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Introduction 2-1

Variable Selection

� Model: Y = β1X1 + · · ·+ βpXp + ε
I Y: the n-dimensional response vector
I Xi: the n-dimensional regressor vector
I ε: white noise

� Find the “promising” model:

Y = β∗1X∗
1 + · · ·+ β∗qX∗

q + ε.

� n > p (Large n Small p)
� p > n (Small n Large p)
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Introduction 2-2

Variable Selection Methods

� How to find the “promising” variables, X∗
1 , . . . , X∗

q ?
I Stepwise procedures (Forward, Backward, Stepwise)

I Cross-validation method (CV)
I Information criteria (AIC, BIC, . . . )
I Lasso, Lars, Bayesian Lasso
I Two-stage method (Screening and Selection)
I Stochastic Search Variable Selection
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Stochastic Variable Selection 3-1

Bayesian Variable Selection

� Stochastic Search Variable Selection (SSVS)
I George and McCulloch (1993, 1997)
I Chipman (1996) and Chipman et al. (1997)
I Smith and Kohn (1996)

� Applications:
I Supersaturated design: Beattie et al. (2002)
I Signal processing: Wolfe et al. (2004), and Févotte and

Godsill (2006)
I Gene selection: Lee et al. (2003)
I ...
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Stochastic Variable Selection 3-2

Statistical Model

� Model:
Y = Xβ + ε

I Y is an n× 1 response vector.
I X = [X1, . . . , Xp] is an n× p model matrix, and Xi is the

i-th predictor variable or regressor.
I β = (β1, . . . , βp)

′
is a p× 1 vector of the unknown

coefficients.
I ε = (ε1, . . . , εn)

′
is an n× 1 noise vector that follows

MN(0, σ2In)

� A p× 1 vector of latent variables, γ = (γ1, . . . , γp)
′ :

γi =
{

1, Xi is selected;
0, otherwise.
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Stochastic Search Variable Selection

� George and McCulloch (1993)
� Prior assumptions:

I (βi, γi), i = 1, 2, . . . , p are assumed to be independent.
I γ: P (γi = 0) = pi, and P (γi = 1) = 1− pi.
I β:

[βi|γi = 0] ∼ N(0, ν0i), and [βi|γi = 1] ∼ N(0, ν1i).

Usually set ν1i = ciν0i and ci � 1, i.e. ν1i � ν0i.
I σ: σ2 ∼ IG(ν/2, νλ/2).

Stochastic MP



Stochastic Variable Selection 3-4

Stochastic Search Variable Selection

� Use Gibbs sampling scheme to sample from [β, σ, γ|Y ]

� Iteratively sample from [β|γ, Y, σ], [γ|β, Y, σ], and
[σ|Y, β, γ].

� The best subset of variables is selected according to the
Monte Carlo samples of γ.

� The most costly step:

[β|γ, Y, σ] ∼ N(σ−2AγX
′
Y, Aγ),

I Aγ = (σ−2X
′
X + D−1

γ R−1D−1
γ )−1.

I R is the prior correlation matrix.
I D−2

γ = diag[(a1ν01)−1, . . . , (apν0p)−1] with ai = 1 if γi = 0,
and ai = ci if γi = 1.
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Stochastic Search Variable Selection

� Speed up the stochastic search variable selection process:
I Cholesky decomposition for Aγ .
I Sample γ componentwise, i.e. [γi|γ−i, Y ].
I When ν0i = 0, Geweke (1996) suggested to jointly draw

(γi, βi).
I Choose conjugate prior for β. Sample [γ|Y ] directly. (Smith

and Kohn, 1996, and George and McCulloch, 1997)
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Componentwise Gibbs Sampler

� The prior of β: βi|γi ∼ (1− γi)δ0 + γiN(0, τ2
i ).

� Sample (γi, βi) one at time conditioning on (γ−i, β−i).
� Assume τi = τ .
� The key step:

zi =
P (Y |γi = 1, {βk,∀ k 6= i})
P (Y |γi = 0, {βk,∀ k 6= i})

=

√
σ2

i?

τ2
exp

{
r2
i

2σ2
i?

