Stochastic Matching Pursuit for Bayesian Variable Selection and Analysis of Supersaturated Design

Ray-Bing Chen

Institute of Statistics, National University of Kaohsiung http://www.stat.nuk.edu.tw/Ray-Bing/index.html

Joint with Ying Nian Wu (UCLA); Chi-Hsiang Chu, Te-You Lai and Jian-Zhong Weng (NUK)

1. Variable Selection Problems

Stochastic MP —

1. Variable Selection Problems

2. Stochastic Variable Selection Methods

_____1-2

1. Variable Selection Problems

- 2. Stochastic Variable Selection Methods
- 3. Large n Small p Problems

-1-3

- 1. Variable Selection Problems
- 2. Stochastic Variable Selection Methods
- 3. Large n Small p Problems
- 4. Small n Large p Problems

- 1. Variable Selection Problems
- 2. Stochastic Variable Selection Methods
- 3. Large n Small p Problems
- 4. Small n Large p Problems
- 5. Comparison with Conjugate Prior Assumption

- 1. Variable Selection Problems
- 2. Stochastic Variable Selection Methods
- 3. Large n Small p Problems
- 4. Small n Large p Problems
- 5. Comparison with Conjugate Prior Assumption
- 6. Analysis of and Supersaturated Design

- 1-6

Variable Selection

- \blacktriangleright **Y**: the *n*-dimensional response vector
- \mathbf{X}_i : the *n*-dimensional regressor vector
- ε : white noise

☑ Find the "promising" model:

$$Y = \beta_1^* X_1^* + \dots + \beta_q^* X_q^* + \varepsilon.$$

2-1

Stochastic MP

 \boxdot How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

▶ Stepwise procedures (Forward, Backward, Stepwise)

 \Box How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

- ▶ Stepwise procedures (Forward, Backward, Stepwise)
- ▶ Cross-validation method (CV)

 \Box How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

- ▶ Stepwise procedures (Forward, Backward, Stepwise)
- ▶ Cross-validation method (CV)
- ▶ Information criteria (AIC, BIC, ...)

 \Box How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

- ▶ Stepwise procedures (Forward, Backward, Stepwise)
- ► Cross-validation method (CV)
- ▶ Information criteria (AIC, BIC, ...)
- Lasso, Lars, Bayesian Lasso

2-5

 \Box How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

- ▶ Stepwise procedures (Forward, Backward, Stepwise)
- ► Cross-validation method (CV)
- Information criteria (AIC, BIC, \dots)
- Lasso, Lars, Bayesian Lasso
- ▶ Two-stage method (Screening and Selection)

 \Box How to find the "promising" variables, X_1^*, \ldots, X_q^* ?

- ▶ Stepwise procedures (Forward, Backward, Stepwise)
- ▶ Cross-validation method (CV)
- Information criteria (AIC, BIC, \dots)
- Lasso, Lars, Bayesian Lasso
- ▶ Two-stage method (Screening and Selection)
- Stochastic Search Variable Selection

Bayesian Variable Selection

⊡ Stochastic Search Variable Selection (SSVS)

- ▶ George and McCulloch (1993, 1997)
- ▶ Chipman (1996) and Chipman et al. (1997)
- Smith and Kohn (1996)
- Applications:
 - ▶ Supersaturated design: Beattie et al. (2002)
 - ▶ Signal processing: Wolfe et al. (2004), and Févotte and Godsill (2006)
 - ▶ Gene selection: Lee et al. (2003)
 - ► ...

Statistical Model

• Model:

$$Y = \mathbf{X}\beta + \epsilon$$

- Y is an $n \times 1$ response vector.
- $\mathbf{X} = [X_1, \dots, X_p]$ is an $n \times p$ model matrix, and X_i is the *i*-th predictor variable or regressor.
- $\beta = (\beta_1, \dots, \beta_p)'$ is a $p \times 1$ vector of the unknown coefficients.
- $\epsilon = (\epsilon_1, \dots, \epsilon_n)'$ is an $n \times 1$ noise vector that follows $MN(\mathbf{0}, \sigma^2 I_n)$

 $\Box A p \times 1 \text{ vector of latent variables, } \gamma = (\gamma_1, \dots, \gamma_p)':$

$$\gamma_i = \begin{cases} 1, & X_i \text{ is selected;} \\ 0, & \text{otherwise.} \end{cases}$$

Stochastic MP -

- ⊡ George and McCulloch (1993)
- Prior assumptions:
 - $(\beta_i, \gamma_i), i = 1, 2, \dots, p$ are assumed to be independent.

 $[\beta_i | \gamma_i = 0] \sim N(0, \nu_{0i}), \text{ and } [\beta_i | \gamma_i = 1] \sim N(0, \nu_{1i}).$

Usually set $\nu_{1i} = c_i \nu_{0i}$ and $c_i \gg 1$, i.e. $\nu_{1i} \gg \nu_{0i}$. • σ : $\sigma^2 \sim IG(\nu/2, \nu\lambda/2)$.

