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Abstract. In this work, for an exchangeable sequence of random variables
fXi; iV 1g, and two nondecreasing sequences of positive integers fhn; nV 2g
and fkn; nV 2g, where hn � kn U n, EnV 2, we prove that fRn;hn;kn

=n; nV 2g
forms a reverse submartingale sequence, where Rn;hn;kn

� 1

kn

Pknÿ1
j�0 Xnÿj;nÿ

1

hn

Phn

j�1 Xj;n, and X1;n UX2;n U � � � UXn;n are the order statistics based on

fX1; . . . ;Xng.
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1. Introduction

Exchangeability plays an important role in the theory of order statistics, see
Galambos (1982), for instance. In this work we will investigate a reverse sub-
martingale property of order statistics about exchangeable random variables.
First we give the following de®nitions which can be found in books such as
Laha and Rohatgi (1979).

De®nition 1. The random variables X1;X2; . . . ;Xn are said to be exchangeable if
the distribution of �Xp1;Xp2; . . . ;Xpn� is the same as that of �X1;X2; . . . ;Xn� for
every permutation p of f1; 2; . . . ; ng. An in®nite sequence of random variables
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fXn; nV 1g is said to be exchangeable if X1;X2; . . . ;Xn are exchangeable for
every nV 2.

De®nition 2. Let fXn; nV 1g be a sequence of random variables such that
EjXnj <y for every nV 1. We say that fXn; nV 1g is a reversed submart-
ingale (RSM) if

E�XnjXn�1;Xn�2; . . .�VXn�1:

Now let X1;X2; . . . be an exchangeable sequence of random variables;
X1;n UX2;n U � � � UXn;n be the order statistics based on fX1;X2; . . . ;Xng and

Rn;h;k � 1

k

Pkÿ1
j�0 Xnÿj;n ÿ 1

h

Ph
j�1 Xj;n, where h and k are two positive integers.

Rn;1;1 � Xn;n ÿ X1;n is known to be the range of fX1;X2; . . . ;Xng. Huang and
Huang (1994) showed that

(i) if EjX1j <y, then fnÿ1Rn;1;1g is an RSM sequence;
(ii) if EjX1j l <y, then E�Rl

j;1;1�U � j=i� lE�Rl
i;1;1�, 2U iU j, l V 1.

This is a stronger result than that in Bhattacharyya (1970). In Section 2, we
will generalize the above result. We prove that if Rn;1;1 is replaced by the more

general statistics Rn;hn;kn
, where fhn; nV 2g and fkn; nV 2g are two non-

decreasing sequences of positive integers with hn � kn U n, EnV 2, similar
results still hold.

2. Reverse submartingale property

First we have the following lemma.

Lemma 1. Given n� 1 numbers x1 U x2 U � � � U xn�1, let x
�i�
1 U x

�i�
2 U � � � U

x
�i�
n , i � 1; 2; . . . ; n� 1, be the set of all possible subsets of n-tuples that can be

formed from the n� 1 x's. Let h, k be ®xed positive integers, and

L
�i�
n;h;k �

1

k

Xkÿ1

j�0

x
�i�
nÿj ÿ

1

h

Xh

j�1

x
�i�
j : �1�

For nVmaxfh; kg,

Xn�1

i�1

L
�i�
n;h;k � n

1

k

Xkÿ1

j�0

xn�1ÿj ÿ 1

h

Xh

j�1

x j

 !
� �xn�1ÿk ÿ xh�1�: �2�

Note that if for each i � 1; 2; . . . ; n� 1, let x
�i�
j � xj, 1U j < i, and x

�i�
j �

xj�1, iU j U n, then x
�i�
1 U x

�i�
2 U � � � U x

�i�
n , i � 1; 2; . . . ; n� 1, is the set of all

possible subsets of n-tuples that can be formed from the n� 1 x's, and
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L
�i�
n;h;k �

1

k

Xkÿ1

j�0

xn�1ÿj ÿ 1

h

Xh�1

j�1

xjÿxi

 !
; if 1U iU h,

1

k

Xkÿ1

j�0

xn�1ÿj ÿ 1

h

Xh

j�1

xj ; if h�1U i U nÿk�1,

1

k

Xk

j�0

xn�1ÿj ÿ xi

 !
ÿ 1

h

Xh

j�1

xj; if nÿ k � 2U i U n� 1:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�3�

Using this representation, (2) can be obtained immediately.
Using Lemma 1, we can obtain an extension of Huang and Huang (1994).