}
,

where σ2
i? =

σ2τ2

X
′
iXiτ2 + σ2

, ri =
R

′
iXiτ

2

σ2 + X
′
iXiτ2

, and

Ri = Y − Σk 6=iβkXk.
� Set pi = ρ. Then

P (γi = 1|{βk,∀ k 6= i}, Y ) =
(1− ρ)zi

ρ + (1− ρ)zi
.
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The componentwise Gibbs sampler for variable selection

(I) Randomly select a variable Xi.

(II) Compute

zi =
p(Y |γi = 1, {βk,∀ k 6= i})
p(Y |γi = 0, {βk,∀ k 6= i})

=
√

σ2
i?/τ2 exp{ r2

i

2σ2
i?

}.

Then evaluate the posterior probability

P (γi = 1|{βk,∀ k 6= i}, Y ) =
(1− ρ)zi

ρ + (1− ρ)zi
.

(III) Sample γi from the above posterior probability. If
γi = 0, then set βi = 0, otherwise, sample
βi ∼ N(ri, σ

2
i?). Go back to (I).

(IV) After a number of iterations of the above steps,
compute the current residual vector,
Res = Y −

∑
i βiXi. Then sample

σ2 ∼ IG(n+ν
2 , Res

′
Res+νλ
2 ). Go back to (I).
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Componentwise Gibbs Sampler

� Similar to the search algorithm of Geweke (1996) with the
truncated normal prior distribution.

� Two possible problems:

I The variables are highly correlated.
I The residual variance is small.
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Matching Pursuit

� Matching Pursuit (Mallat and Zhang, 1993): Suppose
‖Xi‖2 = 1. At each iteration,

I Select Xj such that

j = arg max |〈R,Xi〉|.

I Updated βi ← βi + 〈R,Xi〉, and R← R− 〈R,Xi〉Xi.

� Forward selection

Stochastic MP
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Metropolized Matching Pursuit

� Metropolis scheme with a pair of reversible moves: addition
and deletion moves based on
zi = P (Y |γi = 1, {βk,∀ k 6= i})/P (Y |γi = 0, {βk,∀ k 6= i}).

� The larger zi is, the more promising the variable Xi is.
� Proposal for the next status:

I Add or delete a variable.
I Addition proposal: Sample a inactive variable with

probability proportional to zi.
I Deletion proposal: Randomly select one active variable.
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� Acceptance probability for addition move:

paccept−add

= min

[
1,

P (γi = 1|{βk,∀ k 6= i}, Y )
P (γi = 0|{βk,∀ k 6= i}, Y )

pdelete

padd

1/(A + 1)
zi/

∑
j:γj=0 zj

]

= min

[
1,

(1− ρ)
ρ

pdelete

padd

∑
j:γj=0 zj

(A + 1)

]
. (1)

� Acceptance probability of the deletion move:

paccept−delete

= min

[
1,

P (γi = 0|{βk,∀ k 6= i}, Y )
P (γi = 1|{βk,∀ k 6= i}, Y )

padd

pdelete

zi/(
∑

j:γj=0 zj + zi)

1/A

]

= min

[
1,

ρ

(1− ρ)
padd

pdelete

A∑
j:γj=0 zj + zi

]
. (2)
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Stochastic matching pursuit for variable selection

(I) Let A be the number of active variables. With
probability padd, go to (II). With probability
pdelete = 1− padd go to (IV).

(II) With probability paccept−add calculated according to
Eq. (1), go to (III), and with probability 1− paccept−add

go back to (I).

(III) Among all the inactive variables i with γi = 0, sample a
variable i with probability proportional to zi, then let
γi = 1 and sample βi as described in (III) of Algorithm
1. Go back to (I).
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Stochastic matching pursuit for variable selection

(IV) If A > 0, then randomly select an active variable i with
γi = 1.

(V) With probability paccept−delete calculated according to
Eq. (2), accept the proposal of deleting the variable i,
i.e., set γi = 0, and βi = 0. With probability
1− paccept−delete, reject the proposal of deleting variable
i, and sample βi as described in (III) of Algorithm 1.
Go back to (I).

(VI) After a number of iterations of the above steps,
compute the current residual vector,
Res = Y −

∑
i βiXi, and then update

σ2 ∼ IG(n+ν
2 , Res

′
Res+νλ
2 ). Go back to (I).
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� Combine the strengths of the matching pursuit and the
componentwise Gibbs sampler.