Stochastic MP -

 \boxdot Use Gibbs sampling scheme to sample from $[\beta,\sigma,\gamma|Y]$

- \boxdot Use Gibbs sampling scheme to sample from $[\beta,\sigma,\gamma|Y]$
- □ Iteratively sample from $[\beta|\gamma, Y, \sigma]$, $[\gamma|\beta, Y, \sigma]$, and $[\sigma|Y, \beta, \gamma]$.

- \boxdot Use Gibbs sampling scheme to sample from $[\beta,\sigma,\gamma|Y]$
- : The best subset of variables is selected according to the Monte Carlo samples of γ .

- \boxdot Use Gibbs sampling scheme to sample from $[\beta,\sigma,\gamma|Y]$
- : The best subset of variables is selected according to the Monte Carlo samples of γ .
- ⊡ The most costly step:

$$[\beta|\gamma, Y, \sigma] \sim N(\sigma^{-2}A_{\gamma}\mathbf{X}'Y, A_{\gamma}),$$

- $A_{\gamma} = (\sigma^{-2} \mathbf{X}' \mathbf{X} + D_{\gamma}^{-1} R^{-1} D_{\gamma}^{-1})^{-1}.$
- R is the prior correlation matrix.
- $D_{\gamma}^{-2} = \text{diag}[(a_1\nu_{01})^{-1}, \dots, (a_p\nu_{0p})^{-1}]$ with $a_i = 1$ if $\gamma_i = 0$, and $a_i = c_i$ if $\gamma_i = 1$.

Stochastic MP

• Speed up the stochastic search variable selection process:

- Cholesky decomposition for A_{γ} .
- Sample γ componentwise, i.e. $[\gamma_i | \gamma_{-i}, Y]$.
- When $\nu_{0i} = 0$, Geweke (1996) suggested to jointly draw (γ_i, β_i) .
- Choose conjugate prior for β. Sample [γ|Y] directly. (Smith and Kohn, 1996, and George and McCulloch, 1997)

 $\Box \text{ The prior of } \beta: \beta_i | \gamma_i \sim (1 - \gamma_i) \delta_0 + \gamma_i N(0, \tau_i^2).$

 $The prior of \beta: \beta_i | \gamma_i \sim (1 - \gamma_i) \delta_0 + \gamma_i N(0, \tau_i^2).$ Sample (γ_i, β_i) one at time conditioning on $(\gamma_{-i}, \beta_{-i}).$

- $\Box \text{ The prior of } \beta: \beta_i | \gamma_i \sim (1 \gamma_i) \delta_0 + \gamma_i N(0, \tau_i^2).$
- \Box Assume $\tau_i = \tau$.

- $\Box \text{ The prior of } \beta: \beta_i | \gamma_i \sim (1 \gamma_i) \delta_0 + \gamma_i N(0, \tau_i^2).$
- \odot Assume $\tau_i = \tau$.
- ⊡ The key step:

$$z_{i} = \frac{P(Y|\gamma_{i} = 1, \{\beta_{k}, \forall k \neq i\})}{P(Y|\gamma_{i} = 0, \{\beta_{k}, \forall k \neq i\})} = \sqrt{\frac{\sigma_{i\star}^{2}}{\tau^{2}}} \exp\left\{\frac{r_{i}^{2}}{2\sigma_{i\star}^{2}}\right\},$$

where $\sigma_{i\star}^{2} = \frac{\sigma^{2}\tau^{2}}{X_{i}'X_{i}\tau^{2} + \sigma^{2}}, r_{i} = \frac{R_{i}'X_{i}\tau^{2}}{\sigma^{2} + X_{i}'X_{i}\tau^{2}},$ and
 $R_{i} = Y - \Sigma_{k\neq i}\beta_{k}X_{k}.$

Stochastic MP -

- $\Box \text{ The prior of } \beta: \beta_i | \gamma_i \sim (1 \gamma_i) \delta_0 + \gamma_i N(0, \tau_i^2).$
- \Box Assume $\tau_i = \tau$.
- ⊡ The key step:

$$z_{i} = \frac{P(Y|\gamma_{i} = 1, \{\beta_{k}, \forall k \neq i\})}{P(Y|\gamma_{i} = 0, \{\beta_{k}, \forall k \neq i\})} = \sqrt{\frac{\sigma_{i\star}^{2}}{\tau^{2}}} \exp\left\{\frac{r_{i}^{2}}{2\sigma_{i\star}^{2}}\right\},$$
where $\sigma_{i\star}^{2} = \frac{\sigma^{2}\tau^{2}}{X_{i}'X_{i}\tau^{2} + \sigma^{2}}, r_{i} = \frac{R_{i}'X_{i}\tau^{2}}{\sigma^{2} + X_{i}'X_{i}\tau^{2}},$ and
$$R_{i} = Y - \Sigma_{k\neq i}\beta_{k}X_{k}.$$