Theorem 1. For any ®xed positive integers h, k, if EjX1j <y, then

(i) E�Rn;h;k=n� � E�Rn�1;h;k=�n� 1�� � 1

n�n� 1�E�Xn�1ÿk;n�1 ÿ Xh�1;n�1�,
nVmaxfh; kg;

(ii) fRn;h;k=n; nV h� kg forms an RSM.

Proof. Let X
�i�
1;n UX

�i�
2;n U � � � UX

�i�
n;n, i � 1; 2; . . . ; n� 1, be the n� 1 ordered

subsets of n-tuples that can be formed from the random variables fX1;X2; . . . ;

Xn�1g. Also let R
�i�
n;h;k �

1

k

Pkÿ1
j�0 X

�i�
nÿj;n ÿ

1

h

Ph
j�1 X

�i�
j;n. As the random variables

X1;X2; . . . ;Xn�1 are exchangeable, we have that the distributions of �X �i�1;n;

X
�i�
2;n; . . . ;X

�i�
n;n� and R

�i�
n;h;k are the same as those of �X1;n;X2;n; . . . ;Xn;n� and

Rn;h;k respectively. From Lemma 1, we have

Xn�1

i�1

R
�i�
n;h;k � nRn�1;h;k � �Xn�1ÿk;n�1 ÿ Xh�1;n�1�; nVmaxfh; kg: �4�

Upon dividing by n�n� 1� and then taking the expectations on both sides, the
assertion (i) follows. Next, if nV h� k, then (4) implies

1

n� 1

Xn�1

i�1

1

n
R
�i�
n;h;k V

1

n� 1
Rn�1;h;k: �5�

It is easy to see that for every l V 1, given Rn�1;h;k;Rn�2;h;k; . . . ;Rn�l;h;k,
the random variables X1;X2; . . . ;Xn�1 are also exchangeable. Hence the dis-

tribution of R
�i�
n;h;kjRn�1;h;k, Rn�2;h;k; . . . ;Rn�l;h;k is the same as that of Rn;h;kj

Rn�1;h;k, Rn�2;h;k; . . . ;Rn�l;h;k. Now taking the conditional expectations on

both sides of (5) given Rn�1;h;k;Rn�2;h;k; . . . ;Rn�l;h;k, we have, for l V 1,

1

n
E�Rn;h;kjRn�1;h;k;Rn�2;h;k; . . . ;Rn�l;h;k�V 1

n� 1
Rn�1;h;k: �6�

The theorem follows by letting l go to in®nity. r
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Before proving Corollary 1, we give the following trivial lemma.

Lemma 2. Assume x1 U x2 U � � � U xn. For 1UmU l U n, we have

(i)
1

m

Pmÿ1
j�0 xnÿj V

1

l

P lÿ1
j�0 xnÿj ;

(ii)
1

l

P l
j�1 x j V

1

m

Pm
j�1 xj.

As a consequence of Theorem 1, we now show that the more general
sequence fRn;hn;kn

; nV 2g also forms an RSM.

Corollary 1. Let fhn; nV 2g and fkn; nV 2g be two nondecreasing sequences
of positive integers with hn�knUn, EnV2. If EjX1j<y, then fRn;hn;kn

=n; nV2g
is an RSM.

Proof. Again from (5) we have, for nV 2 and nV hn � kn,

1

n� 1

Xn�1

i�1

1

n
R
�i�
n;hn;kn

V
1

n� 1
Rn�1;hn;kn

: �7�

Since hn U hn�1, kn U kn�1, Lemma 2 yields

Rn�1;hn;kn
� 1

kn

Xknÿ1

j�0

Xn�1ÿj;n�1 ÿ 1

hn

Xhn

j�1

Xj;n�1

V
1

kn�1

Xkn�1ÿ1

j�0

Xn�1ÿj;n�1 ÿ 1

hn�1

Xhn�1

j�1

Xj;n�1

� Rn�1;hn�1;kn�1
:

Hence

1

n� 1

Xn�1

i�1

1

n
R
�i�
n;hn;kn

V
1

n� 1
Rn�1;hn�1;kn�1

:

From this the assertion follows. r

Finally, we have the following immediate consequences of Corollary 1.

