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Abstract: The constancy of the conditional expectation of some suitable functions of
record values on some others, is used to characterize the exponential or geometric dis-
tribution among the class of continuous or discrete distributions, respectively. Some
characterizations of the homogeneous Poisson process in the class of nonhomogeneous
Poisson processes through properties of arrival times, current life and residual life are
also given.
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1. Introduction

Let {X,,n > 1} be a sequence of independent and identically distributed
random variables having the common distribution function F'. Throughout this
paper, unless otherwise stated, we assume F(0) = 0 and F(z) < 1, Vz > 0.
The sequence {L(n),n > 0} defined by L(0) = 1 and L(n) = min{j|X; >
Xin-1)}> n = 1,2,..., is called the sequence of (upper) record times, while the
corresponding sequence {Rn,n > 0}, R, = X L(n)s M 2 0, is called the sequence of
(upper) record values. Shorrock (1972a,b) studies the behavior of the bivariate
sequence {(Rn, L(n+1)—L(n)), n > 0}. He also proves that when F' is continuous
the point process {N(t), t > 0}, defined by N(t) = #{n|R, < t},t >0, is a
nonhomogeneous Poisson process with E(N(t)) = —In(1 — F(t)).

In recent years much has been written concerning record values. Especially,
various authors including Ahsanullah (1978,1979), Dallas (1981), Gupta (1984),
Kirmani and Gupta (1989), and Nagaraja et al. (1989) give results on character-
ization of the exponential and geometric distributions by properties about {R,,
n > 0} or {N(t), t > 0}.

The purpose of this paper is to investigate some extensions of the above
results. In Section 2, for the nonhomogeneous Poisson process {N(t), t > 0}, we
give some conditions, related to the current life 6; = ¢t — Ry(s)-1, and residual life
vf = Ry — t, to characterize {N(¢),t > 0} as a homogeneous Poisson process.
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In Section 3, we determine F from properties such as E(G(R; — R;_1)|R; =) =
E(G(Ro)iRJ = IB) or E(G(R1 - Ri_1)|Rj = (It) = E((Ri_l - B,L'._Q)IR]' = :c), for
every > 0, for some fixed integers 5 > 7 > 1, and G is a monotone function,
where R_; is defined to be 0. Finally, Section 4 characterizes the distribution
function F from the property that F(G(Rj+k+1 — Rj+x)|R; = z) ot E(Rjik42 =
R;+k|R; = ) equals a constant for every z > 0, where j and k are fixed non-
negative integers.

Before starting our discussions, we give some densities related to the random
variables Ry, Ry, .... First, we introduce the notation R(z) = — In(F(z)), where
F(z) = 1 - F(z). Also, if F is an absolutely continuous distribution function
with density function f(z) = F'(z), let r(z) = dR(z)/dz = f(z)/F(z). Shorrock
(1972a) has shown that the process {Rn,n > 0} is a Markov chain with P(Ry <
a) = F(a), and P(Rn41 > a|R, = b) = F(a)/F(b). Furthermore, when f(z) =
F'(z) exists, Resnick (1973) gives the joint density of Ry, Ry, ..., R, in the form

n n—1 n—1
11 f(xi)/ Tl F(z) = f(@a) [] r(as)y 0<zo<--<za  (L1)
1=0 ]

1=0 1=0

Using this and the Markov property of {Rn,n > 0}, the following densities, which
will be used later, can be obtained easily (see also Ahsanullah (1979)). First of
all, the density of R, is

T W, v>o (12)

For n > m, the joint density of R,, and R, is

frR.(y) = T

me;R‘n ($7 y)
1

- I(n - m)I'(m + 1)

R™(z)(R(y) — R(z))* " 'r(2)f(y), 0<z <y, (1.3)
and the conditional density of R, given R,, = z is

R(y) - R(z))»~™1
Frtpcaly) = ( (y)r(n _( rzz))F(x) f(y)’

0<z<y. (1.4)

Also for j > 0, 1 < k < [, the conditional density of (R;j4i, Rj+k) given R; = z is

TR, 1 Rk |Ry=2 (U, V)
_ (Aw) - R(v))'~*"}(R(v) — R(z))* ' f(w)r(v)
T( < BT (k) B (z)