$$\vdots \text{ Set } p_{i} = \rho. \text{ Then}$$

$$P(\gamma_{i} = 1|\{\beta_{k}, \forall k \neq i\}, Y) = \frac{(1 - \rho)z_{i}}{\rho + (1 - \rho)z_{i}}.$$

statistics

Stochastic MP -

The componentwise Gibbs sampler for variable selection

(I) Randomly select a variable X_i .

(II) Compute

$$z_{i} = \frac{p(Y|\gamma_{i} = 1, \{\beta_{k}, \forall k \neq i\})}{p(Y|\gamma_{i} = 0, \{\beta_{k}, \forall k \neq i\})} = \sqrt{\sigma_{i\star}^{2}/\tau^{2}} \exp\{\frac{r_{i}^{2}}{2\sigma_{i\star}^{2}}\}.$$

Then evaluate the posterior probability
$$P(\gamma_{i} = 1|\{\beta_{k}, \forall k \neq i\}, Y) = \frac{(1-\rho)z_{i}}{\rho + (1-\rho)z_{i}}.$$

- (III) Sample γ_i from the above posterior probability. If $\gamma_i = 0$, then set $\beta_i = 0$, otherwise, sample $\beta_i \sim N(r_i, \sigma_{i\star}^2)$. Go back to (I).
- (IV) After a number of iterations of the above steps, compute the current residual vector, $Res = Y - \sum_i \beta_i X_i$. Then sample $\sigma^2 \sim IG(\frac{n+\nu}{2}, \frac{Res'Res+\nu\lambda}{2})$. Go back to (I).

Stochastic MP

⊡ Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.

- ⊡ Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
- ⊡ Two possible problems:

- ⊡ Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
- ⊡ Two possible problems:
 - ▶ The variables are highly correlated.

- ⊡ Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
- ⊡ Two possible problems:
 - ▶ The variables are highly correlated.
 - ▶ The residual variance is small.

Matching Pursuit

- ⊡ Matching Pursuit (Mallat and Zhang, 1993): Suppose $||X_i||^2 = 1$. At each iteration,
 - Select X_j such that

 $j = \arg \max |\langle R, X_i \rangle|.$

• Updated $\beta_i \leftarrow \beta_i + \langle R, X_i \rangle$, and $R \leftarrow R - \langle R, X_i \rangle X_i$.

Matching Pursuit

- ⊡ Matching Pursuit (Mallat and Zhang, 1993): Suppose $||X_i||^2 = 1$. At each iteration,
 - Select X_j such that

 $j = \arg \max |\langle R, X_i \rangle|.$

• Updated $\beta_i \leftarrow \beta_i + \langle R, X_i \rangle$, and $R \leftarrow R - \langle R, X_i \rangle X_i$.

☑ Forward selection

- 3-20

Metropolized Matching Pursuit

• Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$

Metropolized Matching Pursuit

- Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$
- \Box The larger z_i is, the more promising the variable X_i is.

- Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$
- \Box The larger z_i is, the more promising the variable X_i is.
- Proposal for the next status:

- Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$
- \Box The larger z_i is, the more promising the variable X_i is.
- Proposal for the next status:
 - ▶ Add or delete a variable.

- Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$
- \Box The larger z_i is, the more promising the variable X_i is.
- Proposal for the next status:
 - Add or delete a variable.
 - ► Addition proposal: Sample a inactive variable with probability proportional to z_i.

• Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_i = P(Y|\gamma_i = 1, \{\beta_k, \forall k \neq i\})/P(Y|\gamma_i = 0, \{\beta_k, \forall k \neq i\}).$

• The larger z_i is, the more promising the variable X_i is.

- Proposal for the next status:
 - Add or delete a variable.
 - Addition proposal: Sample a inactive variable with probability proportional to z_i .
 - Deletion proposal: Randomly select one active variable.

