Stochastic Matching Pursuit for Bayesian Variable Selection and Analysis of Supersaturated Design

Ray-Bing Chen
Institute of Statistics,
National University of Kaohsiung http://www.stat.nuk.edu.tw/RayBing/index.html

Joint with Ying Nian Wu (UCLA);
Chi-Hsiang Chu, Te-You Lai and
Jian-Zhong Weng (NUK)

1. Variable Selection Problems
2. Variable Selection Problems
3. Stochastic Variable Selection Methods
4. Variable Selection Problems
5. Stochastic Variable Selection Methods
6. Large n Small p Problems
7. Variable Selection Problems
8. Stochastic Variable Selection Methods
9. Large n Small p Problems
10. Small n Large p Problems
11. Variable Selection Problems
12. Stochastic Variable Selection Methods
13. Large n Small p Problems
14. Small n Large p Problems
15. Comparison with Conjugate Prior Assumption
16. Variable Selection Problems
17. Stochastic Variable Selection Methods
18. Large n Small p Problems
19. Small n Large p Problems
20. Comparison with Conjugate Prior Assumption
21. Analysis of and Supersaturated Design

Variable Selection

\square Model: $Y=\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}+\varepsilon$

- Y: the n-dimensional response vector
- \mathbf{X}_{i} : the n-dimensional regressor vector
- ε : white noise
\square Find the "promising" model:

$$
Y=\beta_{1}^{*} X_{1}^{*}+\cdots+\beta_{q}^{*} X_{q}^{*}+\varepsilon
$$

$\square n>p($ Large n Small $p)$
$\square p>n($ Small n Large $p)$

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)
- Cross-validation method (CV)

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)
- Cross-validation method (CV)
- Information criteria (AIC, BIC, ...)

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)
- Cross-validation method (CV)
- Information criteria (AIC, BIC, ...)
- Lasso, Lars, Bayesian Lasso

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)
- Cross-validation method (CV)
- Information criteria (AIC, BIC, ...)
- Lasso, Lars, Bayesian Lasso
- Two-stage method (Screening and Selection)

Variable Selection Methods

\checkmark How to find the "promising" variables, $X_{1}^{*}, \ldots, X_{q}^{*}$?

- Stepwise procedures (Forward, Backward, Stepwise)
- Cross-validation method (CV)
- Information criteria (AIC, BIC, ...)
- Lasso, Lars, Bayesian Lasso
- Two-stage method (Screening and Selection)
- Stochastic Search Variable Selection

Bayesian Variable Selection

\square Stochastic Search Variable Selection (SSVS)

- George and McCulloch (1993, 1997)
- Chipman (1996) and Chipman et al. (1997)
- Smith and Kohn (1996)
\square Applications:
- Supersaturated design: Beattie et al. (2002)
- Signal processing: Wolfe et al. (2004), and Févotte and Godsill (2006)
- Gene selection: Lee et al. (2003)
- ...

Statistical Model

\checkmark Model:

$$
Y=\mathbf{X} \beta+\epsilon
$$

- Y is an $n \times 1$ response vector.
- $\mathbf{X}=\left[X_{1}, \ldots, X_{p}\right]$ is an $n \times p$ model matrix, and X_{i} is the i-th predictor variable or regressor.
- $\beta=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}$ is a $p \times 1$ vector of the unknown coefficients.
- $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)^{\prime}$ is an $n \times 1$ noise vector that follows $M N\left(\mathbf{0}, \sigma^{2} I_{n}\right)$
\square A $p \times 1$ vector of latent variables, $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)^{\prime}$:

$$
\gamma_{i}= \begin{cases}1, & X_{i} \text { is selected } \\ 0, & \text { otherwise }\end{cases}
$$

Stochastic Search Variable Selection

\square George and McCulloch (1993)
\checkmark Prior assumptions:

- $\left(\beta_{i}, \gamma_{i}\right), i=1,2, \ldots, p$ are assumed to be independent.
- $\gamma: P\left(\gamma_{i}=0\right)=p_{i}$, and $P\left(\gamma_{i}=1\right)=1-p_{i}$.
- β :

$$
\left[\beta_{i} \mid \gamma_{i}=0\right] \sim N\left(0, \nu_{0 i}\right), \text { and }\left[\beta_{i} \mid \gamma_{i}=1\right] \sim N\left(0, \nu_{1 i}\right) .
$$

Usually set $\nu_{1 i}=c_{i} \nu_{0 i}$ and $c_{i} \gg 1$, i.e. $\nu_{1 i} \gg \nu_{0 i}$.

- $\sigma: \sigma^{2} \sim I G(\nu / 2, \nu \lambda / 2)$.

