
Noname manuscript No.
(will be inserted by the editor)

Stochastic Matching Pursuit for Bayesian Variable Selection

Ray-Bing Chen · Chi-Hsiang Chu · Te-You Lai ·

Ying Nian Wu

Abstract This article proposes a stochastic version of the matching pursuit algorithm for Bayesian variable

selection in linear regression. In the Bayesian formulation, the prior distribution of each regression coeffi-

cient is assumed to be a mixture of a point mass at 0 and a normal distribution with zero mean and a large

variance. The proposed stochastic matching pursuit algorithm is designed for sampling from the posterior

distribution of the coefficients for the purpose of variable selection. The proposed algorithm can be considered

a modification of the componentwise Gibbs sampler. In the componentwise Gibbs sampler, the variables are

visited by a random or a systematic scan. In the stochastic matching pursuit algorithm, the variables that

better align with the current residual vector are given higher probabilities of being visited. The proposed

algorithm combines the efficiency of the matching pursuit algorithm and the Bayesian formulation with well

defined prior distributions on coefficients. Several simulated examples of small n and large p are used to illus-

trate the algorithm. These examples show that the algorithm is efficient for screening and selecting variables.

Keywords: Gibbs sampler, Metropolis algorithm, Stochastic search variable selection.

R.-B. Chen

Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan

C.-H. Chu

Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan

T.-Y. Lai

Institute of Statistics, National University of Kaohsiung, Kaohsiung, Taiwan

Y. Wu

Department of Statistics, University of California, Los Angeles, California, USA

2

1 Introduction

In the past two decades, Bayesian methods for variable selection in linear regression models have become

increasingly popular. In their pioneering paper, George and McCulloch (1993) first proposed a Bayesian vari-

able selection method, called stochastic search variable selection. Some other Bayesian methods related to

stochastic search variable selection were studied by Chipman (1996), Chipman et al. (1997), and George

and McCulloch (1997). These Bayesian methods have been successfully applied to model selection for su-

persaturated designs (Beattie at al., 2002), signal processing (Wolfe et al., 2004, and Févotte and Godsill,

2006), and gene selection (Lee et al., 2003).

In the Bayesian formulation of George and McCulloch (1993, 1997), the prior distributions of the co-

efficients are assumed to be independent, and the prior distribution of each coefficient is assumed to be a

mixture of two normal distributions. Both normal distributions are centered at 0, but one has a very small

variance and the other has a much larger variance. The normal distribution with a very small variance is used

to model the coefficients of the variables that are not selected or are not active, and the normal distribution

with a very large variance is used to model the coefficients of the variables that are selected or are active.

For such a mixture of normal prior distribution, one can augment an indicator for each variable to indicate

whether this variable is active or not. The stochastic search variable selection of George and McCulloch

(1993) is a Gibbs sampler scheme that samples from the posterior distribution of the indicators and the

coefficients. The algorithm iteratively samples the indicators given the coefficients, and then samples the

coefficients given the indicators. The subset of variables with the highest posterior probability is considered

the “best” model.

In this article, we adopt the commonly used notation of n and p, where n is the number of observations,

and p is the number of variables. In the Gibbs sampling scheme of George and McCulloch (1993), the

step of sampling the coefficients conditional on the indicators requires the computation of the posterior

covariance matrix of these coefficients, which is proportional to the inverse of a p×p information matrix. The

computational complexity is O(p3), which can be expensive if p is large. In addition to this expensive step,

stochastic search variable selection of George and McCulloch (1993) also requires expensive computations

for sampling the indicators simultaneously. George and McCulloch (1997) suggested several schemes for

3

reducing the computational costs. One of them is to use the Cholesky decomposition of the information

matrix, and others focus on how to efficiently sample the indicators.

This article proposes a stochastic matching pursuit algorithm to avoid the inversion of potentially large

matrices and to improve the efficiency of the Markov chain Monte Carlo algorithm for posterior sampling. We

adopt the Bayesian formulation of George and McCulloch (1993), except that we assume that the variance of

the normal distribution for the inactive coefficients is 0. That is, the distribution of the inactive coefficients

is a point mass at 0. The proposed stochastic matching pursuit algorithm is a Markov chain Monte Carlo

algorithm for sampling from the posterior distribution of the coefficients.

The original version of the matching pursuit algorithm was proposed by Mallat and Zhang (1993) in the

context of wavelet sparse coding. The algorithm is essentially a forward stepwise variable selection method

in linear regression. The algorithm is a greedy one. It starts from an empty set of variables. Then at each

step, the algorithm identifies a variable that has the maximum correlation with the current residual vector.

It selects this variable, computes its coefficient, and updates the residual vector. This algorithm has proven

to be very efficient for variable selection, and has been widely used in signal processing.

However, the matching pursuit algorithm is only a procedure, not a principle, in the sense that it does

not explicitly minimize any objective function or criterion. The greedy nature of the algorithm can also

cause problem in the sense that the procedure may not select the optimal set of variables. Our method takes

advantage of the efficiency of the original matching pursuit algorithm, and modifies it into a Markov chain

Monte Carlo algorithm that samples from the posterior distribution of the coefficients with well defined

mixture prior distributions.

The stochastic matching pursuit algorithm is a Metropolis scheme with a pair of reversible moves. One is

the “addition move,” which adds a new variable to the existing set of selected variables, where the variables

with larger correlations with the residual vector are assigned higher probabilities of being added, in a fashion

that is very similar to the original matching pursuit algorithm. The other move is the “deletion move,” which

deletes a variable from the existing set of selected variables. The deletion move complements the addition

move so that the Markov chain can be made reversible.

Several simulated examples are used to illustrate the proposed algorithm. In our simulation studies of

small n and large p problems with (n, p) = (50, 200) and (100, 400), the stochastic matching pursuit algorithm

performs well in screening and selecting variables. In comparison with existing methods for variable selection,

4

the computational cost of stochastic matching pursuit is lower than that of stochastic search variable selection

when the number of predictors, p, is large. The proposed method is competitive with the screening method

of Shao and Chow (2007) and a Lasso type method (Tibshirani, 1996) in terms of variable selection results.

We also compare our method with a Bayesian method of Smith and Kohn (1996), who used conjugate

prior distributions for the coefficients of the selected variables, so that these coefficients can be integrated

out in closed form. However, the algorithm of Smith and Kohn (1996) involves matrix inversion, which can

be computationally expensive and which may be numerically unstable when p is large. Simulation studies

with n = 50 and p = 20, 50, 100 and 300 show that our method compares favorably with the method of

Smith and Kohn (1996) in terms of variable selection results.