□ Acceptance probability for addition move:

$$p_{\text{accept}-\text{add}}$$

$$= \min\left[1, \frac{P(\gamma_i = 1 | \{\beta_k, \forall k \neq i\}, Y)}{P(\gamma_i = 0 | \{\beta_k, \forall k \neq i\}, Y)} \frac{p_{\text{delete}}}{p_{\text{add}}} \frac{1/(A+1)}{z_i / \sum_{j:\gamma_j = 0} z_j}\right]$$

$$= \min\left[1, \frac{(1-\rho)}{\rho} \frac{p_{\text{delete}}}{p_{\text{add}}} \frac{\sum_{j:\gamma_j = 0} z_j}{(A+1)}\right]. \quad (1)$$

□ Acceptance probability of the deletion move:

$$p_{\text{accept-delete}} = \min\left[1, \frac{P(\gamma_i = 0 | \{\beta_k, \forall k \neq i\}, Y)}{P(\gamma_i = 1 | \{\beta_k, \forall k \neq i\}, Y)} \frac{p_{\text{add}}}{p_{\text{delete}}} \frac{z_i / (\sum_{j:\gamma_j = 0} z_j + z_i)}{1/A}\right] \\ = \min\left[1, \frac{\rho}{(1-\rho)} \frac{p_{\text{add}}}{p_{\text{delete}}} \frac{A}{\sum_{j:\gamma_j = 0} z_j + z_i}\right].$$
(2)

Stochastic MP —

Stochastic matching pursuit for variable selection

- (I) Let A be the number of active variables. With probability p_{add} , go to (II). With probability $p_{\text{delete}} = 1 p_{\text{add}}$ go to (IV).
- (II) With probability $p_{\text{accept-add}}$ calculated according to Eq. (1), go to (III), and with probability $1 - p_{\text{accept-add}}$ go back to (I).
- (III) Among all the inactive variables i with $\gamma_i = 0$, sample a variable i with probability proportional to z_i , then let $\gamma_i = 1$ and sample β_i as described in (III) of Algorithm 1. Go back to (I).

Stochastic MP -

Stochastic matching pursuit for variable selection

- (IV) If A > 0, then randomly select an active variable i with $\gamma_i = 1$.
 - (V) With probability $p_{\text{accept-delete}}$ calculated according to Eq. (2), accept the proposal of deleting the variable *i*, i.e., set $\gamma_i = 0$, and $\beta_i = 0$. With probability $1 p_{\text{accept-delete}}$, reject the proposal of deleting variable *i*, and sample β_i as described in (III) of Algorithm 1. Go back to (I).
- (VI) After a number of iterations of the above steps, compute the current residual vector, $Res = Y - \sum_{i} \beta_i X_i$, and then update $\sigma^2 \sim IG(\frac{n+\nu}{2}, \frac{Res'Res+\nu\lambda}{2})$. Go back to (I).

Stochastic MP

- 3-30

- Combine the strengths of the matching pursuit and the componentwise Gibbs sampler.
 - 1. Pursue proposing variables.
 - 2. Don't need to compute the inverse of the large matrix.

- After a burn-in period, use $\{\gamma^{(i)}, i > T\}$ to estimate $P(\gamma_j = 1|Y)$.
- ⊡ Selection criteria:
 - The highest posterior probability: $\max P(\gamma_1, \ldots, \gamma_p | Y)$.
 - The median probability criterion in Barbieri and Berger (2004): X_i is included in the model if

$$P(\gamma_i = 1|Y) \ge 1/2.$$

 \boxdot Tuning parameters, p_{add} and ρ .

 \boxdot Tuning parameters, p_{add} and ρ .

• Set
$$p_{add} = 1/2 = p_{delete}$$
.

\boxdot Tuning parameters, p_{add} and ρ .

- Set $p_{add} = 1/2 = p_{delete}$.
- ▶ Set $\rho = 1/2$ (George and McCulloch, 1993 and 1997).

 \boxdot Tuning parameters, p_{add} and ρ .

- Set $p_{add} = 1/2 = p_{delete}$.
- Set $\rho = 1/2$ (George and McCulloch, 1993 and 1997).

 \boxdot Another tuning parameter, τ

 \boxdot Tuning parameters, p_{add} and ρ .

- Set $p_{add} = 1/2 = p_{delete}$.
- ▶ Set $\rho = 1/2$ (George and McCulloch, 1993 and 1997).

 \boxdot Another tuning parameter, τ

► z_i is a decreasing function of τ . Then $P(\gamma_i = 1 | \{\beta_k, k \neq i\}, Y)$ is smaller for larger τ .

 \boxdot Tuning parameters, p_{add} and ρ .

- Set $p_{add} = 1/2 = p_{delete}$.
- ▶ Set $\rho = 1/2$ (George and McCulloch, 1993 and 1997).

 \boxdot Another tuning parameter, τ

- ► z_i is a decreasing function of τ . Then $P(\gamma_i = 1 | \{\beta_k, k \neq i\}, Y)$ is smaller for larger τ .
- Cross-Validation approach for selecting τ: Use K-fold CV (or Monte Carlo CV) to choose "proper" value of τ. Thus

$$\widehat{\tau} = \arg\min_{\tau} \sum_{k=1}^{K} \sum_{j} (y_{kj} - \widehat{y}_{-kj}(\tau))^2.$$

 \boxdot Tuning parameters, p_{add} and ρ .

