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SUMMARY. In this article we study some interesting properties of point processes.
First we provide an elementary proof of the characterization of point processes with the order
statistics property. Then we give certain characterization results for point processes with both
the Markov and exchangeable properties. Among others, we also give a discrete time version
of the order statistics property and obtain a characterization of the mixed geometric process.

1. INTRODUCTION

Let {N(f), ¢ > 0} be a point process defined on a probability space (L,
&, P) with N(0) =0, N(f) < o0, ¥ ¢ > 0, a.8., and right continuous sample
paths having successive unit steps at times 8; = &, 8, = &,+&,, ..., where &
is the sth inter-arrival time. The case with N(f) = 0, for every ¢ > 0, with
positive probability is being excluded at the outset from all the following
considerations. First, we give the following definitions.

Definition 1. {N(t), t > 0} is said to have the exchangeable property E
if for every positive integer k, whenever P(N(f) = k) > 0, PE; <z, 1 = 1,
.oy E|N(t) = k) is symmetric in zy, ..., z§.

Definition 2. {N(f), t > 0} is said to be a p-mixed renewal process if
for every positive integer n,

”

P(§¢§ X, 7 = 1, veey n) = J;\ II PA(E‘< x;)d,u,

i1

where the family {P,, A ¢ A} is such that P;(§; < 0) = 0 for every A ¢ A and
# is a probability measure on B(A), the smallest o-algebra of subsets of A
over which all the A-functions P,(4) are measurable, for all 4 ¢ &.
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In Definition 2, in particular, if for almost all Ae A, Py§; € z) = 1—
exp {—b(A)x}, for some function B(A) > 0, then {N(t), ¢ > 0} is said to be a
mixed Poisson process. For simplicity and without loss of generality, in
the following when we mention a mixed Poisson process, we always let A
be a subset of (0, 0) and b(A) = A. For a point process {N(t), ¢ > 0}, it will be
said to have the property P, if conditional on N(f) = k, the successive jump
times {S;, S,, ..., S} are distributed as the order statistics of kii.d. r.v.’s
with the common (0, ¢] distribution. Feigin (1979) proves that a point
-process {N(t), t > 0} has the property P if and only if it is a mixed Poisson
process. By using a result from Freedman (1962), we will give an elementary
proof of this fact in Section 2,

In Huang (1990) it is shown that if lim N(f) = oo, a.s., then {N(f),
t ~>

¢ > 0} has the property E if and only if it is a mixed renewal process. Also
it has been proved that, under some suitable conditions, a mixed renewal
process is Markovian if and only if it is a mixed Poisson process. In Section 3,
we will give a shorter proof of this result. On the other hand we will
also characterize a point process to posses both the exchangeable and Markov

properties when lim N() = K, a finite constant.
t—> =

Inspired by the property P, we may ask whether there is a corresponding
property for the discrete time processes. In order to distinguish easily, let
{A(t), t =0, 1, 2, ...} denote a discrete time process throughout this paper.
As we assume unit step jumps, obviously, {A), t =0, 1, 2, ...} cannot have
the property P. We give the following definition instead.

Definition 3. {A(t), t =0, 1, 2, ...} is said to have the property T if for
every positive integers k and ¢, 0 < k < ¢, whenever P(A(f) = k) > 0

P(S; =5, i =1, 2,..., k| At)=k)=Clt, ¥0 <8, <...< 8 <8, ... ()
where Cg,; is a constant depending only on % and ¢.
When {4(), t =0, 1, 2, ...} has the property T,
b P(Sy=s4,i=1,....k | A(t)=k)= Pt Crt =1, ... (2)

ICo <o <. .. <ot 1o <, <. .. <<t

thus Cg,; = ( Ii )—1 . That is

. t\1
P(Sq=si=1, ...,k|A(t)=k)=<k) . . (3)
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or equivalently, conditional by on 4(t) = %, 8, ..., Sx are distributed as
the order statistios of a sample drawn from the set {1, 2, ..., t}, without replace-
ment. Therefore, the property T can be viewed as a discrete time version
of the property P.