This article is organized as follows. Section 2 presents the stochastic matching pursuit algorithm and

explains how to choose the tuning parameters. Section 3 studies small n and large p problems, where the

stochastic matching pursuit algorithm is applied to the simulated data sets studied by Shao and Chow

(2007) as well as to an example of image representation using Gabor wavelet elements. Section 4 compares

the computational cost of the stochastic matching pursuit algorithm with that of stochastic search variable

selection. It also compares the proposed method with the method of Smith and Kohn (1996) that is based

on conjugate prior. Finally Section 5 summarizes our findings and discusses future directions.

2 Stochastic Matching Pursuit

In this section, we first review stochastic search variable selection of George and McCulloch (1993, 1997).

Then we present the stochastic matching pursuit algorithm.

2.1 Variable selection in linear regression

To fix notation, consider the following linear regression model

Y = Xβ + ε, (1)

where Y is an n × 1 response vector, X = [X1, . . . , Xp] is an n × p matrix, and Xi is the i-th predictor

variable or regressor. β = (β1, . . . , βp)
′

is a p× 1 vector of the unknown coefficients, and ε = (ε1, . . . , εn)
′

is

an n× 1 noise vector that follows a multivariate normal distribution with zero mean vector and covariance

matrix σ2In, where In is an n× n identity matrix.

5

The variable selection problem is to select the “best” subset of variables from X1, . . . , Xp to model the

response vector Y . We can introduce a p× 1 vector of latent variables, γ = (γ1, . . . , γp)
′
, to indicate which

variables are selected. Each γi is an indicator that takes value 0 or 1. γi = 1 means that the variable Xi is

selected or active, and γi = 0 means that the variable Xi is not selected or inactive.

2.2 Stochastic search variable selection

In stochastic search variable selection of George and McCulloch (1993, 1997), the prior distribution of the

coefficient βi given the indicator γi is

[βi|γi = 0] ∼ N(0, ν0i), and [βi|γi = 1] ∼ N(0, ν1i). (2)

The value of ν0i is set to be small, and N(0, ν0i) is the prior distribution of the coefficient βi if the variable

Xi is not selected or if Xi is inactive. The value of ν1i is set to be large, and N(0, ν1i) is the prior distribution

of βi if the variable Xi is selected or active. Usually one can assume that ν1i = ciν0i.

The prior distribution of γi is P (γi = 0) = pi, and P (γi = 1) = 1− pi. The prior distributions of (γi, βi)

are assumed to be independent for i = 1, ..., p, and they are independent of the prior distribution of the

residual variance σ2, which is an inverse Gamma distribution, σ2 ∼ IG(ν/2, νλ/2).

The stochastic search variable selection procedure is a Gibbs sampling scheme where each iteration

samples from the conditional distributions [β|γ, Y, σ], [γ|β, Y, σ], and [σ|Y, β, γ]. The best subset of variables

are selected according to the information contained in the Monte Carlo samples of γ.

Within each iteration of the above Gibbs sampling scheme, the most costly step is to sample β from a mul-

tivariate normal distribution, [β|γ, Y, σ] ∼ N(σ−2AγX
′
Y, Aγ), where Aγ = (σ−2X

′
X + D−1

γ R−1D−1
γ)−1,

R is the prior correlation matrix, and D−2
γ = diag[(a1ν01)

−1, . . . , (apν0p)−1] with ai = 1 if γi = 0, or

ai = ci if γi = 1. The computational complexity of this step is O(p3).

2.3 Componentwise Gibbs sampler

To avoid computing the inverse matrices, we may adopt a componentwise Gibbs sampler. The stochastic

matching pursuit algorithm is a further improvement of the componentwise Gibbs sampler.

6

Before describing the componentwise Gibbs sampler, we first make a minor modification to the prior

specification. Following Geweke (1996) and Smith and Kohn (1996), we set ν0i = 0, thus Eq. (2) becomes

βi|γi ∼ (1− γi)δ0 + γiN(0, τ2
i), (3)

where δ0 is a point mass at 0 and τ2
i = ν1i. That is, we simply assume that the coefficients of the inactive

variables equal 0. Without much loss of generality, we assume that all the variables have the same probability

to be included into the model, i.e., ρ = pi = P (γi = 0), i = 1, . . . , p. We also assume that τ = τi for

i = 1, . . . , p.

For such a prior distribution, Smith and Kohn (1996) and George and McCulloch (1997) suggested

modifications of stochastic search variable selection. However, it is still necessary to compute inverse matrices

in their modified algorithms.

The componentwise Gibbs sampler samples (γi, βi) one at a time conditioning on (γ−i, β−i), where the

commonly used notation −i means all the components except the i-th one. In fact, George and McCulloch

(1997) suggested generating γi componentwise from the full conditionals, [γi|γ−i, Y], in order to save the

computational cost. However, in the componentwise Gibbs sampler, one does not only sample γ componen-

twise, but one can also sample β componentwise. The key step in this Gibbs sampler is to compute the

likelihood ratio

zi =
P (Y |γi = 1, {βk, ∀ k 6= i})
P (Y |γi = 0, {βk, ∀ k 6= i}) , i = 1, . . . , p.

It is easy to show that

zi =

s
σ2

i?

τ2
exp


r2
i

2σ2
i?

ff
, (4)

where

σ2
i? =

σ2τ2

X
′
iXiτ2 + σ2

,

ri =
R
′
iXiτ

2

σ2 + X
′
iXiτ2

,

and Ri = Y −Σk 6=iβkXk. For more details about Eq. (4), please see Lemma 3.1 in Lai (2007).

Algorithm 1 is a description of the componentwise Gibbs sampler. It is essentially the same as the

Bayesian search algorithm of Geweke (1996), who assumed that the prior distribution of βi conditional on

βi 6= 0 is a truncated normal distribution.

Algorithm 1 The componentwise Gibbs sampler for variable selection

7

(I) Randomly select a variable Xi. Compute Ri = Y −Σk 6=iβkXk, and let σ2
i? =

σ2τ2

X
′
iXiτ2 + σ2

, ri =
R
′
iXiτ

2

σ2 + X
′
iXiτ2

.

(II) Compute zi =
p(Y |γi = 1, {βk, ∀ k 6= i})
p(Y |γi = 0, {βk, ∀ k 6= i}) =

q
σ2

i?/τ2 exp{ r2
i

2σ2
i?

}. Then evaluate the posterior probability P (γi =

1|{βk, ∀ k 6= i}, Y) =
(1− ρ)zi

ρ + (1− ρ)zi
.

(III) Sample γi from the above posterior probability. If γi = 0, then set βi = 0, otherwise, sample βi ∼ N(ri, σ
2
i?).

Go back to (I).

(IV) After a number of iterations of the above steps, compute the current residual vector, Res = Y −Pi βiXi. Then

sample σ2 ∼ IG(n+ν
2

, Res
′
Res+νλ
2

). Go back to (I).