1. Pursue proposing variables.
2. Don’t need to compute the inverse of the large matrix.
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Implementation Details

� After a burn-in period, use {γ(i), i > T} to estimate
P (γj = 1|Y ).

� Selection criteria:
I The highest posterior probability: max P (γ1, . . . , γp|Y ).
I The median probability criterion in Barbieri and Berger

(2004): Xi is included in the model if

P (γi = 1|Y ) ≥ 1/2.
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Implementation Details

� Tuning parameters, padd and ρ .

I Set padd = 1/2 = pdelete.
I Set ρ = 1/2 (George and McCulloch, 1993 and 1997).

� Another tuning parameter, τ

I zi is a decreasing function of τ . Then
P (γi = 1|{βk, k 6= i}, Y ) is smaller for larger τ .

I Cross-Validation approach for selecting τ :
Use K-fold CV (or Monte Carlo CV) to choose “proper”
value of τ . Thus

τ̂ = arg min
τ

K∑
k=1

∑
j

(ykj − ŷ−kj(τ))2.

� ρ can also be selected by this CV approach.
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I Cross-Validation approach for selecting τ :
Use K-fold CV (or Monte Carlo CV) to choose “proper”
value of τ . Thus

τ̂ = arg min
τ

K∑
k=1

∑
j

(ykj − ŷ−kj(τ))2.

� ρ can also be selected by this CV approach.
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Stochastic Variable Selection 3-37

Implementation Details

� Tuning parameters, padd and ρ .
I Set padd = 1/2 = pdelete.
I Set ρ = 1/2 (George and McCulloch, 1993 and 1997).

� Another tuning parameter, τ
I zi is a decreasing function of τ . Then

P (γi = 1|{βk, k 6= i}, Y ) is smaller for larger τ .
I Cross-Validation approach for selecting τ :

Use K-fold CV (or Monte Carlo CV) to choose “proper”
value of τ . Thus

τ̂ = arg min
τ

K∑
k=1

∑
j
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Implementation Details
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Large n Small p

Example 3.1: (n, p) = (60, 5)

� These five variables, X1, . . . , X5
iid∼ N60(0, I60).

� The response variable is generated by

Y = X4 + 1.2X5 + ε,

where ε ∼ N60(0, I60).
� Set (ρ, τ) = (0.5, 10) for SMP and set (ν0, c) = (0.01, 2500)

for SSVS.
� Totally there are 1000 replications. Draw 3000 samples

from posterior samples.
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Large n Small p

Table 1: Variable selection results in Example 3.1

method Number of selected variables
0 1 2 3 4 5

SMP f1 0 0 997 3 0 0
f2 0 0 997 3 0 0

SSVS f1 0 0 997 3 0 0
f2 0 0 997 3 0 0
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Large n small p

Example 3.2: (n, p) = (60, 10)

� 10 variables, X1, . . . , X10
iid∼ N60(0, I60).

� The true model is

Y = 2X1 + 3X2 + 4X5 + 5X6 + 6X9 + 7X10 + ε,

where ε ∼ N60(0, 2.52I60).
� Set (ρ, τ) = (0.5, 15) for SMP and set (ν0, c) = (0.01, 2500)

for SSVS.
� Totally there are 1000 replications. In each replication,

draw 3000 samples.
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Large n small p

Table 2: Variable selection results in Example 3.2

method Number of selected variables
≤ 3 4 5 6 7 ≥ 8

SMP f1 0 0 2 961 37 0
f2 0 0 0 961 37 0

SSVS f1 0 0 1 934 64 1
f2 0 0 0 934 64 1
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Computational Cost

Table 3: CPU times (in seconds) of 10,000 iterations

SMP SSVS
CPU time in Example 3.1 (p = 5) 14.6s 9.3s
CPU time in Example 3.2 (p = 10) 39.5s 20.8s

CPU time with p = 100 2016.6s 7266.4s
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Small n Large p

� The gene selection problem in microarray experiments: the
number of candidate genes, p > the number of available
sample size, n. (Yi et al., 2003, and Lee et al., 2003)

� Overcomplete signal representation: the number of basis
functions, p > the size of the signal, n. (Wolf et al., 2004)

� Sparse assumption.
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Simulations for Small n Large p Problem

� Shao and Chow (2007) studied the small n large p problem
in microarray experiments.