In Section 4, we prove that the property T characterizes the mixed geo-
metric process. In Section 5, we will show that in the class of discrete time
processes, a mixed renewal process is a mixed geometric process if and only
if it is a Markov process, which is a discrete time version of the result
in Section 3.

2. ORDER STATISTICS PROPERTY

In this section we will characterize point processes with the property P.
We need the following theorem which was due to Freedman (1962).

Theorem 1. The process {X,, n > 1} is a sequence of mixture of Poisson
variables, namely, ~n > 1

P, =ay . X, —a) = e g, @
0 i=1 ag:
if and only if for some function (., .)
. n -1 n
PXi=ayi=1,...m) = 1 o) o <n=21 @). .

Here the meaning of mixture is defined similarly as in Definition 2. That
is {X,, n > 1} satisfies (4) if and only if there exist a set A (C (0, «), and a
probability measure x on B(A), such that given Ae A, {X,, n > 1} are iid.
Poisson r.v.’s with parameter A. On the other hand, Diaconis and Freedman
(1980) have pointed out that (5) is equivalent to :

n
For every n > 1, the joint distribution of X, ..., X, given W, = = X,
i=1
is multinomial with p = 1/n, Vi =1, ..., n.

Using the above result, we are going to give an elementary proof that
the property P characterizes the class of mixed Poisson processes.

Theorem 2. The point process {N(t), t > 0} has the property P if and
only if it is a mixed Poisson process.

Proof. The “if” part is omitted. We now prove the “only if” part.
Lot Y;= N(@)—N@—1),s=1, 2,.... Then by using the property P we
oan easily obtain that for every # > 1, the joint distribution of ¥y, Y, ..., ¥,

”
given Wn = X Y{, is multinomia:l with P = lln, Vi = 1, ceey N Henece
-l
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by Theorem 1, we obtain {Yj ¢ > 1} is a sequence of mixture of Poisson
variables, i.e., there exist a set A (C (0, 0), a probability measure # on B(A),
and a random variable T' defined on A with I'(A) = A, such that given
Yi ¢ > 1, are i.id. Poisson variables with parameter A.

Next, let m > 2 be any integer and let Z; = N(i/m)—N((i—1)/m), + = 1,
2,.... Again we obtain that {Z; ¢ > 1} is also a sequence of mixtures
of Poisson variables associated with a probability measure g’ and a random
variable I with I"(A) = A, such that given I'=2XA", Z;, ¢ > 1, are iid.
Poisson variables with parameter A'.

Since {¥;, ¢ > 1} are both exchangeable, by the (conditional) strong
law of large numbers, we have as n— o©

3 ¥, % 7, .

'fl—n-— — E(Y,|T) =T, as., and """n S B(Z T =T" as. .. (6)

Furthermore, since

3 v % 2z
S Nw, BT N
n n n n

(6) implies that I' = I'/m, a.s.

From the above discussion, we conclude that for any rational numbers
0=ty <t <..<t, given ' =2, N(t), N(t;)—N({), ..., N(¢,)—N(,)
are independent Poisson r.v.s with E(N(t;)—N(tiy)) = Ali—tiy), 1 = 1,
ey M

On the other hand, given 0 <, <i, < ... <t,, for any k> 1, we can
find rational numbers 0 <z < Xk < ... < ZTpr, such that 0 < zg—i
< 1/k, 3i =1, ..., n. Also the property P in turn implies

P(N(zg)— N(t;) > 0)> 0, as k— oo, .. (M

i =1, ..., n. Therefore, by a standard argument it can be shown that
(N(Zs), ..., N(2nx)) converges in distribution to (N(), ..., N(,)) as k— o0.
Hence, given AeA, N(iy), N(t)—DN(Ey), ..., N(@,)—N(,.,) are independent
Poisson r.v.s with B(N()—N(ti_y) = Alli—ti,), =1, ..., n, respectively.
This proves {N(t), ¢ > 0} is a mixed Poisson process.