, 0<z<v<u (1.5)

Again, most of the results in this paper hold true in the “if and only if” form;
yet, for simplicity, we only state the results in the “if” form.
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2. Characterizations of the Homogeneous Poisson Process

As mentioned in Section 1, when the common distribution Fof {X,,n>1}
is continuous (hence R(t) is also continuous, Vt 2 0, with R(0) = 0), then the
process {N(t),t > 0} is a nonhomogeneous Poisson process. For the process
{N(t),t > 0}, R, can be viewed as its (n+1)th arrival time. Kirmani and Gupta
(1989) give some characterizations of the homogeneous Poisson process among
the class of nonhomogeneous Poisson processes. In this section we will give some
extensions and related results. Part (i) of the following theorem is a generalization
of Theorem 10 of Kirmani and Gupta (1989). As E(N(t)) = —In(F(t)) = R(?), 2
characterization of the homogeneous Poisson process of {V (t),t > 0} is equivalent
to a characterization of the exponential distribution F.

Theorem 1. Let G be a non-decreasing function such that for any z > 0, G has
a point of increase in (0, ).
(i) Assume r(0+) ezists and for some positive integer m,

E(G(Ro)IN(t) = n) = E(G()IN(t) = n), (2.1)

for every t > 0 whenever P(N(t) = n) > 0. Then F(t) = e~ t > 0, where
A =r(0+). ;

(ii) Assume R(t) > 0 has a continuous derivative for every t > 0, and for some
integers n and i, such that 1 <1< n— 1,

E(G(R; — Ri-1)IN(t) = n) = E(G(Ri-1 — Ri-2)[N(2) = n), (2.2)

for every t > 0 whenever P(N(t) = n) > 0. Then F(t) = e, t > 0, where
A =r(0+).

Proof. (i) The independent increments of the Poisson process imply
t
/ P(Ro > z, N(t) = n)dG(z)
0
t
- / P(N(z) = 0)P(N(t) — N(z) = n)dG(z)
0

= ¢ E() /0 t(R(t) ~ R(z))"dG(z)/n!. (2.3)
Similarly,
/O P8t > 7, N(t) = n)dG(z) = e RO /0 ‘B (t — 2)dG(2)/n. (2.4)
Therefore, (2.1) is equivalent to

/0 “(R™(t - z) - (R(t) - R(z))")dG(z) =0, Vt>0. (2.5)
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As R(z) is a continuous function, then, by Proposition 2.2 of Lau and Rao, and
from (2.5) it follows that for every ¢ > 0, there exists a 0 < zg < t such that

R(t — z0) = R(t) — R(zo). (2.6)

Hence by Proposition 2.1 of Lau and Rao (1990), (2.6) leads to R(t) = At, Vi > 0,
where A = r(0+). This proves that {N(t), t > 0} is a homogeneous Poisson
process and F(t) =1 —e~*, t > 0.
(ii) First, we have /

FRi*-Ri—l'Ri—l:z(y) =1- e—R(z+y)+R(m), (27)

and
e_R(z)

dFg,_ (z) = dR(z). (2.8)

!
Using (2.7)and (2.8), it follows that

[ PR~ Ry >, N(t) = mac(w)

t pt—y
- / | 0= Frohim=@)P(N() = Na +3) = n = ))dFa,_,(2)dG(y)
o—R(t) t—y
- a7 @0 - Re 4y @) (2.9)
Similarly, we can obtain an expression for [ P(R;—1—Ri—2 > y, N(t) = n)dG(y).
Hence (2.2) implies

-—R(t) t—y
S [ [ RO - Re )R @d6)
< _R(t) t— y ) )
= WO / [ (R@) - R + ) aR T @)dct). (210)

Differentiating both sides of (2.10) (n — ¢ + 1) times with respect to t yields

/Ot Rt —y)(r(t —y) — r(2))dG(y) = 0, Vt> 0. (2.11)

Again, for every ¢t > 0, there exists a 0 < to < ¢ such that R*™1(t —to)(r(t — to) —
r(t)) = 0. Hence, using the assumption R(t) > 0, Vt > 0, it follows that for every
t > 0, there exists a 0 < tg < ¢ such that 7(t) = r(¢t —to). This implies 7(¢) equals
to a constant, which proves the assertion again.