In the above algorithm, σ2 is updated less frequently than the coefficients and indicators.

2.4 Metropolize the matching pursuit algorithm

In the componentwise Gibbs sampler, the variables are visited in random order. They can also be visited by

a systematic scan. Both the random and systematic scans can cause problems. If the variables are highly

correlated and if the residual variance is small, an inferior variable can be visited first and then selected,

thus preventing a variable of more importance from being selected. So a better selection scheme should be

devised, where the variables compete to be selected. This motivates us to design the stochastic matching

pursuit algorithm.

The matching pursuit algorithm of Mallat and Zhang (1993) is widely used in wavelet sparse coding,

where the goal is to represent a signal by a small number of wavelet elements selected from a large dictionary.

This algorithm is essentially a forward stepwise variable selection procedure in linear regression. Initially,

all the coefficients βi’s are set to be 0, and the initial residual vector R = Y . Without loss of generality,

let us assume that all the predictor vectors Xi are normalized to have ‖Xi‖2 = 1. Then each step of the

matching pursuit algorithm selects the Xi that achieves the maximum magnitude of the inner product

|〈R, Xi〉|. After Xi is selected, its coefficient is updated to βi ← βi + 〈R, Xi〉, and the residual is updated to

R ← R− 〈R, Xi〉Xi. The procedure stops when the maximum of |〈R, Xi〉| is below a threshold.

Unlike the random or systematic updating of the coefficient βi, each step of the matching pursuit

algorithm updates the coefficient of the variable that gives the best fit to the current residual vector. This

can avoid the problem of the componentwise Gibbs sampler discussed above. Our stochastic matching pursuit

algorithm incorporates this feature by using a Metropolis scheme. The algorithm is an improvement of the

componentwise Gibbs sampler.

8

The Metropolis scheme consists of a pair of reversible moves: “addition” and “deletion”. The addition

move adds a variable to the current set of active variables. The addition move is very similar to the matching

pursuit algorithm, where those variables that have larger correlations with the current residual vector are

given higher probabilities of being selected. The deletion move deletes a variable from the current set of

active variables, and it is a reversal of the addition move to make the Markov chain reversible.

Specifically, suppose currently there are A active variables. With probability padd, we propose to add

an inactive variable to the set of active variables. With probability pdelete = 1− padd, we propose to delete

an active variable, or make it inactive.

The following is the proposal on how to add a variable, which is similar to matching pursuit. Among all

the inactive variables, we compute zi = p(Y |γi = 1, {βk,∀ k 6= i})/p(Y |γi = 0, {βk,∀ k 6= i}) as in (I) and

(II) of the componentwise Gibbs sampler of Algorithm 1. This zi is the likelihood ratio for testing whether

γi = 1. The larger zi is, the more promising the variable Xi is. In the Metropolis scheme, we propose to

add a variable by sampling a variable i from the group of inactive variables, where the probability for a

variable i to be sampled is proportional to zi, that is, the proposal probability of adding the variable i into

the set of active variables is zi/
P

i:γi=0 zi. Meanwhile, we propose to sample βi according to (III) of the

componentwise Gibbs sampler.

The proposal for deleting an active variable is simple. Among all the active variables, we randomly select

one, and set the corresponding indicator and coefficient to 0.

The pair of addition and deletion moves makes it possible to design a reversible Markov chain using the

Metropolis scheme. We only need to calculate the acceptance probability of the addition proposal and the

acceptance probability of the deletion proposal.

The acceptance probability for the proposal of adding variable i whose current γi = 0 is

paccept−add = min

"
1,

P (γi = 1|{βk, ∀ k 6= i}, Y)

P (γi = 0|{βk, ∀ k 6= i}, Y)

pdelete

padd

1/(A + 1)

zi/
P

j:γj=0 zj

#

= min

"
1,

(1− ρ)zi

ρ

pdelete

padd

1/(A + 1)

zi/
P

j:γj=0 zj

#

= min

"
1,

(1− ρ)

ρ

pdelete

padd

P
j:γj=0 zj

(A + 1)

#
. (5)

Recall that ρ is the prior probability that γj = 0.

9

The acceptance probability for the proposal of deleting variable i whose current γi = 1 is

paccept−delete = min

"
1,

P (γi = 0|{βk,∀ k 6= i}, Y)

P (γi = 1|{βk,∀ k 6= i}, Y)

padd

pdelete

zi/(
P

j:γj=0 zj + zi)

1/A

#

= min

"
1,

ρ

(1− ρ)

padd

pdelete

AP
j:γj=0 zj + zi

#
. (6)

Note that in the above calculations, the likelihood ratio zi = p(Y |γi = 1, {βk,∀ k 6= i})/p(Y |γi =

0, {βk,∀ k 6= i}) naturally balances out the posterior ratio P (γi = 1|{βk, ∀ k 6= i}, Y)/P (γi = 0|{βk,∀ k 6=

i}, Y), so that the resulting acceptance probabilities have quite simple forms.

In particular, it is interesting to see that the paccept−add calculated in Eq. (5) does not depend on the

variable i to be sampled, because the probability that i is sampled is proportional to zi. paccept−add is

decided by the overall fitness of all the inactive variables, i.e.,
P

j:γj=0 zj .

The paccept−delete calculated in Eq. (6), however, depends on which variable i is to be deleted. A subtle

point is that all the zj and zi in Eq. (6) are re-calculated with the variable i turned inactive. If the variable

i is an important one,
P

j:γj=0 zj + zi can be very large, so that paccept−delete can be very small.

Algorithm 2 gives a detailed description of the stochastic matching pursuit algorithm.

Algorithm 2 Stochastic matching pursuit for variable selection

(I) Let A be the number of active variables. With probability padd, go to (II). With probability pdelete = 1− padd go

to (IV).

(II) With probability paccept−add calculated according to Eq. (5), go to (III), and with probability 1− paccept−add go

back to (I).

(III) Among all the inactive variables i with γi = 0, sample a variable i with probability proportional to zi, then let

γi = 1 and sample βi as described in (III) of Algorithm 1. Go back to (I).

(IV) If A > 0, then randomly select an active variable i with γi = 1.

(V) With probability paccept−delete calculated according to Eq. (6), accept the proposal of deleting the variable i, i.e.,

set γi = 0, and βi = 0. With probability 1− paccept−delete, reject the proposal of deleting variable i, and sample

βi as described in (III) of Algorithm 1. Go back to (I).

(VI) After a number of iterations of the above steps, compute the current residual vector, Res = Y −Pi βiXi, and

then update σ2 ∼ IG(n+ν
2

, Res
′
Res+νλ
2

). Go back to (I).

In this algorithm, the step of sampling βi of an active variable i is the same as in the componentwise Gibbs

sampler. The difference is that the inactive variables compete with each other to be included in the model

or to be turned active, in a fashion that is similar to matching pursuit. It is possible to introduce other

reversible moves into the Metropolis algorithm, such as switching an active variable and an inactive variable.