Stochastic Search Variable Selection

\square Use Gibbs sampling scheme to sample from $[\beta, \sigma, \gamma \mid Y]$

Stochastic Search Variable Selection

\checkmark Use Gibbs sampling scheme to sample from $[\beta, \sigma, \gamma \mid Y]$
\square Iteratively sample from $[\beta \mid \gamma, Y, \sigma],[\gamma \mid \beta, Y, \sigma]$, and $[\sigma \mid Y, \beta, \gamma]$.

Stochastic Search Variable Selection

\checkmark Use Gibbs sampling scheme to sample from $[\beta, \sigma, \gamma \mid Y]$
\square Iteratively sample from $[\beta \mid \gamma, Y, \sigma],[\gamma \mid \beta, Y, \sigma]$, and $[\sigma \mid Y, \beta, \gamma]$.
\square The best subset of variables is selected according to the Monte Carlo samples of γ.

Stochastic Search Variable Selection

\checkmark Use Gibbs sampling scheme to sample from $[\beta, \sigma, \gamma \mid Y]$
\square Iteratively sample from $[\beta \mid \gamma, Y, \sigma],[\gamma \mid \beta, Y, \sigma]$, and $[\sigma \mid Y, \beta, \gamma]$.
\square The best subset of variables is selected according to the Monte Carlo samples of γ.
\square The most costly step:

$$
[\beta \mid \gamma, Y, \sigma] \sim N\left(\sigma^{-2} A_{\gamma} \mathbf{X}^{\prime} Y, A_{\gamma}\right)
$$

- $A_{\gamma}=\left(\sigma^{-2} \mathbf{X}^{\prime} \mathbf{X}+D_{\gamma}^{-1} R^{-1} D_{\gamma}^{-1}\right)^{-1}$.
- R is the prior correlation matrix.
- $D_{\gamma}^{-2}=\operatorname{diag}\left[\left(a_{1} \nu_{01}\right)^{-1}, \ldots,\left(a_{p} \nu_{0 p}\right)^{-1}\right]$ with $a_{i}=1$ if $\gamma_{i}=0$, and $a_{i}=c_{i}$ if $\gamma_{i}=1$.

Stochastic Search Variable Selection

\square Speed up the stochastic search variable selection process:

- Cholesky decomposition for A_{γ}.
- Sample γ componentwise, i.e. $\left[\gamma_{i} \mid \gamma_{-i}, Y\right]$.
- When $\nu_{0 i}=0$, Geweke (1996) suggested to jointly draw $\left(\gamma_{i}, \beta_{i}\right)$.
- Choose conjugate prior for β. Sample $[\gamma \mid Y]$ directly. (Smith and Kohn, 1996, and George and McCulloch, 1997)

Componentwise Gibbs Sampler

\square The prior of $\beta: \beta_{i} \mid \gamma_{i} \sim\left(1-\gamma_{i}\right) \delta_{0}+\gamma_{i} N\left(0, \tau_{i}^{2}\right)$.

Componentwise Gibbs Sampler

\square The prior of $\beta: \beta_{i} \mid \gamma_{i} \sim\left(1-\gamma_{i}\right) \delta_{0}+\gamma_{i} N\left(0, \tau_{i}^{2}\right)$.
\square Sample $\left(\gamma_{i}, \beta_{i}\right)$ one at time conditioning on $\left(\gamma_{-i}, \beta_{-i}\right)$.

Componentwise Gibbs Sampler

\square The prior of $\beta: \beta_{i} \mid \gamma_{i} \sim\left(1-\gamma_{i}\right) \delta_{0}+\gamma_{i} N\left(0, \tau_{i}^{2}\right)$.
\square Sample $\left(\gamma_{i}, \beta_{i}\right)$ one at time conditioning on $\left(\gamma_{-i}, \beta_{-i}\right)$.
\square Assume $\tau_{i}=\tau$.

Componentwise Gibbs Sampler

\checkmark The prior of $\beta: \beta_{i} \mid \gamma_{i} \sim\left(1-\gamma_{i}\right) \delta_{0}+\gamma_{i} N\left(0, \tau_{i}^{2}\right)$.
\square Sample $\left(\gamma_{i}, \beta_{i}\right)$ one at time conditioning on $\left(\gamma_{-i}, \beta_{-i}\right)$.
\square Assume $\tau_{i}=\tau$.
\square The key step:

$$
\begin{aligned}
& \quad z_{i}=\frac{P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right)}{P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)}=\sqrt{\frac{\sigma_{i \star}^{2}}{\tau^{2}}} \exp \left\{\frac{r_{i}^{2}}{2 \sigma_{i \star}^{2}}\right\}, \\
& \text { where } \sigma_{i \star}^{2}=\frac{\sigma^{2} \tau^{2}}{X_{i}^{\prime} X_{i} \tau^{2}+\sigma^{2}}, r_{i}=\frac{R_{i}^{\prime} X_{i} \tau^{2}}{\sigma^{2}+X_{i}^{\prime} X_{i} \tau^{2}}, \text { and } \\
& R_{i}=Y-\Sigma_{k \neq i} \beta_{k} X_{k} .
\end{aligned}
$$