The next characterization is based on the residual life.
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Theorem 2. Let G be a non-decreasing function having non-lattice support on
z > 0 with G(0) = 0 and E(G(X1)) < co.
(i) If

E(G(¥))=¢, Vt>0, (2.12)

and if
¢ < / e~€2dG(z) < oo (2.13)
0

for some € > 0, then ¢ = E(G(X1)) and {N(t),t > 0} is a homogeneous Poisson
process.
(ii) If for some fized integer n > 0

E(G(Y)IN(t) =n) =¢, (2.14)

for every t > 0 whenever P(N(t) = n) > 0, and if (2.13) holds for some £ > 0,
then ¢ = E(G(X1)) and {N(t), t > 0} is a homogeneous Poisson process.

Proof. (i) First, c = E(G(X;)) is obvious. Next, since

BGON) = [ Pl > 2)d6(@) = [T R aG),  (219)
(2.12) implies
ce ) = /Ooo e~ Et+2) 4G (x), (2.16)
or (since Ry = X1)
cP(Xy > 1) = /0 “ P(X1 > t +2)dC(). (2.17)

This, together with (2.13) implies, by Shimizu (1978) or (1979), X; is exponen-
tially distributed. This completes the proof of part (i).
(ii) Again, by the independent increments of the Poisson process,

BGODING =n) = [ P7 > alN(2) = n)dG(z)
_ /0 “ P(N(t+z) — N(t) = 0)dG(z) = /0 * e~ RH2)HR0) 43 (7). (2.18)

Now (2.16) can be obtained by using (2.18), (2.13) and (2.14). The result then
follows.

The following theorem shows if the variance of 7/ is constant, then the process
{N(t),t > 0} will also be a homogeneous Poisson process.
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Theorem 3. Assume R(t) is differentiable with r(t) # 0, ¥Vt > 0, and E(X?) < oo.

If
Var(y;) =¢, Vt>0, (2.19)

then X is exponentially distributed and ¢ = Var(Xy).

Proof. First, we have E(v?) = [° P(yf > z)dz? = [§° e~ R(t+2)+R() gz? and
EMv) =[5~ e~ R(t+2)+R(t) . Thus, (2.19) implies

/°° o~ R(t+2)+R(1) g2 _ (/°° e—R(t+x)+R(t)dw>2 — ¢ (2.20)
0 0
It follows that

2¢~F(%) /too(:z: — t)e @) dg — (/;oo e_R(‘”)da:>2 = ce” 2R, (2.21)
Taking derivatives of both sides of (2.21) with respect to ¢ leads to

2r(t)e RO /t (@ = t)e~B@) dg = 2er(t)e 2R, (2.22)

Consequently, [7°(z —t)e~ ) dz = ce~R(). This in turn implies [;° e~ R(t+2) 4o
= 2¢ce~B(®), Therefore, by Shimizu (1978), X; has an exponential distribution.

Along the lines of the proof of the previous theorem, we have the following.

Corollary 1. Let R(t) and X; satisfy the conditions of Theorem 3. If for
some fized integer n > 0, Var(y/|N(t) = n) = ¢, for every t > 0 whenever
P(N(t) =n) > 0, then X is ezponentially distributed with ¢ = Var(Xy).

Theorem 4. Let G(t) be a non-constant non-decreasing differentiable function
with G(t) > 0, Vt > 0. Also, assume R(t) > 0, Vt > 0. If for some fized integer
n>1,

B(G(Ra-1)IN(t) = n) = cG(2), (2.23)

for every t > 0 whenever P(N(t) = n) > 0, where ¢ > 0 is a constant, then (i)
0 < ¢ <1, (ii) limoo G(t) = oo, and (iii) R(t) = MG(t))¥/™(2=9), for some
constant- A > 0. In particular if c = n/(n + 1) and G(t) = t, then {N(t),t > 0}
is a homogeneous Poisson process.