We shall explore such possibilities in future work.

10

The above algorithm combines the strengths of both matching pursuit and the componentwise Gibbs

sampler. As in matching pursuit, the algorithm aggressively pursues promising variables. As in the compo-

nentwise Gibbs sampler, the algorithm does not require the inversion of large matrices, and it samples the

posterior distribution of the coefficients with well defined mixture priors.

2.5 Implementation details

The stochastic matching pursuit algorithm produces a sequence of dependent random draws from the

posterior distribution [γ | Y] after a burn-in period. This Monte Carlo sample of γ’s can be used for model

selection. In this paper, we adopt the median probability criterion proposed by Barbieri and Berger (2004)

for variable selection. Specifically, we estimate the the posterior inclusion probability P (γi = 1|Y) for each

variable Xi from the Monte Carlo sample. If the estimated P (γi = 1|Y) is greater than or equal to 1/2,

then Xi is included into the model.

As for the tuning parameters, we set padd, i.e., the probability of the addition move, to be 1/2, which is

the same as pdelete, the probability of the deletion move.

For the parameters ν and λ in the prior distribution of σ2, we follow George and McCulloch (1993) by

setting λ = 1 and setting ν to be the non-zero components of γi.

We set ρ, the prior probability that a variable is excluded from the model, to be 1/2, following George

and McCulloch (1993, 1997). In the situation of small n large p, this probability should be set to a larger

value to reflect the prior belief of sparsity.

Now we consider the parameter τ , which is the prior variance of the active variables. It plays an important

role in determining the values of zi and the conditional posterior probability of γi, P (γi = 1|{βk, k 6= i}, Y).

It can be shown that the value of zi is a decreasing function of τ if τ2 > (R
′
iRi − σ2)/(X

′
iXi). Thus the

larger τ is, the smaller the value of zi is. Since the conditional posterior probability of γi = 1 is decreasing

as zi decreases, the larger τ is, the smaller the conditional posterior probability of γi = 1 is, i.e., it is more

difficult to include the variable Xi in the model. Hence large τ favors more parsimonious models, and small

τ would yield more complex models.

If we have no prior knowledge about the parameter τ , we may use K-fold cross validation method to

select τ . Specifically, we partition the whole data set into K subsets. We use K − 1 subsets to train the

11

model, and use the remaining subset to test the model in terms of the prediction error. We choose τ to be

bτ = arg min
τ

KX

k=1

X

j

(ykj − by−kj(τ))2, (7)

where ykj is the j-th observation in the k-th subset, and by−kj(τ) is the value predicted by the model selected

by the other subsets.

We can also adopt a Monte Carlo version of K-fold cross validation. We randomly divide the n observa-

tions into two subsets with n/K observations and (K − 1)n/K observations respectively. The subset with

n/K observations is treated as the testing set and the subset with (K − 1)n/K observations is used for

learning the model. After N replications, a loss function, essentially the same as Eq. (7), can be defined,

and the value of τ is chosen by minimizing the loss function.

For small n large p problems, we may also choose ρ, the prior probability of excluding a variable, by the

above cross-validation scheme.

3 Small n and Large p Problems

During the last decade, the small n and large p problems have received increasingly more attention. One

example is the gene selection problem in microarray experiments, where the number of candidate genes, p,

is much larger than the number of available samples, n. Based on the sparsity assumption, there are only

a few active genes in the candidate pool, and the variable selection approach is widely used for searching

possible candidate genes. Yi et al. (2003) modified the stochastic search variable selection procedure for

identifying multiple quantitative trait loci. Lee et al. (2003) proposed a Bayesian gene selection method,

which is similar to the idea of stochastic search variable selection. In addition to the gene selection problem,

signal representation can also be considered as a small n large p model selection problem, where a signal

such as an image is represented by a linear superposition of basis functions or basis elements selected from

an overcomplete dictionary. Here “overcomplete” means that the number of basis functions is larger than

the size of the signal. Wolfe et al. (2004) studied such a problem using Bayesian variable selection methods.

In this section, we shall apply stochastic matching pursuit algorithm to small n large p problems.

12

3.1 Simulation studies

Shao and Chow (2007) studied the small n and large p problem in microarray experiments, and proposed

a variable screening procedure to eliminate inactive variables. Based on the sparsity assumption, their

procedure employs a positive decreasing sequence {an} such that an → 0 as n →∞. For a fixed n, the i-th

variable is screened out if |bβi| ≤ an. Shao and Chow (2007) used the ridge regression estimator:

bβ = (X′X + hnIp)−1X′Y = RDX′Y,

where Ip is the p× p identity matrix, hn is the ridge parameter and RD = (X′X + hnIp)−1. RD is similar

to Aγ in stochastic search variable selection, because

RD = (X′X + D−1IpD−1)−1,

where D is a diagonal matrix whose elements are equal to 1/
√

hn. Shao and Chow (2007) proved that their

procedure is asymptotically consistent. They also pointed out that their idea is similar to that of the Lasso

method (Tibshirani, 1996).

Shao and Chow (2007) considered two cases of n and p : (n, p) = (50, 200) and (100, 400), and the true

parameter vector of the 5 true active variables is set to be

β = (3,−3.5, 4,−2.8, 3.2, 0, . . . , 0)′.

The variables Xi’s are independently generated from the multivariate normal distribution with mean vector

0 and covariance matrix In. In addition to the independent structure as in Shao and Chow (2007), we also

consider the dependent structure by adding a common factor, G, so that

Xi = Gi + kG,

where k is a pre-specified constant, Gi’s and G are independently generated from the multivariate normal

distribution with mean vector 0 and covariance matrix In. Two different values of k are considered: k = 0

and 1. When k = 1, the correlation between any two variables is 0.5. Then the response vector is generated

according to Eq. (1) with β, and the error term ε is also independently generated from the multivariate

normal distribution with mean vector 0 and covariance matrix In.

In our simulation studies, there are two designs for (n, p), and two designs on the distributions for the

variables. So there are 4 different combinations. For each combination, we perform a Monte Carlo study with

13

100 replications. For each replication, Xi’s and ε are re-generated independently, and the response vector Y is

also re-computed. The parameter τ in stochastic matching pursuit is selected from a pre-specified candidate

set, A, according to Eq. (7) by 5-fold cross validation. As mentioned in Section 2.5, the larger τ is, the more

parsimonious the selected model is. Thus we would suggest choosing the larger value of τ for small n large p

problems due to the sparsity assumption. For (n, p) = (50, 200), we set A = {80, 120, 160, 220}, and, when we

study the case of (n, p) = (100, 400), A is chosen as {100, 150, 200, 250}. For each replication, we run stochas-

tic matching pursuit for 5, 000×p iterations. After discarding the first 3, 000×p iterations, we take the 2,000

samples by using every pth sample from the remaining 2, 000 × p posterior samples for variable selection.