3. MIXED POISSON PROCESS

In this section, we will prove that a mixed renewal process is a mixed
Poisson process if and only if it is & Markov process. Also we will charac-

Ay
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terize a terminating process to possess both the Markov and exchangeable
properties. Throughout this section for a Markov process {N(f), ¢ > 0)}
we assume it admits instantaneous rates defined by

/\n(t)=liin L PR = a1 [N =)0 =0,1,2, .t > 0. . (§)
k1o

Also assume F, is absolutely continuous with F,(f) = f,(t) exists, where
[

I—Fn(t) = eXP(—* .[ An(u)du)

First, we give the following lemma which was due to Pfeifer and Heller
(1987).

Lemma 1. Let {N(t), ¢ » 0} be an elementary pure birth process with finite
birth rates {A,(t), £t >0}, ¥n =20, 1, 2,.... Then {N(t), ¢ > 0} is a maxed
Poisson process if and only if there exist constants ¢, > 0, n =0, 1, 2, ..., such
that 1—Fn+1(t) = cnfn(t): Yt 2 0.

The following theorem was due to Huang (1990), using Lemma 1 here
we give a shorter proof.

Theorem 3. Let {N(), ¢ > 0} be a u-mixed renewal process with the given
family {P;, Ae A} of probability measures and the mizing probability measure
uon B(A). Then {N(t), ¢ > 0} is a Markov process if and only if {N(t), t > 0}
is a mixed Poisson process.

Proof. The “if”” part is obvious, it remains to prove the “onlyif” part.

Since {N(),¢ > 0} is a mixed renewal process, it is also exchangeable. -
Hence for every n =1,2,...,and ¢,,¢,.1,8 2> 0,

n—1
P, < £y < by tdty, tayy < niy < lnpatdinia 21 & =)

-1
= P(tn+1 < gn < tn+1+dtn+1’ e < En—i‘l < tn+dtn+l '21 & =9), e (9)
i

where as before £, is the n-th inter-arrival time. In terms of the instan-
taneous rate, (9) implies

spin "y
exp (-— ¥ Iﬂ A,,(T)dr) = ’l"-_l(sﬂil) exp (—'+ _[+1 /\n_l(r)d1>,,,_ (10)

stiy Ay a(stty) 8t+iy
or
bt Mg (wy) Y
e — [ A()dr) = 22 exp [ — [ A (T)d7), .. (1
xp (= [2uir)ir) = s exp (= § Aaeatrid) (11)
yn=1,2,..., and w;, w, > 0. From (11), we obtain for every n =0, 1,2,
w,and >0, )

1—F p(6) = (0T fal0) e (12)
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The result now follows from Lemma 1.

Next we give a result which is concerned with the case that lim N(f)
t—w
is finite,

Theorem 4. Let Nit) 1T K, a.s., at t— o, where K is a positive infeger.
Assume that {N(t), t > 0} has the exchangeable and Markov properties. Then

{N(@t), 8 > 0} is a process whose inter-arrival times form a sequence of mizture of
K exponential r.v.’s.

Proof. By a similar approach as in Theorem 3 yields (11) hold for n =1,
2,..., K—1. Therefore, if we continue to generate this process after the K-th
arrival occurs, letting the successive instantaneous rates A, (t), n 2> K, satisfying
(11), then we obtain a pure birth process, say {J(¢), ¢ > 0}, with F__; and f,
satisfying (12) for every n =0,1,2, ..., and ¢t > 0. By Lemma 1, this in
turnimplies {J(f), ¢ >> 0} is a mixed Poisson process. The theorem is now estab-
lished by the fact that the arrival times of the process {N(¢), ¢ > 0} are just
the first K arrival times of the process {J(¢), t> 0}

4. MIXED GEOMETRIC PROCESS

In this section we will characterize the processes with the property T.
We prove that a process has the property T if and only if it is a mixed geometric
process. First we give the following definition.

Definition 4. A process {A(), £t =0,1, ...} is called a mixed geometric
process if and only if there exist a set @ C (0, 1) and a probability measure
4 on B(@), such that given § € @, the inter-arrival times are i.i.d. with the
common mass function Py(X =) =0(1—0)"1,¢=1,2,....