Proof. Since
E(G(R,-1)|N(t) =n)
t
- /0 P(Rny > 2, N(t) = n)dG(z)/P(N(2) = n)

_ /0 "P(N(z) < n—1,N(t) = n)dG(z)/P(N() = n),  (2.24)
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we obtain from (2.23)
t n—-1

/0 S P(N(z) =i, N(t) - N(z) = n— )dG(z) = cG(t)P(N() =n).  (2:25)
1=0

This yields

/t n—1 C_R(Z)Ri(.’r) e—R(t)+R(z)(R(t) - R(m))n——idG(x) _ (1) e—R(t)Rn(t).
0 i=o ! (n —)! n!
(2.26)
After simplification
/0 C(RM1) - B™(2))dG(z) = cG)R™2). (2.27)

As G(z) is differentiable and R(z) is continuous, the left side, and hence the
right side, is differentiable (see, e.g., Apostol (1974) Theorem 7.32). Thus R(t)
is differentiable. Also since R(t) > 0, Vt > 0, it is easy to see from (2.27) that
¢ < 1. Taking the derivatives of both sides of (2.27) with respect to ¢ yields

rt) _ ¢ Gt
R(t)  n(l-c)G(t) —nG(0)/(1-¢c)

(2.28)

Thus R(t) = AMG(t) — nG(0)/(1 - ¢))¢/(®(1=<)) where A > 0 is a constant. Now
using R(0) = 0 it is easy to see G(0) = 0. Thus R(t) = MG(2))e/ (1<) This
proves (iii). On the other hand, as R(t) = — In(F(t)), lim¢—o0 R(t) = o0, hence
we obtain lim¢ o G(t) = oo.

Finally, if ¢ = n/(n+1) and G(t) = t, then R(t) = Mt, and therefore {N (1), >
0} is a homogeneous Poisson process.

Theorem 5. Assume G(t) and R(t) satisfy the conditions of Theorem 4. Let
n > 2 be a fized integer. For k =n —1,n, if

E(G(Ro)IN(t) = k) = cxG(2), (2.29)

for every t > 0 whenever P(N(t) = k) > 0, where the cx are positive constants,
then Cp—1 > Cn, liMtneo G(t) = 00, and

R(t) = MG(t))en/(en-1=en)) (2.30)

for some constant X > 0. In particuler, if Gt)=tand ey = (k+1)7% k =
n — 1,n, then {N(t), t > 0} is a homogeneous Poisson process.
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Proof. As in the proof of Theorem 4, we have from (2.29)

/Ot(R(t) — R(z))"dG(z) = caG(t)R™(t) (2.31)

and
/0 (R(t) = R(z))*"'dG(z) = caor G)R™(2). (2.32)

Differentiating both sides of (2.31) with respect to ¢ yields
t
nr(t)/ (R(t) — R(z))""'dG(z) = cn(G'(t)R"(t) + nG@)R™(t)r(t)). (2.33)
0

Now by (2.32), the left side of (2.33) is equal to nen1GA)R™ 1 (t)r(t). ff cpy =
cn, then ¢, G'()R™(t) = 0. Since R(t) > 0 and G'(t) # 0, this implies ¢, = 0,
which contradicts the assumption ¢, > 0. Consequently, after simplification, it
follows

r(t)/R(t) = (ca/(n(en-1 = ¢a)))G'(t)/G(2). (2.34)

Since R(t) and G(t) are both non-decreasing functions, we obtain from (2.34)
that ¢,—1 > ¢n. The solution of (2.34) is given exactly by (2.30).

Finally, we have a result for the residual life §;. In order to have a nice
characterization assume G(t) = t. Since the proof of this theorem is similar to
Theorems 4 and 5, it is omitted.

Theorem 6. Let R(t) > 0, for every t > 0. For some fized integer n > 1, if
E(6;|N(t) = n) = bt, for every t > 0 whenever P(N(t) =n) >0, where b > 0 s
a constant, then 0 < b < 1 and R(t) = A1 =/"b| for some A > 0. In particular
ifb=(n+1)71, then {N(t),t >0} is a homogeneous Poisson process.

Note that in the above theorems, the condition G is non-decreasing can
actually be replaced by G is monotone. For if G is non-increasing, just consider
the function —G, then it is easy to modify the other conditions and the results
still hold. On the other hand in Theorem 2, if G(0) # 0, then, by letting G1(z) =
G(z) — G(0), z > 0, and G1(z) = 0, z < 0, everything can be fixed similarly.
Yet for simplicity, here and in the next two sections, we still assume G is non-
decreasing and sometimes G(0) = 0.