- Set $p_{add} = 1/2 = p_{delete}$.
- ▶ Set $\rho = 1/2$ (George and McCulloch, 1993 and 1997).

 \boxdot Another tuning parameter, τ

- ► z_i is a decreasing function of τ . Then $P(\gamma_i = 1 | \{\beta_k, k \neq i\}, Y)$ is smaller for larger τ .
- Cross-Validation approach for selecting τ: Use K-fold CV (or Monte Carlo CV) to choose "proper" value of τ. Thus

$$\widehat{\tau} = \arg\min_{\tau} \sum_{k=1}^{K} \sum_{j} (y_{kj} - \widehat{y}_{-kj}(\tau))^2.$$

 \boxdot ρ can also be selected by this CV approach.

Stochastic MP

Large n Small p

Example 3.1: (n, p) = (60, 5)

- \therefore These five variables, $X_1, \ldots, X_5 \stackrel{\text{iid}}{\sim} N_{60}(\mathbf{0}, I_{60}).$
- ⊡ The response variable is generated by

$$Y = X_4 + 1.2X_5 + \epsilon,$$

where $\epsilon \sim N_{60}(0, I_{60})$.

- : Set $(\rho, \tau) = (0.5, 10)$ for SMP and set $(\nu_0, c) = (0.01, 2500)$ for SSVS.
- □ Totally there are 1000 replications. Draw 3000 samples from posterior samples.

4 - 39

Large n Small p

Table 1: Variable selection results in Example 3.1

method		Num	Number of selected variables							
		0	1	2	3	4	5			
SMP	f_1	0	0	997	3	0	0			
	f_2	0	0	997	3	0	0			
SSVS	f_1	0	0	997	3	0	0			
	f_2	0	0	997	3	0	0			

- 4-40

Large n small p

Example 3.2: (n, p) = (60, 10) \therefore 10 variables, $X_1, \ldots, X_{10} \stackrel{\text{iid}}{\sim} N_{60}(\mathbf{0}, I_{60}).$ \therefore The true model is

 $Y = 2X_1 + 3X_2 + 4X_5 + 5X_6 + 6X_9 + 7X_{10} + \epsilon,$

where $\epsilon \sim N_{60}(0, 2.5^2 I_{60})$.

- : Set $(\rho, \tau) = (0.5, 15)$ for SMP and set $(\nu_0, c) = (0.01, 2500)$ for SSVS.
- □ Totally there are 1000 replications. In each replication, draw 3000 samples.

Large n small p

Table 2: Variable selection results in Example 3.2

method		Number of selected variables					
		≤ 3	4	5	6	7	≥ 8
SMP	f_1	0	0	2	961	37	0
	f_2	0	0	0	961	37	0
SSVS	f_1	0	0	1	934	64	1
	f_2	0	0	0	934	64	1

Computational Cost

Table 3: CPU times (in seconds) of 10,000 iterations

	SMP	SSVS
CPU time in Example 3.1 $(p = 5)$	14.6s	9.3s
CPU time in Example 3.2 $(p = 10)$	39.5s	20.8s
CPU time with $p = 100$	2016.6s	7266.4s

Small n Large p

- ⊡ The gene selection problem in microarray experiments: the number of candidate genes, p > the number of available sample size, n. (Yi et al., 2003, and Lee et al., 2003)
- \odot Overcomplete signal representation: the number of basis functions, p > the size of the signal, n. (Wolf et al., 2004)
- ⊡ Sparse assumption.

Simulations for Small n Large p Problem

- : Shao and Chow (2007) studied the small n large p problem in microarray experiments.
- - I_p is the $p \times p$ identity matrix.
 - h_n is the ridge parameter.
 - $R_D = (\mathbf{X}'\mathbf{X} + h_n I_p)^{-1}.$
- □ Their procedure is asymptotically consistent and their idea is similar to that of the Lasso method (Tibshirani, 1996).

Simulation

$$\beta = (3, -3.5, 4, -2.8, 3.2, 0, \dots, 0)'.$$

 \Box The regressor X_i is generated by

$$X_i = G_i + \lambda G,$$

where G_i and $G \sim N_n(0, I_n)$, and $\lambda = 0$ or 1. $\therefore \epsilon \sim N_n(0, I_n)$.

Stochastic MP —

Simulation

- □ Three methods are used here, Shao and Chow (2007), SMP and Lasso + CV.
- ⊡ The screening method of Shao and Chow (2007): Set $h_n = n^{2/3}$ and $a_n = n^{-1/6}$.

• SMP:

- τ is selected by 5-fold CV from {80, 120, 160, 220} for (n, p) = (50, 200) and from {100, 150, 200, 250} for (n, p) = (100, 400).
- Draw 2000 posterior samples by taking every pth sample.