Componentwise Gibbs Sampler

\square The prior of $\beta: \beta_{i} \mid \gamma_{i} \sim\left(1-\gamma_{i}\right) \delta_{0}+\gamma_{i} N\left(0, \tau_{i}^{2}\right)$.
\square Sample $\left(\gamma_{i}, \beta_{i}\right)$ one at time conditioning on $\left(\gamma_{-i}, \beta_{-i}\right)$.
\square Assume $\tau_{i}=\tau$.
\square The key step:

$$
z_{i}=\frac{P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right)}{P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)}=\sqrt{\frac{\sigma_{i \star}^{2}}{\tau^{2}}} \exp \left\{\frac{r_{i}^{2}}{2 \sigma_{i \star}^{2}}\right\},
$$

where $\sigma_{i \star}^{2}=\frac{\sigma^{2} \tau^{2}}{X_{i}^{\prime} X_{i} \tau^{2}+\sigma^{2}}, r_{i}=\frac{R_{i}^{\prime} X_{i} \tau^{2}}{\sigma^{2}+X_{i}^{\prime} X_{i} \tau^{2}}$, and $R_{i}=Y-\Sigma_{k \neq i} \beta_{k} X_{k}$.
\square Set $p_{i}=\rho$. Then

$$
P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)=\frac{(1-\rho) z_{i}}{\rho+(1-\rho) z_{i}}
$$

The componentwise Gibbs sampler for variable selection

(I) Randomly select a variable X_{i}.
(II) Compute

$$
z_{i}=\frac{p\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right)}{p\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)}=\sqrt{\sigma_{i \star}^{2} / \tau^{2}} \exp \left\{\frac{r_{i}^{2}}{2 \sigma_{i \star}^{2}}\right\} .
$$

Then evaluate the posterior probability
$P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)=\frac{(1-\rho) z_{i}}{\rho+(1-\rho) z_{i}}$.
(III) Sample γ_{i} from the above posterior probability. If $\gamma_{i}=0$, then set $\beta_{i}=0$, otherwise, sample $\beta_{i} \sim N\left(r_{i}, \sigma_{i \star}^{2}\right)$. Go back to (I).
(IV) After a number of iterations of the above steps, compute the current residual vector, Res $=Y-\sum_{i} \beta_{i} X_{i}$. Then sample $\sigma^{2} \sim I G\left(\frac{n+\nu}{2}, \frac{R_{e s} s^{\prime} R e s+\nu \lambda}{2}\right)$. Go back to (I).

Componentwise Gibbs Sampler

\square Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.

Componentwise Gibbs Sampler

\square Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
\square Two possible problems:

Componentwise Gibbs Sampler

\square Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
\square Two possible problems:

- The variables are highly correlated.

Componentwise Gibbs Sampler

\square Similar to the search algorithm of Geweke (1996) with the truncated normal prior distribution.
\square Two possible problems:

- The variables are highly correlated.
- The residual variance is small.

Matching Pursuit

\checkmark Matching Pursuit (Mallat and Zhang, 1993): Suppose $\left\|X_{i}\right\|^{2}=1$. At each iteration,

- Select X_{j} such that

$$
j=\arg \max \left|\left\langle R, X_{i}\right\rangle\right| .
$$

- Updated $\beta_{i} \leftarrow \beta_{i}+\left\langle R, X_{i}\right\rangle$, and $R \leftarrow R-\left\langle R, X_{i}\right\rangle X_{i}$.

Matching Pursuit

\square Matching Pursuit (Mallat and Zhang, 1993): Suppose $\left\|X_{i}\right\|^{2}=1$. At each iteration,

- Select X_{j} such that

$$
j=\arg \max \left|\left\langle R, X_{i}\right\rangle\right| .
$$

- Updated $\beta_{i} \leftarrow \beta_{i}+\left\langle R, X_{i}\right\rangle$, and $R \leftarrow R-\left\langle R, X_{i}\right\rangle X_{i}$.
\square Forward selection

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on

$$
z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)
$$

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)$.
\square The larger z_{i} is, the more promising the variable X_{i} is.

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)$.
\square The larger z_{i} is, the more promising the variable X_{i} is.
\square Proposal for the next status:

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)$.
\square The larger z_{i} is, the more promising the variable X_{i} is.
\square Proposal for the next status:

- Add or delete a variable.