� The ridge regression estimator for β is
β̂ = (X′X + hnIp)−1X′Y = RDX′Y,

I Ip is the p× p identity matrix.
I hn is the ridge parameter.
I RD = (X′X + hnIp)−1.

� Screen out Xi if |β̂i| ≤ an, and an → 0 as n→∞.
� Their procedure is asymptotically consistent and their idea

is similar to that of the Lasso method (Tibshirani, 1996).
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Simulation

� (n, p) = (50, 200) and (100, 400).
� There are 5 true active variables, and

β = (3,−3.5, 4,−2.8, 3.2, 0, . . . , 0)′.

� The regressor Xi is generated by

Xi = Gi + λG,

where Gi and G ∼ Nn(0, In), and λ = 0 or 1.
� ε ∼ Nn(0, In).
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Simulation

� Three methods are used here, Shao and Chow (2007), SMP
and Lasso + CV.

� The screening method of Shao and Chow (2007): Set
hn = n2/3 and an = n−1/6.

� SMP:
I τ is selected by 5-fold CV from {80, 120, 160, 220} for

(n, p) = (50, 200) and from {100, 150, 200, 250} for
(n, p) = (100, 400).

I Draw 2000 posterior samples by taking every pth sample.
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Simulation

� Lasso + CV: There is a Matlab implementation of the
homotopy/LARS-LASSO algorithm for tracing the
regularization path of the L1-penalized squared error loss
(Rocha, 2006), and this tool-box is available at
http://www.stat.berkeley.edu/twiki/Research/YuGroup/Software.

� Stopping criterion:

‖X′
(Y −X′β̂)‖∞ < b.

� lasso_cv: Fit the parameters of a linear model by using
the lasso and k-folds cross validation

� b ∈ {2× 10−1, 10−1, 10−2, . . . , 10−5, 10−8}.
� 10-folds CV is used here.
� Identify {i||βi| > 0}.
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Frequencies based on 100 replications with (n, p) = (50, 200)

λ method Number of selected variables
≤
2

3 4 5 6 7 8 9 10 ≥
11

#
of
sel.

0 SC f1 1 4 6 14 14 20 18 9 10 4
f2 0 0 0 1 1 10 13 9 9 3 46

Lasso f1 0 0 0 17 5 10 14 6 4 44
f2 0 0 0 17 5 10 14 6 4 44 100

SMP f1 0 0 0 94 4 2 0 0 0 0
f2 0 0 0 94 4 2 0 0 0 0 100

1 SC f1 1 6 10 21 10 19 13 12 4 4
f2 0 0 0 2 2 9 8 6 4 4 35

Lasso f1 0 0 0 0 1 0 1 4 8 86
f2 0 0 0 0 1 0 1 4 8 86 100

SMP f1 0 0 0 97 3 0 0 0 0 0
f2 0 0 0 97 3 0 0 0 0 0 100
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Frequencies based on 100 replications with (n, p) = (100, 400)

λ method Number of selected variables
≤
2

3 4 5 6 7 8 9 10 ≥
11

#
of
sel.

0 SC f1 0 3 9 49 22 13 3 1 0 0
f2 0 0 0 41 19 13 3 1 0 0 77

Lasso f1 0 0 0 75 6 5 1 0 2 11
f2 0 0 0 75 6 5 1 0 2 11 100

SMP f1 0 0 0 95 5 0 0 0 0 0
f2 0 0 0 95 5 0 0 0 0 0 100

1 SC f1 0 1 11 35 28 13 9 2 1 0
f2 0 0 0 33 28 13 8 2 1 0 85

Lasso f1 0 0 0 4 5 3 7 7 7 67
f2 0 0 0 4 5 3 7 7 7 67 100

SMP f1 0 0 0 98 2 0 0 0 0 0
f2 0 0 0 98 2 0 0 0 0 0 100
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An illustration in Image Representation

� Gabor regression model (Wolf et al., 2004) is

f =
∑

i

cigi + ε,

where gi’s are the Gabor basis functions.
� The Gabor basis function can be defined as

g(u, v) = exp
[
−1

2
(σuu2 + σvv

2)
]

cos
[
2πu

λ
+ ϕ

]
,

u = u0 + x1 cos θ − x2 sin θ,

v = v0 + x1 sin θ − x2 cos θ,
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Gabor Regression Function

2 4 6 8
10

2
4

6
8

10

−0.1

0

0.1

0.2

0.3

−0.1

0

0.1

0.2

0.3

2 4 6 8
10

2
4

6
8

10

−0.05

0

0.05

0.1

0.15

−0.05

0

0.05

0.1

0.15

1

Stochastic MP



Small n Large p 5-53

� Give a grid
X = {(x1, x2)|x1 ∈ {22, 24, . . . , 40} and x2 ∈ {7, 9, . . . , 25}}.