For comparison, we also code the screening method of Shao and Chow (2007), where we set hn = n2/3 and

an = n−1/6, the same as those in Shao and Chow (2007). In addition to the above two methods, a Matlab im-

plementation of the homotopy/Lars-Lasso algorithm for tracing the regularization path of the L1-penalized

squared error loss is available at http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software. In

this tool-box, the stopping criterion for this Lasso Matlab code is defined as

‖X ′
(Y −X ′bβ)‖∞ < b,

where b is a pre-specified threshold and its default value is 10−8. In this tool-box, the function lasso cv is

used to fit the parameters of a linear model by using the Lasso and K-fold cross validation. Thus we apply

this Matlab implementation as a selection procedure, and active variables are selected if the corresponding

coefficients are non-zero. Here the value of b is chosen from {2× 10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−8}

and K is set to be 10. Then the “best” results, i.e. the minimal number of selected variables, would be

recorded among selection results for different values of b.

The variable selection results are shown in Tables 1 and 2. In the tables, SC means the method

of Shao and Chow (2007), and SMP(bτ) means the stochastic matching pursuit procedure whose τ is

chosen by the 5-fold cross validation method. Lasso CV means the Matlab code, lasso cv, with b ∈

{2 × 10−1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−8}. In these two tables, we use two sets of numbers to report

the performance of a variable selection method. The first one, denoted by f1, is the frequency of the number

of the selected variables, that is, how many times we select 1 variable, how many times we select 2 variables,

and so on. For instance, Table 1 tells us that when k = 0, stochastic matching pursuit selects 5 variables 94

times per 100 repetitions; selects 6 variables 4 times per 100 repetitions, and selects 7 variables in the other

14

Table 1 Results based on 100 replications with (n, p) = (50, 200)

k method Number of selected variables

≤ 2 3 4 5 6 7 8 9 10 > 10 # of corr. sel.

0 SC f1 1 4 6 14 14 20 18 9 10 4

f2 0 0 0 1 1 10 13 9 9 3 46

Lasso CV f1 0 0 0 17 5 10 14 6 4 44

f2 0 0 0 17 5 10 14 6 4 44 100

SMP(bτ) f1 0 0 0 94 4 2 0 0 0 0

f2 0 0 0 94 4 2 0 0 0 0 100

1 SC f1 1 6 10 21 10 19 13 12 4 4

f2 0 0 0 2 2 9 8 6 4 4 35

Lasso CV f1 0 0 0 0 1 0 1 4 8 86

f2 0 0 0 0 1 0 1 4 8 86 100

SMP(bτ) f1 0 0 0 97 3 0 0 0 0 0

f2 0 0 0 97 3 0 0 0 0 0 100

Note: f1 is the frequency (in 100 replications) of the number of selected variables, and f2 is the frequency (in 100

replications) of including all 5 true active variables. “SC” is used to denote the results obtained by the screening

method of Show and Chow (2007). “Lasso CV” means the results selected by the Matlab code, lasso cv. “SMP(bτ)”

means the stochastic matching pursuit procedure whose τ is chosen by the 5-fold cross validation.

2 replications. The second set of numbers, denoted by f2, is the frequency of including all the true variables,

that is, how often the selected model includes all of the true active variables. For instance, Table 1 tells us

that all the 94 times that stochastic matching pursuit selects 5 variables, all of the 94 times, it selects the

5 true variables. Each of the 4 times it selects 6 variables, the selected 6 variables also include the 5 true

variables. We also report the frequency (in 100 simulation runs) of including all 5 true variables in the last

column of the table.

From both tables, we can make the following observations.

– For the screening method of Shao and Chow (2007), it is possible that some of the 5 true variables are

not selected in the model. For example, for the case of (n, p) = (50, 200) and k = 0, SC includes all 5 true

variables in the final model 46 times. When (n, p) = (100, 400) and k = 0, the frequency for including

all true variable is 77/100.

15

Table 2 Results based on 100 replications with (n, p) = (100, 400)

k method Number of selected variables

≤ 2 3 4 5 6 7 8 9 10 > 10 # of corr. sel.

0 SC f1 0 3 9 49 22 13 3 1 0 0

f2 0 0 0 41 19 13 3 1 0 0 77

Lasso CV f1 0 0 0 75 6 5 1 0 2 11

f2 0 0 0 75 6 5 1 0 2 11 100

SMP(bτ) f1 0 0 0 95 5 0 0 0 0 0

f2 0 0 0 95 5 0 0 0 0 0 100

1 SC f1 0 1 11 35 28 13 9 2 1 0

f2 0 0 0 33 28 13 8 2 1 0 85

Lasso CV f1 0 0 0 4 5 3 7 7 7 67

f2 0 0 0 4 5 3 7 7 7 67 100

SMP(bτ) f1 0 0 0 98 2 0 0 0 0 0

f2 0 0 0 98 2 0 0 0 0 0 100

Note: f1 is the frequency (in 100 replications) of the number of selected variables, and f2 is the frequency (in 100

replications) of including all 5 true active variables. “SC” is used to denote the results obtained by the screening

method of Show and Chow (2007). “Lasso CV” means the results selected by Matlab code, lasso cv. “SMP(bτ)”

means the stochastic matching pursuit procedure whose τ is chosen by the 5-fold cross validation.

– For the selection results by Lasso CV, all 5 true variables are included in the final model. However, there

can be problem with over-selection. For example, for the case of (n, p) = (50, 200) and k = 1, Lasso CV

selects more than 10 variables in the model in 86 replications.

– For both SC and Lasso CV, their performance is improved when n is larger. For the screening method of

Shao and Chow (2007), the frequency that the five true variables are included in the model for n = 100

is higher than the frequency for the case with n = 50, regardless of the value of k. For the results of the

Lasso type method, when n = 50, the average numbers of over-selected variables are 6.61 for k = 0 and

13.61 for k = 1, but when n = 100, the average numbers are 1.9 for k = 0 and 10.81 for k = 1. Thus we

believe that the consistent property for both methods still holds.

– For stochastic matching pursuit, the frequency of identifying the true model, i.e., containing only the

5 true variables, is always larger than or equal to 94/100. There exist a few cases where more than 5

variables are selected.

16

The above simulation results suggest that stochastic matching pursuit performs fairly well. Although it may

select more variables into the model, it always includes the 5 true variables into the model.

3.2 Image representation

Wolf et al. (2004) applied the Bayesian variable selection method to represent the time-frequency surface,

and this surface is modeled as the Gabor regression model, i.e.

f =
X

i

cigi + ε,

where gi’s are the Gabor basis functions, ci’s are the unknown coefficients, and ε is the white noise. A

stochastic search variable selection type procedure is used to infer the unknown coefficients, ci.