The following lemma can be found in Freedman (196%).

Lemma 2. The process {X,,n > 1} is a sequence of mixture of binomial
variables, namely, for every n 2 1 and 0 < j; <N, i=1,.,n,

ir e N N-
P(Xi=jii=1,..,n= | [ i () eia—0)" " ldu .. (13)
; 0 “i=1 ' ¢ )
if and only if for some function ¢ (., .)
L n ;N %o
PXi=ji,1=1,..,n)= L]:_[l (ji )]¢ (n, i2=11 ;H). e (14)

In order to prove our main result of this section we need the following

lemma.
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Lemma 3. A process {A(t),t =0,1,...} is a mixed geometric process if
and only if there exist a set ® C(0, 1) and a probability measure ji on B (®) such
that, given 0E @, forany 0= Ny< N, < N, < ... < Ng, A(N,), ANg)—
A(Ny), ..., ANg)—A(Ny_y) are independent 8(Ne— Ny, O)yrvls, i=1,..,k

Proof. The “only if” part can be proved very easily, and the “‘if” part
can be obtained immediately by the following observation. The assumption
implies that given § € ®, for any positive integer n '

Py(A(n+1)—A@n) = 1|A(F),t =1, ..., n) = Pg(An+1)—A(n) = 1) = 0.

(15)
Now, we are ready to characterize the property T.

Theorem 5. A process {A(t), t =0, 1, ...} is a mized geometric process if
and only if it has the property T.

Proof. Again we only prove the “if”” part. The property T implies, for
every integers k and £,0 <k < ¢, whenever P(4(t) = k) >0,

$ (-1
Pw:aJ=LmJMM=M=(H . ... (16)

For any positive integer m, let Y= A(im)—A((i—1)m),1 = 1,2, .... Then
for every k > 1 and j; <m,i=1,...,k, from (16) it follows that

) ) ok ko k m km
P(¥y=ju, Ya=ju - Yo =jel B Ti= 2 ji) =1
i=1 i=1 i=1 ,7’& 2lc
i-lg.‘
LY ] (17)
or
~1
k k km vl m
P(¥; =ji, Ya=ja --» Yo = ju) = P 2 Yi=2 ji) i
-1 i1 kZ . =1\ g;
i-lj‘
(18)

Hence, in view of Lemma 2, we obtain {¥y, 4 > 1} is & sequence of mixture of
& (m,0) r.v.’s,i.e., there exist-a set © C(0,1), a proba.bility meagure 4, and &
random vairable Y defined on @ with Y (9) = 6, such that given Y =0, Y,
Y,,... are i.i.d. & (m,0) r.v.’s.

Similarly, for any positive integers m' % m, let Zy = A(@im')—A((—1)ym’),
i=1,2,.., we obtain {Z;, i > 1}is a sequence of mixture of & (m’', &)
.v.’s, i.e., there exist a set @ (C (0, 1), a probability measure s’ and & random

ariable Y’ with Y'(8) = 0, such that given Y’ = ¢, Z;, Z,, ... are iid. rv’s
with the common & (m',0’) distribution.
A1-10
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Now ag in Theorem 2, by the strong law of large numbers, we obtain

lim 4(n) =T =71 as. ... (19)
n—o N
It follws that for any integers 0 = Ny < N, < N, < ... < Ny, given 0 ¢ 0,
A(N,), A(Ny)—A(N,), ..., A(Ng)—A(Ng_,) are independent with A(N;)—A(Ny)
having a & (N;—Ny_,, 0) distribution, ¢ =1, ..., k. Thus by Lemma 3, this
proves that {4(¢),t = 0,1, ...} is a mixed geometric process as required.

5. A FURTHER DISCUSSION OF THE MIXED GEOMETRIC PROCESS

In this section, for & mixed renewal process with discrete inter-arrival
times, we will prove that if this process possesses the Markov porperty then it
will be a mixed geometric process.