� Totally we have 200 Gabor basis functions on X by setting
ϕ = 0, σu = 1 and θ ∈ {0, 3/8π}.

� The response is generated by

Y = 7X17 − 7X71 + 7X161 − 7X177 + ε,

� SMP:
I τ is chosen from A = {50, 100, . . . , 300} by Monte Carlo

cross validation with 100 replications.
I Draw 3000 samples by taking every pth sample.

Selected Bases
X17 X71 X73 X161 X177 SNR1 SNR2
0.9957 0.5243 0.6317 0.6933 1.0000 0.373 0.080
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Conjugate Prior for β

� Smith and Kohn (1996): The prior of β given γ is
N(0, cσ2(X

′
γXγ)−1).

� Obtain [γ|Y ] by integrating β and σ2 out.

P (γ|Y ) ∝ (1 + c)−qγ/2S(γ)−n/2
p∏

i=1

pγi
i (1− pi)1−γi ,

where qγ is the number of selected variables and

S(γ) = Y
′
Y − c

1 + c
Y

′
Xγ(X

′
γXγ)−1X

′
γY.

� Use Gibbs sampler to generate γi|Y, γ−i.
� Need to prespecify the prior parameter c. When the norm

of Xi is equal to 1, c ∈ [10, 1000].
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� Simulations for the algorithm of Smith and Kohn (1996):
I Fix pi = ρ = 1/2.
I Set n = 50 and p = 20, 50, 100, 300.
I The variables, X1, . . . , Xp

iid∼ Nn(0, In).
I The response variable is generated by

Y = 3X1 + 3X2 + · · ·+ 3X10 + ε,

where ε ∼ Nn(0, In).
I The median probability criterion
I Selection results:

c p = 20 p = 50 p = 100 p = 300
10

√ √
×

100
√ √ √

×
1000

√
×

I SMP with τ = 250 works.
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Summarization

� Stochastic matching pursuit + median probability criterion
works for both the cases of large n small p and small n
large p.

� Tune the parameters, ρ and τ , via CV approach.
� “Full” Bayesian procedure
� CPU times: Componentwise Gibbs sampler < SMP < SSVS
� Window (or block) version
� Selection criterion
� Theoretical Properties
� Other applications
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Analysis of Supersaturated Design

� Supersaturate design:
I Investigates p factors in only n(< p + 1) experimental runs.
I Particularly useful in factor screening.

� Analysis methods:
I Lin (1993): Stepwise regression approach.
I Chipman (1996) and Chipman et al. (1997): Propose

different priors for SSVS.
I Beattie et al. (2002): A two-stage method via SSVS.
I Phoa et al. (2009): Dantzing selection method.
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Analysis Approach

� Use componentwise Gibbs sampler:
I The sample correlations between the factors are not so high.
I The variance would not be too small.

� Follow the pre-process in Phoa et al. (2009), standardize Y
and Xi’s are unit norm.

� Use leave-two-out cross-validation approach to choose the
proper parameters, ρ and τ .

� Selection criterion: the median probability criterion and the
highest posterior probability criterion.
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Example 1. Cast Fatigue Experiment

Run A B C D E F G
1 + + − + + + −
2 + − + + + − −
3 − + + + − − −
4 + + + − − − +
5 + + − − − + −
6 + − − − + − +
7 − − − + − + +
8 − − + − + + −
9 − + − + + − +
10 + − + + − + +
11 − + + − + + +
12 − − − − − − −
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Example 1. Cast Fatigue Experiment

� Consider main effect model. i.e. n = 12 and p = 7.
� Fix ρ = 1/2.
� Iterate 10000× p times and get 1000 samples from last

5000× p iterations.
� τ is select from A = {1, 2, 3, 4, 5}. τ̂ = 2.
� The marginal posterior probabilities

Variable A B C D E F G
Prob. 0.350 0.353 0.341 0.553 0.292 0.899 0.279

� Wu and Hamada (2000) and Phoa et al. (2009): [F (D)]
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Example 1. Cast Fatigue Experiment

� Consider main effects + two-factor interactions. i.e. n = 12
and p = 28.