3. Characterizations Related to the Backward Record Values

Cinlar and Jagers (1973) and Huang et al. (1993) characterize the distribu-
tion of the inter-arrival times among the renewal processes through properties of
backward recurrence times. Motivated by these results, in this section, we will
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characterize the common distribution F, by some properties of the conditional
distribution of R; — Ri_1 given R;, 1 < j. First we have

Theorem 7. Assume F(z) has density f(z). Let G be a non-decreasing function
such that for every x > 0, G has a point of increase in (0,z). Assume for some
fized integer j 2> 1,

E(G(R; - Rj—1)|R; = 2) = E(G(Ro)|R; = z), V& >0; (3.1)

then X, has an exponential distribution.

Proof. First, (3.1) implies

[ 6~ v)tnmeawiy = [ 6 Inin=@d @2
0 0

or, by (1.2) and (1.3),
/0 * Gz - )R @)r(y)dy = /0 * G)(R() - RW)Y ry)dy.  (3.3)

Integration by parts implies JE(Ri(z —y) — (R(z) — R(y)))dG(y) =0, Yz > 0.
Hence, by Propositions 2.1 and 2.2 of Lau and Rao (1990), R(z) = az, where
o = r(0+). This in turn implies X is exponentially distributed.

Another characterization is given below, where for convenience R_; is defined
to be zero.

Theorem 8. Let F and G be as described in Theorem 7. Also, assume f(z)
is continuous, F(z) > 0 for x > 0 and G(0) = 0. If for some fized integers
1<i<7,

E(G(R: — Ri.1)|R;j = ) = E(G(Ri-1 — Ri-2)|R; = z), V2 >0, (3.4)
then X, has an exponential distribution.
Proof. Again, if 1 <7 < j — 1, then, using (1.2), (1.3) and (1.4), we have
B(G(R: - Ri)|R; = @)
= /0 P(R; - Ri—1 > y|R; = 2)dG(y)

- /0 / / FRo~Roen Ril Ry =2 (2, w)dw dz dG(y)
Yy z

_ r'(j+1)
T T - 9)TE) R (=) Jo

*(R(z) — R(w)y ™" r(w)
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/ G(z)R" Y (w — 2)r(w — 2z)dz dw

_ I'(j+1) Rl
- P(j—i)P(z+1)Rj($)/(; (R(z) = R(w))? ™" "r(w)

./Ow R{(w — 2)dG(z)dw, (3.5)

where the last step is by an integration by parts. Similarly,
E(G(Ri_l - Ri_2)|R' = .'Z:)

I'G+1) . .
T TG - i+ DIG)R( x)/ (R(z) - R(w))~ w)/ R Y(w - 2)dG(z)dw. (3.6)

Substituting (3.5) and (3.6) into (3.4) yields

— R(w)) " r(w) /Ow R'(w — 2)dG(z)dw

_ /0 “(R(z) - R(w))~*r(w) /0 R l(w - 2)dG(2)dw. (3.7)
Differentiating both sides of (3.7) with respect to z (j — 7 + 1) times yields
/ Rz = 2)(r(z) - r(z — 2))dG(z) = 0. (3.8)
Next, if ¢+ = j, then, from the proof of Theorem 7 we have

E(G(R; - Rj1)|R; = (z ~ y)dG(y); (3.9)

and, by letting s = 7 — 1 in (3.5), we have

E(G(Rj-1 — Rj_3)|R; = z) = Rj‘im) /oz /ym R (w - y)r(w)dw dG(y). (3.10)

Hence, we obtain (3.8) again.

Now, by Proposition 2.2 of Lau and Rao (1990), noting that G(z) % 0 for
z > 0, there exists a y € (0, z) such that R*~"!(z — y)(r(z) ~ r(z — y)) = 0. Since
F(z) > 0 for every z > 0, we have, for every y < z, R(z — y) > 0. Consequently,
for every z > 0, r(z) = r(z—y), for some y € (0,z). Now, since r(z) is continuous
(because f(z) is continuous), we obtain r(z) = ¢, where « is a positive constant.
This proves that X; is exponential.