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on $z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)$.
\square The larger z_{i} is, the more promising the variable X_{i} is.
\checkmark Proposal for the next status:

- Add or delete a variable.
- Addition proposal: Sample a inactive variable with probability proportional to z_{i}.

Metropolized Matching Pursuit

\square Metropolis scheme with a pair of reversible moves: addition and deletion moves based on

$$
z_{i}=P\left(Y \mid \gamma_{i}=1,\left\{\beta_{k}, \forall k \neq i\right\}\right) / P\left(Y \mid \gamma_{i}=0,\left\{\beta_{k}, \forall k \neq i\right\}\right)
$$

\square The larger z_{i} is, the more promising the variable X_{i} is.
\checkmark Proposal for the next status:

- Add or delete a variable.
- Addition proposal: Sample a inactive variable with probability proportional to z_{i}.
- Deletion proposal: Randomly select one active variable.
\checkmark Acceptance probability for addition move:

$$
\begin{align*}
& p_{\text {accept-add }} \\
= & \min \left[1, \frac{P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)}{P\left(\gamma_{i}=0 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)} \frac{p_{\text {delete }}}{p_{\text {add }}} \frac{1 /(A+1)}{z_{i} / \sum_{j: \gamma_{j}=0} z_{j}}\right] \\
= & \min \left[1, \frac{(1-\rho)}{\rho} \frac{p_{\text {delete }}}{p_{\text {add }}} \frac{\sum_{j: \gamma_{j}=0} z_{j}}{(A+1)}\right] . \tag{1}
\end{align*}
$$

\square Acceptance probability of the deletion move:

$$
\begin{align*}
& p_{\text {accept-delete }} \\
= & \min \left[1, \frac{P\left(\gamma_{i}=0 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)}{P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, \forall k \neq i\right\}, Y\right)} \frac{p_{\text {add }}}{p_{\text {delete }}} \frac{z_{i} /\left(\sum_{j: \gamma_{j}=0} z_{j}+z_{i}\right)}{1 / A}\right] \\
= & \min \left[1, \frac{\rho}{(1-\rho)} \frac{p_{\text {add }}}{p_{\text {delete }}} \frac{A}{\sum_{j: \gamma_{j}=0} z_{j}+z_{i}}\right] . \tag{2}
\end{align*}
$$

Stochastic matching pursuit for variable selection

(I) Let A be the number of active variables. With probability $p_{\text {add }}$, go to (II). With probability $p_{\text {delete }}=1-p_{\text {add }}$ go to (IV).
(II) With probability $p_{\text {accept-add }}$ calculated according to Eq. (1), go to (III), and with probability $1-p_{\text {accept-add }}$ go back to (I).
(III) Among all the inactive variables i with $\gamma_{i}=0$, sample a variable i with probability proportional to z_{i}, then let $\gamma_{i}=1$ and sample β_{i} as described in (III) of Algorithm 1. Go back to (I).

Stochastic matching pursuit for variable selection

(IV) If $A>0$, then randomly select an active variable i with $\gamma_{i}=1$.
(V) With probability $p_{\text {accept-delete }}$ calculated according to Eq. (2), accept the proposal of deleting the variable i, i.e., set $\gamma_{i}=0$, and $\beta_{i}=0$. With probability
$1-p_{\text {accept-delete }}$, reject the proposal of deleting variable i, and sample β_{i} as described in (III) of Algorithm 1. Go back to (I).
(VI) After a number of iterations of the above steps, compute the current residual vector, Res $=Y-\sum_{i} \beta_{i} X_{i}$, and then update $\sigma^{2} \sim \operatorname{IG}\left(\frac{n+\nu}{2}, \frac{\text { Res }^{\prime} \operatorname{Res}+\nu \lambda}{2}\right)$. Go back to (I).
\square Combine the strengths of the matching pursuit and the componentwise Gibbs sampler.

1. Pursue proposing variables.
2. Don't need to compute the inverse of the large matrix.

Implementation Details

\square After a burn-in period, use $\left\{\gamma^{(i)}, i>T\right\}$ to estimate $P\left(\gamma_{j}=1 \mid Y\right)$.
\square Selection criteria:

- The highest posterior probability: $\max P\left(\gamma_{1}, \ldots, \gamma_{p} \mid Y\right)$.
- The median probability criterion in Barbieri and Berger (2004): X_{i} is included in the model if

$$
P\left(\gamma_{i}=1 \mid Y\right) \geq 1 / 2
$$

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.
- Set $\rho=1 / 2$ (George and McCulloch, 1993 and 1997).