� τ is select from A = {40, 80, 120, 160, 200}. τ̂ = 120.
� The marginal posterior probabilities

Variable F FG AE AC BD BC AB
Prob. 0.763 0.759 0.129 0.015 0.014 0.014 0.014

� The highest posterior probability criterion: [F FG].
� Same as Phoa et al. (2009) by mAIC.
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Example 2. Blood Glucose Experiment

� Sample size, n = 18.
� p = 15: 1 two-level factors, A, 7 three-level factors,

B, . . . , H and 7 quadratic contrasts of these seven
three-level factors, B2, . . . ,H2.

� τ is select from A = {3, 4, 5, 6, 7, 8}. τ̂ = 4.
� The marginal posterior probabilities

Variable F 2 E2 C B G F A

Prob. 0.596 0.538 0.384 0.383 0.378 0.364 0.322
� Same as Wu and Hamada (2000) and Phoa et al. (2009)
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Example 2. Blood Glucose Experiment

� Include two-factor interaction terms, p = 113.
� τ is select from A = {40, 80, 120, 160, 200}. τ̂ = 80.
� The marginal posterior probabilities

Variable BH2 B2H2 EG AH2 DE BC DE2

Prob. 0.821 0.748 0.578 0.496 0.154 0.147 0.145
� The highest posterior probability criterion:

Model Post. Prob. R2

AH2 BH2 EG B2H2 0.116 0.9568
BH2 B2H2 0.027 0.7696

BH2 EG B2H2 0.018 0.8737
AH2 BH2 EG B2H2 E2G2 0.017 0.9766
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Example 3. An Example in Lin (1993)

� A supersaturated design with n = 14 and p = 23.
� Fix ρ = 1/2.
� Iterate 10000 times and get 1000 samples from last 5000

iterations.
� τ is select from A = {20, 40, 60, 80, 100}. τ̂ = 20.
� The marginal posterior probabilities

Variable 14 12 19 4 10 11 15
Prob. 0.967 0.574 0.561 0.444 0.099 0.069 0.063

Stochastic MP



Analysis of Supersaturated Design 8-65

Example 3. An Example in Lin (1993)

� The highest posterior probability criterion:
Model Post. Prob. R2

4 12 14 19 0.206 0.9548
14 0.133 0.6317

12 14 19 0.034 0.8706
12 14 0.031 0.7401
14 19 0.023 0.7225

� Li and Lin (2003): [4 12 14 19]
� Phoa et al. (2009): [14]
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Future Works

� Apply SMP when p is large.

� Select (ρ, τ) via CV approach.
� Two-stage procedure via CGS: First screen out useless

factors and then select the important factors.
� Other examples
� One-stage method or two-stage method?
� The idea of Chipman (1996) and Chipman et al. (1997)
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Example 3. An Example in Lin (1993)

� Main effects + Two-factor interaction effects
� Totally 252 variables (23 + 229)
� Fix ρ = 1/2.
� Iterate 10000 times and get 1000 samples from last 5000

iterations.
� τ is select from A = {150, 170, 190, 210, 230}. τ̂ = 170.
� The marginal posterior probabilities

Var. 14 7× 15 13× 20 6× 10 3× 5 7× 19 9× 22
Prob. 0.367 0.133 0.116 0.059 0.057 0.056 0.053
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Example 3. An Example in Lin (1993)

� Select the variables whose marginal probabilities > 0.04.
� Totally 21 variables.
� Fix ρ = 1/2.
� Iterate 10000 times and get 1000 samples from last 5000

iterations.
� τ is select from A = {5, 10, 15, 20, 25}. τ̂ = 5.
� The marginal posterior probabilities

Var. 5× 20 23 14 6× 10 11 9× 21 7× 15
Prob. 0.593 0.551 0.548 0.542 0.47 0.45 0.314
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