Corollary 2. If EjX1j l <y, then E�Rl
n2; r2; s2

�U �n2=n1� lE�Rl
n1; r1; s1

�, r1 U r2,
s1 U s2, r1 � s1 U n1, r2 � s2 U n2, n1 U n2 and l V 1.

Corollary 3. If EjX1j <y, then E�Rn�1; r2; s2
�U ��n� 1�=n�E�Rn; r1; s1

�, r1 U r2,
s1 U s2, r1 � s1 U n, r2 � s2 U n� 1.

Again the bound is tight at r1 � r2, s1 � s2 and r1 � s1 � n.

260 W.-J. Huang, J.-C. Su



Discussions

Assume r and s are two ®xed positive real numbers with r� sU 1. Let n0 be
the integer such that minfrn0; sn0gV 1. De®ne hn � �rn� and kn � �sn�, nV n0,
where for u A R, �u� denotes the integer part of u, then hn U hn�1; kn U kn�1

and hn�knUn, EnV 2. From Corollary 1, fRn;hn;kn
=n; nVn0g is an RSM.

In this case,
1

kn

Pknÿ1
j�0 Xnÿj;n and

1

hn

Phn

j�1 Xj;n are the sample averages of the

largest 100s percent and the smallest 100r percent, respectively, of the sample
fX1;X2; . . . ;Xng. The statistics Rn;hn;kn

is the di¨erence of the above two
sample averages and can be viewed as a generalization of sample range and
quasi ranges. This statistics has been used in many occasions, for example in
the investigation of the di¨erence between the highest 100s percent and the
lowest 100r percent families income in a certain country.

Next, let EjX1j <y and h and k be two positive integers. According to
previous results, it is natural to ask whether similar sequences of statistics,
such as f�Xnÿk�1;n ÿ Xh;n�=n; nV h� kg also forms an RSM sequence. We
give a counterexample in the following. Let fXi; iV 1g be a sequence of
independent and identically distributed Bernoulli random variables with
P�X1�1��P�X1�0��1=2. Again let X1;n UX2;n U � � � UXn;n be the order
statistics of fX1;X2; . . . ;Xng. Let h � k � 2. Then it can be shown that for
nV 4, Xnÿ1;n ÿ X2;n is also a Bernoulli random variable and

P�Xnÿ1;nÿX2;n�0� � 1=2n � n=2n � 1=2n � n=2n � �n�1�=2nÿ1: �8�

Thus

E��Xnÿ1;n ÿ X2;n�=n� � 1

n
�1ÿ �n� 1�=2nÿ1�:

From this for n � 4 or 5, we have

E��Xnÿ1;n ÿ X2;n�=n� < E��Xn;n�1 ÿ X2;n�1�=�n� 1��:

Hence f�Xnÿ1;n ÿ X2;n�=n; nV 4g does not form an RSM sequence.
The above counterexample suggests the following open problem which is

worth further investigation. Let

~Rn;h;k �
Xkÿ1

j�0

cj�1Xnÿj;n ÿ
Xh

j�1

bjXj;n

with weights cj, bj summing up to 1, i.e. c1 � c2 � � � � � ck � b1 � b2 � � � � �
bh � 1. Then under which conditions on the sequences cj � cj�n�, bj � bj�n� is
~Rn;h;k=n still an RSM?

Acknowledgements: The authors are grateful to the referees for many helpful comments and sug-
gestions which improve the presentation of the paper.

Reverse submartingale property arising from exchangeable random variables 261



References

1. Bhattacharyya BB (1970) Reverse submartingale and some functions of order statistics. Ann.
Math. Statist. 41:2155±2157

2. Galambos J (1982) The role of exchangeability in the theory of order statistics. In: Koch G,
Spizzichino F (eds.) Exchangeability in probability and statistics. North-Holland, Am-
sterdam, pp. 75±86

3. Huang JS, Huang WJ (1994) A reverse submartingale property of the range. Ann. Statist.
22:474±477

4. Laha RG, Rohatgi VK (1979) Probability theory. John Wiley, New York

262 W.-J. Huang, J.-C. Su