Given a grid X = {(x1, x2)|x1 ∈ {22, 24, . . . , 40} and x2 ∈ {7, 9, . . . , 25}}, the Gabor basis function are

defined as

g(u, v) = exp

»
−1

2
(σuu2 + σvv2)

–
cos

»
2πu

λ
+ ϕ

–
,

u = u0 + x1 cos θ − x2 sin θ,

v = v0 + x1 sin θ − x2 cos θ,

where (x1, x2) are coordinates of X ; u0, v0, σu and σv are user chosen parameters of a two-dimensional

Gaussian window satisfying the relationships σv =
√

2σu; λ =
√

2πσu and ϕ are parameters of a sinusoidal

grating, and θ is the angle between the x1-axis of the image and the u-axis of the Gabor functions. Here

(u0, v0) ∈ X , and we set ϕ = 0, σu = 1 and θ ∈ {0, 3/8π}. Thus, we have 200 Gabor basis functions in total

whose norms are all equal to 1 on X . For simplicity, we use X1, . . . , X200 to index all the basis functions, and

Xi is a 100×1 vector, i = 1, 2, . . . , 200. Note here the sample correlation structure of these basis functions

are not the same as the constant correlation structure in Section 3.1. A part of this correlation structure is

shown in Appendix A. The response is generated by

Y = 7X17 − 7X71 + 7X161 − 7X177 + ε,

where ε ∼ N100(0, I100). Thus there are 4 active variables, and (n, p) = (100, 200). So this is a small n and

large p selection problem.

For stochastic matching pursuit, the parameter τ is chosen from A = {50, 100, . . . , 300} by Monte Carlo

cross validation with 100 replications, and at each replication, we randomly choose n/5 observations as the

17

Table 3 Posterior inclusion probabilities of selected basis functions.

Selected Bases

X17 X71 X73 X161 X177 SNR1 SNR2

0.9957 0.5243 0.6317 0.6933 1.0000 0.373 0.080

testing set and 4/5n as the training set. The resulting bτSMP = 50. We iterate 10,000 ×p times. Then we

discard the first 7, 000× p draws, and sample the remaining 3, 000× p draws by taking every pth sample to

compute the posterior inclusion probabilities. Table 3 shows the variables selected by our method via the

median probability criterion. Here our procedure selects all correct variables and X73. The sample correlation

of X71 and X73 is 0.5893. Two signal to noise ratio indices are computed, and SNR1 and SNR2 are defined

as

SNR1 = ‖bY − Y ‖2/‖Y ‖2, and

SNR2 = ‖bY − Ytrue‖2/‖Ytrue‖2,

where bY = Xin
bβin, Xin is the set of Xi’s that are included in the model, bβin is the corresponding Bayesian

parameter estimate, and Ytrue is the original response without noise. The smaller SNR2 is, the better the

model we find. Since SNR2 is small (0.080), we believe that the stochastic matching pursuit procedure

performs well in this example.

3.3 Comparison with componentwise Gibbs sampler

The componentwise Gibbs sampler is less computationally expensive than the stochastic matching pursuit

algorithm. However, as we mention in Section 2, the componentwise Gibbs sampler might not perform well

when the variables are highly correlated and the residual variance is small.

Using the Gabor regression model, we compare stochastic matching pursuit with the componentwise

Gibbs sampler. Here the response is generated by

Y = 7X35 + 7X36 + 7X37 − 7X71 + 7X165 − 7X175 + ε,

where ε ∼ N100(0, σ2
T I100), and σT = 10−2. Thus there are only 6 active variables and these active variables

are highly correlated with the other variables, for example, the sample correlation between X35 and X36

is 0.86. Here we fix τ = 100. For each procedure, we run 10,000 iterations and use the last 3000 iterations

18

Table 4 CPU times (in seconds) for 10,000 iterations of stochastic search variable selection and stochastic matching

pursuit

SMP SSVS

n = 60 and p = 5 14.6s 9.3s

n = 60 and p = 10 39.5s 20.8s

n = 200 and p = 100 2016.6s 7266.4s

Note: “SMP” means stochastic matching pursuit and “SSVS” means stochastic search variable selection.

for computing posterior inclusion probabilities. The stochastic matching pursuit can select the true model,

i.e. X35, X36, X37, X71, X165, X175, but the componentwise Gibbs sampler also selects 18 other variables

in addition to the 5 true variables, X35, X37, X71, X165, X175. This difference may be caused by the small

variance. For the cases with larger variance, the componentwise Gibbs sampler may work well.

In addition to comparing the selection results, the computational cost is also measured. Here we run the

Matlab code for both algorithms on a PC with 3.20GHz Pentium 4 CPU. The CPU times are measured for

10, 000× p iterations of the stochastic matching pursuit and 10, 000× 100p iterations of the Gibbs sampler.

The times are 10676.51 and 15551.66 seconds for stochastic matching pursuit and Gibbs sampler respectively.

4 Comparison with Related Methods

4.1 Computational cost

George and McCulloch (1993) proposed to implement the stochastic search variable selection procedure via

the Gibbs sampling scheme. However, there is a high computational cost for sampling the whole coefficient

vector β from a multivariate normal distribution because an inverse matrix is involved in this step. Here

we code the stochastic search variable selection procedure in Matlab to compare the computational cost

of stochastic search variable selection with that of the stochastic matching pursuit. We run both methods

on a PC with 3.20GHz Pentium 4 CPU for 10, 000 iterations of the stochastic search variable selection

procedure and 10, 000× p iterations of the stochastic matching pursuit. Two large n and small p problems

with (n, p) = (60, 5) and (60, 10) are used here, and the active variables are 2 and 6 respectively. The

selection results of the stochastic search variable selection and the stochastic matching pursuit are similar

to each other. To save the space here, we do not show the selection results. Table 4 shows the CPU times of

the two algorithms. For the situations with (n, p) = (60, 5) and (60, 10), i.e., where there are a small number

19

of candidate variables, stochastic matching pursuit takes slightly more time than stochastic search variable

selection. However, if we increase p as shown in the example with (n, p) = (200, 100), stochastic matching

pursuit takes much less time than stochastic search variable selection.

4.2 Prior assumptions

Different prior assumptions for β will lead to different Bayesian variable selection approaches. Following the

prior assumptions in George and McCulloch (1993), the prior of βi|γi = 1 is set to be N(0, τ2
i), which is a

noncojugate prior. In contrast, Smith and Kohn (1996) used the conjugate prior for the coefficient vector by

setting βγ ∼ N(0, cσ2(X
′
γXγ)−1), where c is a pre-specified constant, and βγ and Xγ are the components

of β and the columns of X such that the corresponding γi’s are equal to 1. George and McCulloch (1997)

have discussed the relationship between conjugate and nonconjugate priors in the stochastic search variable

selection approach.