It is desirable to generalize the above results, namely, characterize F' from

E(G(Rz - R,'_l)IRj = .’B) = E(G(Rk - Rk—l)IRj = .’II), Vz > 0, (3.11)
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for some fixed integers 0 < k < 7 < j; however, the computations are very
cumbersome for solving the above general equation.

4. Characterizations Related to the Forward Record Values

Gupta (1984) proves F is exponential if and only if E((R;41—R;)"|R; =z) =¢
(independent of z) for fixed j > 0 and r > 1. This result has been extended by
Rao and Shanbhag (1986), where they obtain the same characterization if, in
Gupta’s condition, the expression (Rj41 — R;)" is replaced by G(R;+1 — R;),
‘where G is a monotone function which satisfies certain conditions. On the other
hand, when F is discrete, Nagaraja et al. (1989) give a characterization of the
geometric tail distribution from E(Rj+2 — Rj41|R; = z) = c. Here, we say X has
a geometric tail distribution, and write X is GT(k,6), if for some fixed integer
k> 1, p(z) = 0S(z), Yz > k, where p(z) = P(X = z), and S(z) = P(X 2> z).

The following two theorems are generalizations of the above results, where,
instead of considering the difference of R;4; and R;, we consider the difference
of any two abjacent record values after R;.

Theorem 9. Assume that F(z) has density function f(z) and F(z) > 0 for
z > 0. Let G be a non-decreasing function having non-lattice support on z > 0
with G(0) = 0 and E(G(X1)) < oo. If, for some fized non-negative integers j
and k,

E(G(Rjsk+1 — Rjqi)|Rj =z) = ¢ (4.1)
for every £ > 0, where ¢ > 0 is a constant, and if for some & > 0 (2.13) holds,
then ¢ = E(G(X1)) and X, is ezponentially distributed.

Proof. First, by using (1.5), we have
E(G(Rjtk+1 — Rjik)|R; = )
= /0 P(Rjik+1 — Rjx > y|R; = 2)dG(y)
o0 o0 oo
= /0 / / FRrs1,RienRy=a(Z T w, w)dwdzdG(y)
y T
o0 o'} _ k-1
- [ o B R s,
0 T

T'(k)F(z)
1 o0 _ oo
= W/m (R(w) — R(z))F 1'r'(w)/0 G(z)f(w + z)dzdw
1 oo _ o _
- TS / (R(w) — R(z))**r(w) /w F(2)dG(z — w)dw. (4.2)

Here, since E(G(X1)) < oo, we have

0 < lim G(z — w)F(z) < Jim G(2)F(z) < 11 Oo/ G(z)dF(z) =

Z— 00
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Using this and integrating by parts yields

/0 G(2)f (w + 2)dz = -/w Gz — w)dF(z) = / F(2)dG(z — w).  (4.3)

w

Thus, the last equation of (4.2) holds. Now (4.1) implies
L " (R(w) — R(z))¥r(w) / T F(2)dG(z — w)dw = (C(kR)F(z).  (4.4)
Taking the derivatives of both sides k times, with respect to z, it follows that
/0 Pz + 2)dG(z) = cF(z). (4.5)

Now the solution of (4.5) is F(z) = 1 — e %, ¢ > 0, where ) is the positive
number defined by [;° e~**dG(z) = c (see Shimizu (1979) or Huang et al. (1993)).
Finally, by letting £ — 0 in (4.5) we obtain ¢ = E(G(Xj)). This completes the
proof.

Next, we have a discrete version of the previous theorem, where for simplicity
we assume the span of F' equals 1.

Theorem 10. Assume F is arithmetic with span 1, and G s a non-decreasing
function with G(0) = 0. For some fized non-negative integers j, k and l, if

E(G(Rj+k+1 — Rjyi)|R; =) = ¢, (4.6)

forz =5 +1+1,7+1+2,..., where ¢ > G(1) is a finite constant and ¢ <
® e (G(n+1)-G(n)) < oofor some{ > 0, then X; has a GT(]+l+k+2 P)
distribution for some 0 < p < 1.