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.
- Set $\rho=1 / 2$ (George and McCulloch, 1993 and 1997).
\square Another tuning parameter, τ

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.
- Set $\rho=1 / 2$ (George and McCulloch, 1993 and 1997).
\square Another tuning parameter, τ
- z_{i} is a decreasing function of τ. Then $P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, k \neq i\right\}, Y\right)$ is smaller for larger τ.

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.
- Set $\rho=1 / 2$ (George and McCulloch, 1993 and 1997).
\square Another tuning parameter, τ
- z_{i} is a decreasing function of τ. Then $P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, k \neq i\right\}, Y\right)$ is smaller for larger τ.
- Cross-Validation approach for selecting τ : Use K-fold CV (or Monte Carlo CV) to choose "proper" value of τ. Thus

$$
\widehat{\tau}=\arg \min _{\tau} \sum_{k=1}^{K} \sum_{j}\left(y_{k j}-\widehat{y}_{-k j}(\tau)\right)^{2}
$$

Implementation Details

\square Tuning parameters, $p_{\text {add }}$ and ρ.

- Set $p_{\text {add }}=1 / 2=p_{\text {delete }}$.
- Set $\rho=1 / 2$ (George and McCulloch, 1993 and 1997).
\square Another tuning parameter, τ
- z_{i} is a decreasing function of τ. Then $P\left(\gamma_{i}=1 \mid\left\{\beta_{k}, k \neq i\right\}, Y\right)$ is smaller for larger τ.
- Cross-Validation approach for selecting τ : Use K-fold CV (or Monte Carlo CV) to choose "proper" value of τ. Thus

$$
\widehat{\tau}=\arg \min _{\tau} \sum_{k=1}^{K} \sum_{j}\left(y_{k j}-\widehat{y}_{-k j}(\tau)\right)^{2}
$$

$\square \rho$ can also be selected by this CV approach.

Large n Small p

Example 3.1: $(n, p)=(60,5)$
\square These five variables, $X_{1}, \ldots, X_{5} \stackrel{\text { iid }}{\sim} N_{60}\left(\mathbf{0}, I_{60}\right)$.
\square The response variable is generated by

$$
Y=X_{4}+1.2 X_{5}+\epsilon
$$

where $\epsilon \sim N_{60}\left(\mathbf{0}, I_{60}\right)$.
$\square \operatorname{Set}(\rho, \tau)=(0.5,10)$ for SMP and set $\left(\nu_{0}, c\right)=(0.01,2500)$ for SSVS.
\square Totally there are 1000 replications. Draw 3000 samples from posterior samples.

Large n Small p

Table 1: Variable selection results in Example 3.1

method		Number of selected variables					
	0	1	2	3	4	5	
SMP	f_{1}	0	0	997	3	0	0
	f_{2}	0	0	997	3	0	0
SSVS	f_{1}	0	0	997	3	0	0
	f_{2}	0	0	997	3	0	0

Large n small p

Example 3.2: $(n, p)=(60,10)$
$\square 10$ variables, $X_{1}, \ldots, X_{10} \stackrel{\text { iid }}{\sim} N_{60}\left(\mathbf{0}, I_{60}\right)$.
\square The true model is

$$
Y=2 X_{1}+3 X_{2}+4 X_{5}+5 X_{6}+6 X_{9}+7 X_{10}+\epsilon
$$

where $\epsilon \sim N_{60}\left(0,2.5^{2} I_{60}\right)$.
$\square \operatorname{Set}(\rho, \tau)=(0.5,15)$ for SMP and set $\left(\nu_{0}, c\right)=(0.01,2500)$ for SSVS.
\square Totally there are 1000 replications. In each replication, draw 3000 samples.

Large n small p

Table 2: Variable selection results in Example 3.2

method		Number of selected variables					
		≤ 3	4	5	6	7	≥ 8
SMP	f_{1}	0	0	2	961	37	0
	f_{2}	0	0	0	961	37	0
SSVS	f_{1}	0	0	1	934	64	1
	f_{2}	0	0	0	934	64	1

Computational Cost

Table 3: CPU times (in seconds) of 10,000 iterations

	SMP	SSVS
CPU time in Example $3.1(p=5)$	14.6 s	9.3 s
CPU time in Example $3.2(p=10)$	39.5 s	20.8 s
CPU time with $p=100$	2016.6 s	7266.4 s

Small n Large p

\square The gene selection problem in microarray experiments: the number of candidate genes, $p>$ the number of available sample size, n. (Yi et al., 2003, and Lee et al., 2003)
\square Overcomplete signal representation: the number of basis functions, $p>$ the size of the signal, n. (Wolf et al., 2004)
\square Sparse assumption.