With the conjugate prior of β, the posterior distribution [γ|Y] can be obtained by integrating out β and

σ. For example, in Eq. (2.4) of Smith and Kohn (1996), the posterior distribution of γ is

P (γ|Y) ∝ (1 + c)−qγ/2S(γ)−n/2
pY

i=1

πγi

i (1− πi)
1−γi ,

where qγ is the number of selected variables, S(γ) = Y
′
Y − c

1+cY
′
Xγ(X

′
γXγ)−1X

′
γY and πi = P (γi =

1) = 1 − pi. Then a Gibbs sampler can be implemented to generate the posterior samples of [γ|Y]. How-

ever, an inverse matrix computation, (X
′
γXγ)−1, is involved when we sample γi|Y, {γk, k 6= i}. Thus, the

computational complexity would be increased when qγ becomes larger. Numerical instability might also be

a problem for highly correlated variables.

We code the algorithm of Smith and Kohn (1996) using Matlab by fixing πi = ρ = 1/2, and we conduct

two simulation studies for comparison with stochastic matching pursuit.

We apply this Matlab code to the image representation problem in Section 3.2. In their algorithm, c

is a pre-specified parameter, and Smith and Kohn (1996) suggested that the value of c is in the range

10 ≤ c ≤ 1000 when the norm of Xi’s are all equal to 1. Following the suggestion in Smith and Kohn (1996),

we set c to be 100. Here we iterate the code 10,000 times and the selection result is obtained after discarding

the first 7,000 iterations. The final model is selected based on the median probability criterion. However,

the selection result is not very good, while 3 of the true active variables are selected, the other 96 variables

20

are also included. Thus it also causes the warning message about the singularity of X
′
γXγ . When we set

c = 500 and re-run the code, the selected result is similar to what we obtain for c = 100. The result for

SMP is shown in Section 3.2, where SMP selects 5 variables included the 4 true active variables.

Another simulation with (n, p) = (50, 300) is also studied. In this simulation, the variables Xi, i =

1, . . . , p, are independently generated from the multivariate normal distribution with mean vector 0 and

covariance matrix In, and the true response is set to be

Y = 3X1 + 3X2 + · · ·+ 3X10 + ε, (8)

where ε also comes from a multivariate normal distribution with mean vector 0 and covariance matrix In.

For the algorithm of Smith and Kohn (1996), two different values of c, c = 500 and c = 1000, are used.

The algorithm is iterated 5,000 times and the last 2,000 samples are kept. The median probability criterion

is used for variable selection. Selection results with both c = 500 and c = 1000 are similar and we only

report the results with c = 1000. For c = 1000, 51 variables are selected but only 6 true active variables are

included. Because too many variables are included in the model, the singularity of X
′
γXγ becomes a problem.

In comparison, the stochastic matching pursuit with τ = 250 selects 10 variables and all of them are the true

active variables. We repeat this simulation 5 times. The stochastic matching pursuit with τ = 250 identifies

10 true variables in each replication. The algorithm of Smith and Kohn (1996) might include the 10 true

variables in the final model, but over-selection of variables and the singularity problem of X
′
γXγ still exist.

These two simulation studies show that stochastic matching pursuit is more stable. In stochastic matching

pursuit, we use more information to decide whether a variable is to be included (or deleted), because, based

on the current model, the added variable is chosen from the inactive set of variables according to their

likelihood ratios. Another reason that stochastic matching pursuit is more stable may be related to the

inverse matrix of X
′
γXγ and the choice of c. In our experience, once X

′
γXγ is singular, i.e. too many

variables are included in the model, then γ might not be able to progress beyond the current status or

might be unstable in the model space. In fact, the key problem is about the choice of c. Just like the prior

parameter, τ , in stochastic matching pursuit, c should be larger for larger p, especially when p > n, because

the larger c is, the smaller the probability that γi = 1 is. Thus, when c is too small, X
′
γXγ tends to be

singular for small n and large p problems. To illustrate this point, we first run the algorithm of Smith and

Kohn (1996) for the cases of (n, p) = (50, 20) and (50, 50) with the true model as in Eq. (8). The algorithm

21

successfully identifies the true model with 10 variables regardless of whether c = 10 and 100, because X
′
γXγ

is always invertible. Next, using the same model in Eq. (8), (n, p) is set to be (50, 100). The result with

c = 10 fails to identify the model due to the singularity of X
′
γXγ , but when we choose c = 100 or 1000, we

can obtain the true model successfully. However, when p = 300, the algorithm of Smith and Kohn (1996)

fails to identify the true model even when we set c = 1000. The stochastic matching pursuit with τ = 250

successfully selects the true model for Eq. (8), when n = 50 and p = 20, 50, 100, 300. Therefore, it seems

that stochastic matching pursuit is more stable than the algorithm of Smith and Kohn (1996) for small n

and large p problems. These selection results also show that the algorithm of Smith and Kohn (1996) is

sensitive to the value of c for small n and large p problems, and c probably can be determined by a similar

approach to what we use for τ .

As pointed out by one reviewer, the scheme of stochastic matching pursuit can also be applied to the

model of Smith and Kohn (1996). In Eq. (2.3) of Smith and Kohn (1996), P (Y |γ) is derived in closed form.

We can define ezi = P (Y |γi = 1, {γk, k 6= i})/P (Y |γi = 0, {γk, k 6= i}) for i = 1, . . . , p. Then we can replace

P (γi|{βk, k 6= i}, Y) by P (γi|{γk, k 6= i}, Y) and replace zi by ezi. Thus, we can use the stochastic matching

pursuit algorithm to sample from the posterior distribution P (γ|Y) for the purpose of variable selection.

4.3 Full Bayesian approach

In this article, cross validation method is used to choose the proper value for the parameter τ in the prior

distribution of βi. From Tables 1 and 2, we can see that the stochastic matching pursuit procedure works

well for small n and large p problems by coupling with cross validation method for the selection of τ . We

cam also implement the stochastic matching pursuit procedure in a full Bayesian treatment. Following the

prior assumption of τi in Wolfe et al. (2004), we use an inverse gamma prior with parameters, κ and ξ, for

τ , i.e. IG(κ, ξ). Then we sample τ from its posterior inverse gamma distribution in Step (VI). We apply

this full Bayesian procedure to the small n and large p problem with (n, p) = (50, 200) by setting κ = 1 and

ξ = 10. The selection results are shown in Table 5. It seems that the selection results are not as good as

those of the stochastic matching pursuit where τ is selected by cross validation. When we trace the values

of τ in this full Bayesian approach, we find that most of τ are around 10 which might be too small for this

case. We also try the other sets of (κ, ξ), for example, (κ, ξ) = (1, 100). The selection results are slightly

22

Table 5 Results based on 100 replications with (n, p) = (50, 200) for full Bayesian SMP

k method Number of selected variables

≤ 2 3 4 5 6 7 8 9 10 > 10 # of corr. sel.