Simulation

 Lasso + CV: There is a Matlab implementation of the homotopy/LARS-LASSO algorithm for tracing the regularization path of the L1-penalized squared error loss (Rocha, 2006), and this tool-box is available at http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
 Stopping criterion:

$$\|\mathbf{X}'(Y - \mathbf{X}'\widehat{\beta})\|_{\infty} < b.$$

- : lasso_cv: Fit the parameters of a linear model by using the lasso and k-folds cross validation
- $\boxdot \ b \in \{2 \times 10^{-1}, 10^{-1}, 10^{-2}, \dots, 10^{-5}, 10^{-8}\}.$
- \odot 10-folds CV is used here.
- $\Box \text{ Identify } \{i | |\beta_i| > 0\}.$

Frequencies based	on 100	replications	with	(n, p)) = ((50, 200))
-------------------	--------	--------------	------	--------	-------	-----------	---

λ	metho	d		Ν	umb	er of s	select	ed va	riable	s			
			\leq	3	4	5	6	7	8	9	10	\geq	#
			2									11	of
													sel.
0	\mathbf{SC}	f_1	1	4	6	14	14	20	18	9	10	4	
		f_2	0	0	0	1	1	10	13	9	9	3	46
	Lasso	f_1	0	0	0	17	5	10	14	6	4	44	
		f_2	0	0	0	17	5	10	14	6	4	44	100
	SMP	f_1	0	0	0	94	4	2	0	0	0	0	
		f_2	0	0	0	94	4	2	0	0	0	0	100
1	\mathbf{SC}	f_1	1	6	10	21	10	19	13	12	4	4	
		f_2	0	0	0	2	2	9	8	6	4	4	35
	Lasso	f_1	0	0	0	0	1	0	1	4	8	86	
		f_2	0	0	0	0	1	0	1	4	8	86	100
	SMP	f_1	0	0	0	97	3	0	0	0	0	0	
		f_2	0	0	0	97	3	0	0	0	0		100
Stoc	hastic M	P —										statistics	

- 5-49

Frequencies based on 100 replications with (n, p) = (100, 400)

λ	metho	d		N	umbe	er of s	select	ed va	riabl	es			
			\leq	3	4	5	6	7	8	9	10	\geq	#
			2									11	of
													sel.
0	\mathbf{SC}	f_1	0	3	9	49	22	13	3	1	0	0	
		f_2	0	0	0	41	19	13	3	1	0	0	77
	Lasso	f_1	0	0	0	75	6	5	1	0	2	11	
		f_2	0	0	0	75	6	5	1	0	2	11	100
	SMP	f_1	0	0	0	95	5	0	0	0	0	0	
		f_2	0	0	0	95	5	0	0	0	0	0	100
1	\mathbf{SC}	f_1	0	1	11	35	28	13	9	2	1	0	
		f_2	0	0	0	33	28	13	8	2	1	0	85
	Lasso	f_1	0	0	0	4	5	3	7	7	7	67	
		f_2	0	0	0	4	5	3	7	7	7	67	100
	SMP	f_1	0	0	0	98	2	0	0	0	0	0	
		f_2	0	0	0	98	2	0	0	0	0		100
Stoc	hastic M	Р —										- Statistics	

An illustration in Image Representation

 \odot Gabor regression model (Wolf et al., 2004) is

$$f = \sum_{i} c_i g_i + \varepsilon,$$

where g_i 's are the Gabor basis functions. • The Gabor basis function can be defined as

$$g(u, v) = \exp\left[-\frac{1}{2}(\sigma_u u^2 + \sigma_v v^2)\right] \cos\left[\frac{2\pi u}{\lambda} + \varphi\right],$$

$$u = u_0 + x_1 \cos\theta - x_2 \sin\theta,$$

$$v = v_0 + x_1 \sin\theta - x_2 \cos\theta,$$

Stochastic MP -----

Gabor Regression Function

Small n Large p –

\boxdot Give a grid

 $\mathcal{X} = \{(x_1, x_2) | x_1 \in \{22, 24, \dots, 40\} \text{ and } x_2 \in \{7, 9, \dots, 25\}\}.$

- □ Totally we have 200 Gabor basis functions on \mathcal{X} by setting $\varphi = 0, \sigma_u = 1$ and $\theta \in \{0, 3/8\pi\}$.
- \boxdot The response is generated by

$$Y = 7X_{17} - 7X_{71} + 7X_{161} - 7X_{177} + \varepsilon,$$

 \odot SMP:

- τ is chosen from $\mathcal{A} = \{50, 100, \dots, 300\}$ by Monte Carlo cross validation with 100 replications.
- Draw 3000 samples by taking every pth sample.