Simulations for Small n Large p Problem

\square Shao and Chow (2007) studied the small n large p problem in microarray experiments.
\square The ridge regression estimator for β is $\widehat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}+h_{n} I_{p}\right)^{-1} \mathbf{X}^{\prime} Y=R_{D} \mathbf{X}^{\prime} Y$,

- I_{p} is the $p \times p$ identity matrix.
- h_{n} is the ridge parameter.
- $R_{D}=\left(\mathbf{X}^{\prime} \mathbf{X}+h_{n} I_{p}\right)^{-1}$.
\square Screen out X_{i} if $\left|\widehat{\beta}_{i}\right| \leq a_{n}$, and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.
\square Their procedure is asymptotically consistent and their idea is similar to that of the Lasso method (Tibshirani, 1996).

Simulation

$\square(n, p)=(50,200)$ and $(100,400)$.
\square There are 5 true active variables, and

$$
\beta=(3,-3.5,4,-2.8,3.2,0, \ldots, 0)^{\prime}
$$

\square The regressor X_{i} is generated by

$$
X_{i}=G_{i}+\lambda G
$$

where G_{i} and $G \sim N_{n}\left(0, I_{n}\right)$, and $\lambda=0$ or 1.
$\square \epsilon \sim N_{n}\left(0, I_{n}\right)$.

Simulation

\square Three methods are used here, Shao and Chow (2007), SMP and Lasso + CV.
\square The screening method of Shao and Chow (2007): Set $h_{n}=n^{2 / 3}$ and $a_{n}=n^{-1 / 6}$.
\square SMP:

- τ is selected by 5 -fold CV from $\{80,120,160,220\}$ for $(n, p)=(50,200)$ and from $\{100,150,200,250\}$ for $(n, p)=(100,400)$.
- Draw 2000 posterior samples by taking every p th sample.

Simulation

\square Lasso + CV: There is a Matlab implementation of the homotopy/LARS-LASSO algorithm for tracing the regularization path of the L1-penalized squared error loss (Rocha, 2006), and this tool-box is available at http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software
\square Stopping criterion:

$$
\left\|\mathbf{X}^{\prime}\left(Y-\mathbf{X}^{\prime} \widehat{\beta}\right)\right\|_{\infty}<b
$$

\square lasso_cv: Fit the parameters of a linear model by using the lasso and k-folds cross validation
$\square b \in\left\{2 \times 10^{-1}, 10^{-1}, 10^{-2}, \ldots, 10^{-5}, 10^{-8}\right\}$.
$\square 10$-folds CV is used here.
\square Identify $\left\{i \| \beta_{i} \mid>0\right\}$.

Frequencies based on 100 replications with $(n, p)=(50,200)$

Frequencies based on 100 replications with $(n, p)=(100,400)$

An illustration in Image Representation

\square Gabor regression model (Wolf et al., 2004) is

$$
f=\sum_{i} c_{i} g_{i}+\varepsilon
$$

where g_{i} 's are the Gabor basis functions.
\square The Gabor basis function can be defined as

$$
\begin{aligned}
g(u, v) & =\exp \left[-\frac{1}{2}\left(\sigma_{u} u^{2}+\sigma_{v} v^{2}\right)\right] \cos \left[\frac{2 \pi u}{\lambda}+\varphi\right] \\
u & =u_{0}+x_{1} \cos \theta-x_{2} \sin \theta \\
v & =v_{0}+x_{1} \sin \theta-x_{2} \cos \theta
\end{aligned}
$$

Gabor Regression Function

\square Give a grid

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in\{22,24, \ldots, 40\} \text { and } x_{2} \in\{7,9, \ldots, 25\}\right\}
$$

\square Totally we have 200 Gabor basis functions on \mathcal{X} by setting $\varphi=0, \sigma_{u}=1$ and $\theta \in\{0,3 / 8 \pi\}$.
\square The response is generated by

$$
Y=7 X_{17}-7 X_{71}+7 X_{161}-7 X_{177}+\varepsilon
$$

\checkmark SMP:

- τ is chosen from $\mathcal{A}=\{50,100, \ldots, 300\}$ by Monte Carlo cross validation with 100 replications.
- Draw 3000 samples by taking every p th sample.