0 B-SMP f1 0 0 0 68 27 5 0 0 0 0

f2 0 0 0 68 27 5 0 0 0 0 100

1 B-SMP f1 0 0 0 73 18 9 0 0 0 0

f2 0 0 0 73 18 9 0 0 0 0 100

Note: f1 is the frequency (in 100 replications) of the number of selected variables, and f2 is the frequency (in 100

replications) of including all 5 true active variables. “B-SMP” is used to denote the results obtained by “full” Bayesian

stochastic matching pursuit procedure.

better than what we show in Table 5. Thus, how to select these two parameters, κ and ξ, is another problem

for this procedure.

5 Conclusion

This article proposes a stochastic matching pursuit algorithm for Bayesian variable selection. Our exper-

iments suggest that it performs well for both large n small p and small n large p problems. The algorithm

combines the advantages of the original matching pursuit algorithm and the componentwise Gibbs sampler.

Compared with other Bayesian variable selection methods, the stochastic matching pursuit algorithm

avoids the computation of inverse matrices, thus reduces the computational burden and produces stable

selection results. Our simulation studies show that the proposed method compares favorably with existing

variable selection methods in terms of the selection results.

It is possible to further improve the efficiency of the current version of the stochastic matching pursuit

algorithm. The first scheme is blocking. Before running the algorithm, we find blocks of variables, where the

variables within the same block are highly correlated. Different blocks can overlap with each other. Then

within each iteration of the algorithm, instead of looking at all the inactive variables, we randomly choose a

block, and apply the addition and deletion moves only for the variables within the block. This will greatly

reduce computational cost. The last author once applied such a scheme for image modeling (Wu, et al.

2002). The second scheme is switching, where we choose an active variable and an inactive variable that is

23

highly correlated with this active variable, and then we switch their status by making the active variable

inactive while making the inactive variable active.

For the small n large p problems, we also need to devise a method for tuning the parameter ρ, the prior

probability of excluding a variable from the model. We leave this to future investigations.

Reproducibility Data and Matlab code for reproducing the experimental results reported in this paper

can be downloaded at

http://www.stat.nuk.edu.tw/Ray-Bing/selection_web/homepage.htm

Acknowledgments

The authors are grateful to the associate editor and the two reviewers for their insightful comments and

useful suggestions. In particular, we have incorporated one reviewer’s summary of our work into the abstract,

and we have also incorporated the other reviewer’s comment on applying our method to the model with

conjugate prior into Section 4.2. We would also like to thank Dr. Ching-Kang Ing and Dr. Eric Jaehnig for

helpful discussions. This work is partially supported by the National Science Council in Taiwan; National

Center for Theoretical Sciences (South), Tainan, Taiwan, and NSF-DMS 0707055.

References

1. Barbieri, M. and Berger, J. O. 2004. Optimal predictive model selection, Annals of Statistics, 32, 870-897.

2. Beattie, S. D., Fong, D. K. H., and Lin, D. K. J. 2002, A two-stage Bayesian model selection strategy for

supersaturated designs, Technometrics, 44, 55-63.

3. Chipman, H. 1996. Bayesian variable selection with related predictors, Canadian Journal of Statistics, 24, 17-36.

4. Chipman, H., Hamada, M. and Wu, C. F. J. 1997. A Bayesian variable selection approach for analyzing designed

experiments with complex aliasing, Technometrics, 39, 372-381.

5. Févotte, C. and Godsill, S. J. 2006. Sparse linear regression in unions of bases via Bayesian veriable selection,

IEEE Signal Processing Letters, 13, 441 - 444.

6. George, E. I. and McCulloch, R. E. 1993. Variable selection via Gibbs sampling, Journal of the American Statistical

Association, 88, 881-889.

7. George, E. I. and McCulloch, R. E. 1997, Approaches for Bayesian variable selection, Statistica Sinica, 7, 339-374.

8. Geweke, J. 1996. Variable selection and model comparison in regression, In Bayesian Statistics 5 (Edited by

Bernardo, J.M., Berger, J. O., Dawid, A. P. and Smith, A. F. M.), 609-620.

24

9. Lai, T.-W. 2007. Variable selection via MCMC matching pursuit, M.S. Thesis, Institute of Statistics, National

University of Kaohsiung, Kaohsiung, Taiwan.

10. Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M., and Mallick, B. 2003. Gene selection: a Bayesian variable

selection approach, Bioinformatics, 19, 90-97.

11. Mallat, S. G. and Zhang, Z. 1993. Matching pursuit with time-frequency dictionaries, IEEE Transactions on

Signal Processing, 41, 3397-3415.

12. Shao, J. and Chow, S.-C. 2007. Variable screening in predicting clinical outcome with high-dimensional microar-

rays, Journal of Multivariate Analysis, 98, 1529-1538.

13. Smith, M. and Kohn, R. 1996. Nonparametric regression using Bayesian variable selection, Journal of Economet-

rics, 75, 317-343.

14. Tibshirani, R. 1996. Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. B, 58, 267-288.

15. Wolfe, P. J., Godsill, S. J. and Ng, W. J. 2004. Bayesian variable selection and regularization for time-frequency

surface estimation, J. Roy. Statist. Soc. B, 66, 575-589.

16. Wu, Y. N., Zhu, S. C., and Guo, C. 2002. Statistical modeling of texture sketch, In Proceedings of European

Conference of Computer Vision, 240-254.

17. Yi, N., George, V., and Allison, D. B. 2003. Stochastic search variable selection for identifying multiple quantitative

trait loci, Genetics, 164, 1129-1138.

25

A Appendix

Table 6 A Part of correlation matrix of Gabor basis functions

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

X11 1.0000 0.8641 0.5893 0.3105 0.1353 0.0117 0.0108 ? ? ?

X12 1.0000 0.3065 -0.0176 0.0102 0.0032 0.0003 ? ? ?

X13 1.0000 0.8641 0.5893 0.3105 0.1353 0.0117 0.0114 ?

X14 1.0000 0.3065 -0.0176 0.0102 -0.0032 -0.0004 ?

X15 1.0000 0.8641 0.5894 0.3105 0.1432 0.0118

X16 1.0000 0.3066 -0.0176 0.0108 -0.0032

X17 1.0000 0.8642 0.6180 0.3121

X18 1.0000 0.3245 -0.0176

X19 1.0000 0.9238

X20 1.0000

? is a symbol of the value less than 10−4.

