (x− P1(x))−1e
∫

(x−P1(x))−1dx, ∀x ∈ S(F ).

(iii) Assume EX+
i < ∞. Then for any integers 1 ≤ m ≤ n− 1, the function

P2(x) = E

(
1

n−m

n∑

i=m+1

Xi,n

∣∣∣∣∣ Xm,n = x

)
, ∀x ∈ S(F ), . . . (4.13)
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can determine F , and

F (x) = 1− (P2(x)− x)−1e−
∫

(P2(x)−x)−1dx, ∀x ∈ S(F ).

Also for x ∈ R\S(F ), F (x) can be determined by the continuity and
monotonocity of F .

Corollary 1 is a generalization of Ferguson (1967) and Nagaraja (1988b), as
can be seen by letting m = n − 1 in (4.13), then E(Xm−1,n|Xm,n = x), as a
function of x, can determine F . The following corollary is also a generalization
of Das Gupta et al. (1993) and Beg and Kirmani (1974), the latter used the
function E(X1|Xn,n = x) = ax− b, for some constants a and b, to determine F .

Corollary 2. Each of the following statements can determine F .
(i) Q(x1, x2) = E(X1|X1,n = x1, Xn,n = x2), ∀x1, x2 ∈ SF and x1 < x2, for

some fixed integer n ≥ 3;
(ii) Q1(x) = E(X1|Xn,n = x),∀x ∈ SF , for some fixed integer n ≥ 2;
(iii) Q2(x) = E(X1|X1,n = x), ∀x ∈ SF , for some fixed integer n ≥ 2.
Example 1. If E(X1 − X1,n|X1,n = x) = c, for some fixed integer n ≥ 2,

where c > 0 is a constant, then by Corollary 2, we have that F (x) = 1 − e−λx,
where λ = (n− 1)/(nc). From this fact, we find that the independence of X1,n

and X1 −X1,n implies F has an exponential distribution.

5. Characterization not Related to Order Statistics Property

Let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be defined as in Section 4, with F (0) = 0.
Also let B(t) = # {i|Xi,n ≤ t}. For the forward order statistics, Gupta (1984)
proved that for some fixed integers j ≤ n and r ≥ 1, E((Xj+1,n−Xj,n)r|Xj,n) =
constant, implies that F is exponential. We also have the following result, which
can be compared with part (ii) of Theorem 1.

Theorem 7. Assume for some 0 < η ≤ ∞, F (η) = 1, and F has a positive
derivative in (0, η). Also let G be a strictly monotone function. If for some fixed
integers k ≥ 0,m ≥ 1 and m + k + 2 ≤ n,

E(G(Xm+k+1,n −Xm+k,n)|Xm,n = x)
= E(G(Xm+k+2,n −Xm+k+1,n)|Xm,n = x), ∀ 0 < x < η ,

. . . (5.1)

or, equivalently,

E(G(Xm+k+1,n −Xm+k,n)|B(x) = m)
= E(G(Xm+k+2,n −Xm+k+1,n)|B(x) = m), ∀ 0 < x < η ,

. . . (5.2)

then η < ∞ and F has a uniform distribution.
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The above result can not be generalized to the class of mixed sample pro-
cesses. Yet for a nonhomogeneous Poisson process {L(t), t ≥ 0}, if the mean
function m(t) = E(L(t)), t ≥ 0, is differentiable with m

′
being monotone, then

it can be shown that parallel to Theorem 7, under similar conditions,

E(G(Sn+k+1 − Sn+k)|A(t) = n) = E(G(Sn+k+2 − Sn+k+1)|A(t) = n), ∀ t ≥ 0,

implies m(t) = λt, ∀t ≥ 0, for some λ > 0, hence {L(t), t ≥ 0} is a homogeneous
Poisson process.
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