Selected Bases						
X_{17}	X_{71}	X_{73}	X_{161}	X_{177}	SNR1	SNR2
0.9957	0.5243	0.6317	0.6933	1.0000	0.373	0.080

Conjugate Prior for β

\checkmark Smith and Kohn (1996): The prior of β given γ is $N\left(\mathbf{0}, c \sigma^{2}\left(\mathbf{X}_{\gamma}^{\prime} \mathbf{X}_{\gamma}\right)^{-1}\right)$.
\square Obtain $[\gamma \mid Y]$ by integrating β and σ^{2} out.

$$
P(\gamma \mid Y) \propto(1+c)^{-q_{\gamma} / 2} S(\gamma)^{-n / 2} \prod_{i=1}^{p} p_{i}^{\gamma_{i}}\left(1-p_{i}\right)^{1-\gamma_{i}}
$$

where q_{γ} is the number of selected variables and

$$
S(\gamma)=Y^{\prime} Y-\frac{c}{1+c} Y^{\prime} \mathbf{X}_{\gamma}\left(\mathbf{X}_{\gamma}^{\prime} \mathbf{X}_{\gamma}\right)^{-1} \mathbf{X}_{\gamma}^{\prime} Y
$$

\square Use Gibbs sampler to generate $\gamma_{i} \mid Y, \gamma_{-i}$.
\square Need to prespecify the prior parameter c. When the norm of X_{i} is equal to $1, c \in[10,1000]$.
\square Simulations for the algorithm of Smith and Kohn (1996):

- Fix $p_{i}=\rho=1 / 2$.
- Set $n=50$ and $p=20,50,100,300$.
- The variables, $X_{1}, \ldots, X_{p} \stackrel{\text { iid }}{\sim} N_{n}\left(\mathbf{0}, I_{n}\right)$.
- The response variable is generated by

$$
Y=3 X_{1}+3 X_{2}+\cdots+3 X_{10}+\epsilon
$$

where $\epsilon \sim N_{n}\left(\mathbf{0}, I_{n}\right)$.

- The median probability criterion
- Selection results:

c	$p=20$	$p=50$	$p=100$	$p=300$
10	$\sqrt{ }$	$\sqrt{ }$	\times	
100	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\times
1000			$\sqrt{ }$	\times

- SMP with $\tau=250$ works.

Summarization

\square Stochastic matching pursuit + median probability criterion works for both the cases of large n small p and small n large p.
\square Tune the parameters, ρ and τ, via CV approach.
\square "Full" Bayesian procedure
\square CPU times: Componentwise Gibbs sampler $<$ SMP $<$ SSVS
\square Window (or block) version
\square Selection criterion
\square Theoretical Properties
\checkmark Other applications

Analysis of Supersaturated Design

\checkmark Supersaturate design:

- Investigates p factors in only $n(<p+1)$ experimental runs.
- Particularly useful in factor screening.
\square Analysis methods:
- Lin (1993): Stepwise regression approach.
- Chipman (1996) and Chipman et al. (1997): Propose different priors for SSVS.
- Beattie et al. (2002): A two-stage method via SSVS.
- Phoa et al. (2009): Dantzing selection method.

Analysis Approach

\square Use componentwise Gibbs sampler:

- The sample correlations between the factors are not so high.
- The variance would not be too small.
\square Follow the pre-process in Phoa et al. (2009), standardize Y and X_{i} 's are unit norm.
\square Use leave-two-out cross-validation approach to choose the proper parameters, ρ and τ.
\square Selection criterion: the median probability criterion and the highest posterior probability criterion.

Example 1. Cast Fatigue Experiment

Run	A	B	C	D	E	F	G
1	+	+	-	+	+	+	-
2	+	-	+	+	+	-	-
3	-	+	+	+	-	-	-
4	+	+	+	-	-	-	+
5	+	+	-	-	-	+	-
6	+	-	-	-	+	-	+
7	-	-	-	+	-	+	+
8	-	-	+	-	+	+	-
9	-	+	-	+	+	-	+
10	+	-	+	+	-	+	+
11	-	+	+	-	+	+	+
12	-	-	-	-	-	-	-

Example 1. Cast Fatigue Experiment

\square Consider main effect model. i.e. $n=12$ and $p=7$.
\square Fix $\rho=1 / 2$.
\square Iterate $10000 \times p$ times and get 1000 samples from last $5000 \times p$ iterations.
$\square \tau$ is select from $\mathcal{A}=\{1,2,3,4,5\}$. $\widehat{\tau}=2$.
\square The marginal posterior probabilities

Variable	A	B	C	D	E	F	G
Prob.	0.350	0.353	0.341	0.553	0.292	0.899	0.279

$\square \mathrm{Wu}$ and Hamada (2000) and Phoa et al. (2009): [F (D)]

Example 1. Cast Fatigue Experiment

\square Consider main effects + two-factor interactions. i.e. $n=12$ and $p=28$.
$\square \tau$ is select from $\mathcal{A}=\{40,80,120,160,200\} . \widehat{\tau}=120$.
\square The marginal posterior probabilities

Variable	F	FG	AE	AC	BD	BC	AB
Prob.	0.763	0.759	0.129	0.015	0.014	0.014	0.014

\square The highest posterior probability criterion: [F FG].
\square Same as Phoa et al. (2009) by mAIC.