Proof. The assumption (4.6) implies, forz =5 +1+1,5+1+2,..., that

Y GW)P(Rjtr+1 — Rjsk =ylR;j=2z) =c. (4.7)
y=1

In view of the Markov property of {R,,n > 0}, and using the conditional prob-
ability P(Ri+1 = u|R; = v) = p(u)/F(v), (4.7) implies

) 1) o0 00
wi=z+1 wy=w;+1 wE=wr-1+1y=1
G(y)P(Rjtks1 — Risk =, Rjpk = we, ..., Ris1 = wi|R; = z)
= o -~ p(y + wi) p(wk) p(ws) p(ws)
- Y Y Y Yow F " Flwy) F
wi=z+1 wo=wi+1 wip=wi-1+1y=1 wk) (wk 1) (wl) (.’12)

= c (4.8)
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From this we obtain

oo oo k ' )
Yoo 2 Z G(y)p(y + wk) g‘(w’.) = cF(z).  (4.9)
wy=z+1 wp=wi-1+1 y=1 i=1 (wi)

Replacing z by z+1 to form a new equation and subtracting these two equations,
we have

i i i ZG(y)py+wk Hz(w’ +1). (4.10)
wo=z+2 wz=wz+1 wr=wi_1+1y=1 ( 1)

Repeating the same procedure (k — 1) more times, we obtain

ZG(y)p(y+m+k)=cﬁ’(m+k), a:=j;+—l+1, jHI+2,.... (4.11)
y=1

Next, by letting Y = X —k — j — 1 — 1, we obtain

oo
ZG(y)P(Y=y+a:) =c¢(1-U(z)), £=0,1,2,..., (4.12)
y=1
where U(z) = P(Y < z). Finally, the solution of (4.12) is (see Huang et al.
(1993)) P(Y =) = p*~}(1 - p), ¢ > 1, where 0 < p < 1 is defined by 33320(G (i +
1)-G@))(1 —p)' =c. Thisproves X =Y +k+j+1+11s GT(k+j+1+2,p).
In the previous two theorems, we characterize the distribution of X; by the
spacings of two adjacent record values. The case of non-adjacent record values
has seldom been considered by other authors. Dallas (1987) has some partial
results for non-adjacent order statistics under centain very restricted conditions.
In the following, first we give a useful lemma and then use this lemma to
characterize X; to be exponential based on two non-adjacent record values.

Lemma 1. Assume that F(z) has density f(z) and F(z) > 0 for z > 0. If for
some fized integers j > 0 and k,1 > 1,

E(Rjik+1 — Rjsx|Rj =) = ¢, (4.13)
for every = > 0, where ¢ > 0 is a constant, then E(Riy — Ri|R; = z) = ¢, for
every x > 0 and ¢ > 0.

Proof. From (4.13), by using (1.5), we obtain

E(Rj+k+l — Rj+k|R; = iv)

oo oo 12 (R(z 4 w) — Rw))"H(R(w) = R@)F (2 +wyr(w)
- [ ST (R F(2) dydzdw
= ¢ (4.14)
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Hence
/x * (R(w) - R(z))*r(w) /O 2Rz + w) — Rw))" f(z + w)dz dw
= c[(OT(k)F(z). (4.15)

Differentiating both sides k times, with respect to z, it follows that for every
z > 0, '

L(1)F(z) ’
The lemma then follows immediately, as the right side of (4.16) is exactly E(Rj4;—
R;|R; = z).
Along the lines of the proof of Lemma 1, it is easy to obtain a corresponding

result when F' is arithmetic.
Now we give an extension of Theorem 9 under the condition that G(z) = .

Theorem 11. Assume that F(z) has a differentiable density f(z) with f(0+) > 0
and F(z) > 0 for z > 0. Also assume E(X1) < oo. If for some fized integers
j, k Z 07

[F e R o

E(Rjyk+2 — Rjyk|Rj =) = ¢, (4.17)
for every x > 0, where ¢ > 0 is a constant, then X1 is exponentially distributed.