Theorem 6. A p-mived renewal process {A(t),t=0,1,...} is o mized
geometric process if and only if it is a Markov process. ‘

Proof. As before the “‘only if”’ part is obvious. To prove the ““if”’ part,
for any 0 < <t¢,¢ > 1 and » > 0, by the Markov property we have

PA(+v) = A(t) = A{t—u) = 1)
= PA(t) = A(t—u) = ))PA({+v) = 1]A@) = 1). . (20)
Since {4(t),t = 0, 1, ...} is a mixed renewal pocess, there exist a set A C (0, c0)

and a prbability measure z on B(A), such that given A e A, {4(),t=0,1,...}
is renewal process. From this, (20) can be rewritten as

Eltiz Py (X = )Py (X > t4v—i)] E[ﬁl PAX = i)PYX > t-+o—i)]

R .

E['i"P,1 (X =P, (X >i—i)| B E PyX = )Py > i—i)]
f=1 i=

i=1
21)
Lot f(w) = B 5 PAX =)P,(X > 4o ] and g) =B [Z Pyx =4)

PyX > t—i)]. As the right side of (21) is independent of u, the left side,
which is equal to f(u)/g(u), is also independent of-u. Hence

fw) _ fl)—fut1)

g g —glut1) 22)
Now the right side of (22) is equal to
E[P,(X = —u)P (X > v+u)] (23)

EBP(X =t—u)P,(X >u)] °’
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which is also independent of ». Thus by letting 4 = 0 and u = t—1in (23)
respectively, we obtain

B[PyX = 1)Py(X >t—1)] _ E[PyX = 1)PyX > v+i—1)]
E[PyX =1)] E[P,(X = )Py X >v)]

(24)
Similarly, the right side of (24), since it is still independent of v, can be
rewritten as

BPyX = 1)PyX= t+v)]

, 25
BIP,(X = P (X = vF1)] (%)
which is equal to 1, as can be seen by letting v = 0. Consequently
E[Py(X = )Py(X >v+t—1)] | B[P\(X =1)P\(X>t—1)] _ . (26)
E[P\(X = t)P,(X >v)] E[P\(X =1)] o

On the other hand, for any 0 u <t,v>0 and w> 1, by considering
the following two equations

P(A(t—u) = A(t) = A(t+v) = 1, A(+v+w) = 2)
= P(A(t—u) = A(t) = )P(A(t+v) = 1[A@F) = 1)
PARE+v+w) = 214@1+w) = 1) N b))

and
P(A(t—u) = A@) = 1, A(+w) = A(t+w+v) = 2)
— P(A(t—u) = A(t) = 1)P(A{t+w) = 2| A(t) = 1)
P(A(t+w+v) = 2| (A(¢t+w) = 2), .. (28)
after some manipulations, we obtain
BIPYX = 1)P\(X > i4v—1)] = E[P\(X = )P\(X = 1)(P\(X > )]

(29)
and
EPAX = DP,(X > o)(Py(X > 1—1)] = B(P,(X = 1)P,(X = )P,(X > o)].
" (30)
Using (26), (29) and (30) we obtain
E[P\(X =t)—P\(X = )P\(X >t—1)R =0, %t > 1. <. (31)
This in turn implies
Py(X =1t) = P(X = 1)P\(X >t—1), as. .. (32)
If follows that P\(X =1t)= P\(X =1)[P\(X > 1)}, t=1,2,..., for

almost all A ¢ A, which completes the proof,
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5. CoONOLUSION

In this paper we investigate the order statistics property and obtain some
characterizations of the mixed Poisson precesses. In Pfeifer and Heller (1987)
it is shown that an elementary pure birth process is a mixed Poisson precess if
and only if the sequence of the post-jump intensilies forms a martingale with
respect to the o-algebras generated by the jump times of the process.
As mixed sample processes also have the order statistics property (see Puri
(1982)), it is natural to study a similar characterization in the class of
mixed sample processes. This, and actually a more general result, has been
given by Pfeifer (1987).

Acknowledgements. The authors are grateful to the referee for pointing
out the reference by Pfeifer (1987), and for many helpful comments and Sugges-
~tions which led to & considerable improvement in the presentation of this paper.
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