	Se					
X_{17}	X_{71}	X_{73}	X_{161}	X_{177}	SNR1	SNR2
0.9957	0.5243	0.6317	0.6933	1.0000	0.373	0.080

Conjugate Prior for β

 $Smith and Kohn (1996): The prior of <math>\beta$ given γ is $N(\mathbf{0}, c\sigma^2(\mathbf{X}'_{\gamma}\mathbf{X}_{\gamma})^{-1}).$

 \boxdot Obtain $[\gamma|Y]$ by integrating β and σ^2 out.

$$P(\gamma|Y) \propto (1+c)^{-q_{\gamma}/2} S(\gamma)^{-n/2} \prod_{i=1}^{p} p_{i}^{\gamma_{i}} (1-p_{i})^{1-\gamma_{i}},$$

where q_{γ} is the number of selected variables and

$$S(\gamma) = Y'Y - \frac{c}{1+c}Y'\mathbf{X}_{\gamma}(\mathbf{X}_{\gamma}'\mathbf{X}_{\gamma})^{-1}\mathbf{X}_{\gamma}'Y.$$

- ⊡ Use Gibbs sampler to generate $\gamma_i | Y, \gamma_{-i}$.
- ⊡ Need to prespecify the prior parameter c. When the norm of X_i is equal to 1, $c \in [10, 1000]$.

Stochastic MP

⊡ Simulations for the algorithm of Smith and Kohn (1996):

- Fix $p_i = \rho = 1/2$.
- Set n = 50 and p = 20, 50, 100, 300.
- The variables, $X_1, \ldots, X_p \stackrel{\text{iid}}{\sim} N_n(\mathbf{0}, I_n)$.
- ▶ The response variable is generated by

$$Y = 3X_1 + 3X_2 + \dots + 3X_{10} + \epsilon,$$

where $\epsilon \sim N_n(\mathbf{0}, I_n)$.

- ▶ The median probability criterion
- Selection results:

c	p = 20	p = 50	p = 100	p = 300
10			×	
100				×
1000				×

SMP with $\tau = 250$ works.

Stochastic MP

Summarization

- : Stochastic matching pursuit + median probability criterion works for both the cases of large n small p and small nlarge p.
- \boxdot Tune the parameters, ρ and $\tau,$ via CV approach.
- "Full" Bayesian procedure
- \boxdot CPU times: Componentwise Gibbs sampler < SMP < SSVS
- ⊡ Window (or block) version
- ☑ Selection criterion
- Theoretical Properties
- \odot Other applications

Analysis of Supersaturated Design

⊡ Supersaturate design:

- ▶ Investigates p factors in only n(experimental runs.
- ▶ Particularly useful in factor screening.
- ☑ Analysis methods:
 - ▶ Lin (1993): Stepwise regression approach.
 - Chipman (1996) and Chipman et al. (1997): Propose different priors for SSVS.
 - ▶ Beattie et al. (2002): A two-stage method via SSVS.
 - ▶ Phoa et al. (2009): Dantzing selection method.

Analysis Approach

⊡ Use componentwise Gibbs sampler:

- ▶ The sample correlations between the factors are not so high.
- ▶ The variance would not be too small.
- Follow the pre-process in Phoa et al. (2009), standardize Y and X_i 's are unit norm.
- : Use leave-two-out cross-validation approach to choose the proper parameters, ρ and τ .
- Selection criterion: the median probability criterion and the highest posterior probability criterion.

Stochastic MP -
Example 1. Cast Fatigue Experiment

Run	А	В	\mathbf{C}	D	Ε	\mathbf{F}	G
1	+	+	—	+	+	+	_
2	+	_	+	+	+	—	—
3	_	+	+	+	_	_	_
4	+	+	+	_	_	_	+
5	+	+	—	—	_	+	_
6	+	_	_	_	+	_	+
7	_	_	_	+	_	+	+
8	_	_	+	_	+	+	_
9	_	+	_	+	+	_	+
10	+	—	+	+	_	+	+
11	_	+	+	_	+	+	+
12	_	_	_	_	_	_	_

Example 1. Cast Fatigue Experiment

 \Box Consider main effect model. i.e. n = 12 and p = 7.

- ⊡ Iterate $10000 \times p$ times and get 1000 samples from last $5000 \times p$ iterations.
- \therefore τ is select from $\mathcal{A} = \{1, 2, 3, 4, 5\}$. $\hat{\tau} = 2$.

·	The marginal posterior probabilities										
	Variable	А	В	С	D	Ε	F	G			
	Prob.	0.350	0.353	0.341	0.553	0.292	0.899	0.279			

 \boxdot Wu and Hamada (2000) and Phoa et al. (2009): [F (D)]

Example 1. Cast Fatigue Experiment

- ⊡ Consider main effects + two-factor interactions. i.e. n = 12and p = 28.
- \therefore τ is select from $\mathcal{A} = \{40, 80, 120, 160, 200\}.$ $\hat{\tau} = 120.$
- □ The marginal posterior probabilities

Variable	F	FG	AE	AC	BD	BC	AB
Prob.	0.763	0.759	0.129	0.015	0.014	0.014	0.014

- The highest posterior probability criterion: [F FG].
- \odot Same as Phoa et al. (2009) by mAIC.