Proof. By Lemma 1 and (1.4), (4.17) implies
/z ~ 2R(z) - R(z))f(2)dz = (c + &) F(z). (4.18)
Differentiating with respect to z, the above becomes
F(z) - e+ 2)f(@) = —r(a) [ f()d:
= r(z) / 2P (2) = —ar(z)F(z) - r(c) / P (419)

On the other hand, since 0 < F(z) < 1 for every z > 0, and noting that f(z) =
r(z)F(z), we have from (4.19) r(z) > O for every > 0. Thus (4.19) implies, on
replacing f(z) by r(z)F(z),

/ F(2)dz = cF(z) - F(z)/r(z). (4.20)
Differentiating with respect to z, gives 2 + r'(z)/r?(z) = cf(z)/F(z). From this

we obtain
R(z) = —In(F(z)) = (2/c)xz — 1/er(z) + 1/er(0+), (4.21)
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or

(cR(z) — 2z — 1/r(0+))r(z) = —1. (4.22)
Substituting

v(z) = cR(z) — 2z +¢/2 — 1/r(0+) (4.23)
into (4.22) yields

v(z)v'(z) — (¢/2)v'(z) + 2v(z) = 0. (4.24)

If R(z) = 2z/c, Vz > 0, then X; is exponential with F(z) =1 — e~22/¢. Suppose
that R(z) # 2x/c for some zg > 0. Since R(z) is a continuous function we have
R(z) # 2z/c for z belonging to some interval contains zo. Let a; = inf{z|R(z) #
2z/c}, ay = inf{z|z > a1 and R(z) = 2z/c}. Then 0 < a3 < a2 < o0 (ag is
defined to be oo if R(zx) # 2z/c for every z > a1) and R(z) # 2z/c, Yz € (a1, a2).
Assume v(z) # 0, Yz € (a1, a2). Then (4.24) can be rewritten as

v'(z) — (¢/2)v'(z)/v(z) +2 =10, Vz € (a1,az). (4.25)
Thus v(z) satisfies
v(z) = exp{(2/c)(v(z) + 2z — b)}, Vz € (a1,a2), (4.26)

for some constant b. If v(z;) = 0 for some z; € (a1, a2), then, from the continuity
of v(z) it is easy to obtain a contradiction. Hence v(z) # 0, Vz € (a1,0a2), and
(4.26) holds. From (4.23) and (4.26), we obtain, for Vz € (a1, az),

cR(z) — 2z +¢/2 — 1/r(0+) = exp{(2/c)(cR(z) + ¢/2 — 1/r(0+) — b)}. (4.27)

Since R(z) is continuous, Yz > 0, and R(0) = 0, it follows that R(a1) = 2a;/c.
Also, if a3 < oo, then R(az) = 2az/c. By letting £ = a; and az in (4.27)
respectively, we have

¢/2 = 1/r(04) = exp{(2/c)(2a1 + ¢/2 — 1/r(0+) — b)}, (4.28)

and
¢/2 — 1/r(0+) = exp{(2/¢)(2a2 + ¢/2 — 1/7(0+) — b)}. (4.29)

This in turn implies a; = a3, which is a contradiction. Hence az = co. Moreover
from (4.28) we find that ¢/2 — 1/r(0+) > 0. Comparing the right side of (4.27)
with the right side of (4.28) yields

cR(z) — 2z + ¢/2 — 1/7(0+) = e2BE@)—4e1/e(¢/9 — 1/r(0+)). (4.30)
Differentiating (4.30), we obtain

r(@)(c - 2(c/2 - 1/r(0+))e~41/?R=)) = 2, Vz € (a1,00). (4.31)
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Since, as mentioned before, r(z) > 0, Vz > 0, ¢/2—1/r(0+) > 0 and limz oo R(z)
= 00, (4.31) cannot hold for every z > ai, which yields a contradiction again.
Therefore, we conclude that R(z) = 2z/c, Vz > 0. This completes the proof.

Remark. In this section, when F is continuous, we have characterized the
distribution of X; by using the constant regression of Rj+; — Rjyx on Rj, for
| = k+1 or k + 2, respectively. Yet when [ —k > 3, it is still unknown what
class of distributions will be characterized. Also if F' is arithmetic with span 1,
then, from E(R; k2 — Rjsk|Rj =2) =¢, Ve =75+ 1,7 +2,..., corresponding
to (4.20) we obtain,

Zyp(m-{—y)=cF‘(m+1)—F(m+1)/'r(:c+1), Vz=j+1,7+2,..., (432)
y=2

and we fail to solve it.
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