Example 2. Blood Glucose Experiment

\square Sample size, $n=18$.
$\square p=15: 1$ two-level factors, $A, 7$ three-level factors, B, \ldots, H and 7 quadratic contrasts of these seven three-level factors, B^{2}, \ldots, H^{2}.
$\square \tau$ is select from $\mathcal{A}=\{3,4,5,6,7,8\} . \widehat{\tau}=4$.
\square The marginal posterior probabilities

Variable	F^{2}	E^{2}	C	B	G	F	A
Prob.	0.596	0.538	0.384	0.383	0.378	0.364	0.322

\square Same as Wu and Hamada (2000) and Phoa et al. (2009)

Example 2. Blood Glucose Experiment

\square Include two-factor interaction terms, $p=113$.
$\square \tau$ is select from $\mathcal{A}=\{40,80,120,160,200\} . \widehat{\tau}=80$.
\square The marginal posterior probabilities

Variable	$B H^{2}$	$B^{2} H^{2}$	$E G$	$A H^{2}$	$D E$	$B C$	$D E^{2}$
Prob.	0.821	0.748	0.578	0.496	0.154	0.147	0.145

\square The highest posterior probability criterion:

Model	Post. Prob.	R^{2}
$A H^{2} B H^{2} E G B^{2} H^{2}$	0.116	0.9568
$B H^{2} B^{2} H^{2}$	0.027	0.7696
$B H^{2} E G B^{2} H^{2}$	0.018	0.8737
$A H^{2} B H^{2} E G B^{2} H^{2} E^{2} G^{2}$	0.017	0.9766

Example 3. An Example in Lin (1993)

\square A supersaturated design with $n=14$ and $p=23$.
\square Fix $\rho=1 / 2$.
\square Iterate 10000 times and get 1000 samples from last 5000 iterations.
$\square \tau$ is select from $\mathcal{A}=\{20,40,60,80,100\} . \widehat{\tau}=20$.
\square The marginal posterior probabilities

Variable	14	12	19	4	10	11	15
Prob.	0.967	0.574	0.561	0.444	0.099	0.069	0.063

Example 3. An Example in Lin (1993)

\square The highest posterior probability criterion:

Model	Post. Prob.	R^{2}
4121419	0.206	0.9548
14	0.133	0.6317
121419	0.034	0.8706
1214	0.031	0.7401
1419	0.023	0.7225

$\square \mathrm{Li}$ and Lin (2003): [4 1214 19]
\square Phoa et al. (2009): [14]

Future Works

\checkmark Apply SMP when p is large.

Future Works

\checkmark Apply SMP when p is large.
\square Select (ρ, τ) via CV approach.

Future Works

\square Apply SMP when p is large.
\square Select (ρ, τ) via CV approach.
\checkmark Two-stage procedure via CGS: First screen out useless factors and then select the important factors.

Future Works

\square Apply SMP when p is large.
\square Select (ρ, τ) via CV approach.
\checkmark Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
\square Other examples

Future Works

\square Apply SMP when p is large.
\square Select (ρ, τ) via CV approach.
\square Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
\square Other examples
\square One-stage method or two-stage method?

Future Works

\square Apply SMP when p is large.
\square Select (ρ, τ) via CV approach.
\checkmark Two-stage procedure via CGS: First screen out useless factors and then select the important factors.
\square Other examples
\square One-stage method or two-stage method?
\square The idea of Chipman (1996) and Chipman et al. (1997)

Example 3. An Example in Lin (1993)

\square Main effects + Two-factor interaction effects
\square Totally 252 variables $(23+229)$
\square Fix $\rho=1 / 2$.
\square Iterate 10000 times and get 1000 samples from last 5000 iterations.
$\square \tau$ is select from $\mathcal{A}=\{150,170,190,210,230\} . \widehat{\tau}=170$.
\square The marginal posterior probabilities

Var.	14	7×15	13×20	6×10	3×5	7×19	9×22
Prob.	0.367	0.133	0.116	0.059	0.057	0.056	0.053

Example 3. An Example in Lin (1993)

\square Select the variables whose marginal probabilities >0.04.
\square Totally 21 variables.
\square Fix $\rho=1 / 2$.
\square Iterate 10000 times and get 1000 samples from last 5000 iterations.
$\square \tau$ is select from $\mathcal{A}=\{5,10,15,20,25\} . \widehat{\tau}=5$.
\square The marginal posterior probabilities

Var.	5×20	23	14	6×10	11	9×21	7×15
Prob.	0.593	0.551	0.548	0.542	0.47	0.45	0.314