Example 2. Blood Glucose Experiment

 \odot Sample size, n = 18.

- ⊡ p = 15: 1 two-level factors, A, 7 three-level factors, B, \ldots, H and 7 quadratic contrasts of these seven three-level factors, B^2, \ldots, H^2 .
- \Box τ is select from $\mathcal{A} = \{3, 4, 5, 6, 7, 8\}$. $\hat{\tau} = 4$.

·	The marginal posterior probabilities										
	Variable	F^2	E^2	C	В	G	F	A			
	Prob.	0.596	0.538	0.384	0.383	0.378	0.364	0.322			

⊡ Same as Wu and Hamada (2000) and Phoa et al. (2009)

Example 2. Blood Glucose Experiment

- \odot Include two-factor interaction terms, p = 113.
- \therefore τ is select from $\mathcal{A} = \{40, 80, 120, 160, 200\}.$ $\hat{\tau} = 80.$
- □ The marginal posterior probabilities

	-	-					
Variable	BH^2	B^2H^2	EG	AH^2	DE	BC	DE^2
Prob.	0.821	0.748	0.578	0.496	0.154	0.147	0.145

⊡ The highest posterior probability criterion:

Model	Post. Prob.	R^2
$AH^2 BH^2 EG B^2H^2$	0.116	0.9568
$BH^2 \ B^2H^2$	0.027	0.7696
$BH^2 EG B^2H^2$	0.018	0.8737
$AH^2 BH^2 EG B^2H^2 E^2G^2$	0.017	0.9766

Stochastic MP

- \odot A supersaturated design with n = 14 and p = 23.
- □ Iterate 10000 times and get 1000 samples from last 5000 iterations.
- \therefore τ is select from $\mathcal{A} = \{20, 40, 60, 80, 100\}$. $\hat{\tau} = 20$.
- The marginal posterior probabilities

Variable	14	12	19	4	10	11	15
Prob.	0.967	0.574	0.561	0.444	0.099	0.069	0.063

⊡ The highest posterior probability criterion:

Model	Post. Prob.	R^2
4 12 14 19	0.206	0.9548
14	0.133	0.6317
12 14 19	0.034	0.8706
12 14	0.031	0.7401
14 19	0.023	0.7225

- ⊡ Li and Lin (2003): [4 12 14 19]
- \Box Phoa et al. (2009): [14]

Stochastic MP

 \boxdot Apply SMP when p is large.

- \boxdot Apply SMP when p is large.
- ⊡ Select (ρ, τ) via CV approach.

- 8-67

- \bigcirc Apply SMP when p is large.
- ⊡ Select (ρ, τ) via CV approach.
- □ Two-stage procedure via CGS: First screen out useless factors and then select the important factors.

- 8-68

- \boxdot Apply SMP when p is large.
- ⊡ Select (ρ, τ) via CV approach.
- □ Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
- Other examples

- 8-69

- \boxdot Apply SMP when p is large.
- ⊡ Select (ρ, τ) via CV approach.
- Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
- Other examples
- □ One-stage method or two-stage method?

- \boxdot Apply SMP when p is large.
- ⊡ Select (ρ, τ) via CV approach.
- Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
- Other examples
- □ One-stage method or two-stage method?
- ⊡ The idea of Chipman (1996) and Chipman et al. (1997)

- \boxdot Main effects + Two-factor interaction effects
- \odot Totally 252 variables (23 + 229)
- $\ \, \boxdot \ \, \text{Fix} \ \rho = 1/2.$
- □ Iterate 10000 times and get 1000 samples from last 5000 iterations.
- \therefore τ is select from $\mathcal{A} = \{150, 170, 190, 210, 230\}.$ $\hat{\tau} = 170.$
- The marginal posterior probabilities

Var.	14	7×15	13×20	6×10	3×5	7×19	9×22
Prob.	0.367	0.133	0.116	0.059	0.057	0.056	0.053

- \odot Select the variables whose marginal probabilities > 0.04.
- ⊡ Totally 21 variables.
- $\ \, \boxdot \ \, \text{Fix} \ \rho = 1/2.$
- □ Iterate 10000 times and get 1000 samples from last 5000 iterations.
- \therefore τ is select from $\mathcal{A} = \{5, 10, 15, 20, 25\}.$ $\hat{\tau} = 5.$
- The marginal posterior probabilities

Var.	5×20	23	14	6×10	11	9×21	7×15
Prob.	0.593	0.551	0.548	0.542	0.47	0.45	0.314

