1. (40 points) Assume the model is

$$
\begin{equation*}
y=X \beta+\varepsilon, \tag{1}
\end{equation*}
$$

where $y=\left(y_{1}, \cdots, y_{n}\right)^{\prime}$ is the vector of the observations; $X=\left(\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 p} \\ x_{21} & x_{22} & \cdots & x_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n p}\end{array}\right)$ is the design matrix; $\beta=\left(\beta_{1}, \cdots, \beta_{p}\right)^{\prime}$ is the vector of the unknown parameters, and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)^{\prime}$ is a vector of errors with mean vector, $\mathbf{0}$, and covariance matrix, $\sigma^{2} I_{n}$.
a. Find the least-squares estimate of $\beta, \hat{\beta}$.
b. Show $\hat{\beta}$ is a unbiased estimator for β and find its covariance matrix.
c. Give a geometrical interpretation of least-squares.
d. Write down $S S_{T} ; S S_{R}$ and $S S_{\text {Res }}$ in terms of y, X and $\hat{\beta}$.
e. Give the corresponding ANOVA table.
2. (10 points) Suppose we want to find the least-squares estimator of β in the model $y=X \beta+\varepsilon$ subject to a set of equality constraints on β, say $T \beta=c$. Show that the estimator is

$$
\begin{equation*}
\tilde{\beta}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} T^{\prime}\left[T\left(X^{\prime} X\right)^{-1} T\right]^{-1}(c-T \hat{\beta}) \tag{2}
\end{equation*}
$$

where $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y$.
3. (10 points) Give 25 observations, y_{1}, \cdots, y_{25}, and assume the model is $y=\beta_{0}+$ $\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon$. Please fill the following ANOVA table up.

Source Variation	Sum of Square	Degree of Freedom	Mean Square	F_{0}
Regression Residual Total	5550.8166			

4. (10 point) In partial regression plot, define that

$$
e(y \mid X)=y-\hat{y}=y-X \hat{\beta} .
$$

Assume the model is

$$
\begin{equation*}
y=X \beta+\varepsilon=X(j) \beta(j)+\beta_{j} x_{j}+\varepsilon \tag{3}
\end{equation*}
$$

where x_{j} is the $j^{\text {th }}$ variable; $X(j)$ is the original X matrix with the $j^{\text {th }}$ regressor $\left(x_{j}\right)$ removed, and $\beta(j)=\left(\beta_{0}, \cdots, \beta_{j-1}, \beta_{j+1}, \cdots, \beta_{k}\right)^{\prime}$. Find the relationship between $e(y \mid X(j))$ and $e\left(x_{j} \mid X(j)\right)$.
5. (20 points) Consider the following analysis of variance table:

Terms added sequentially (from first to least)

	Df	Sum of square	Mean Square	F-value	$\operatorname{Pr}(\mathrm{F})$
x_{1}	1	5783.780	5783.780	89.49636	0.0000000
x_{2}	1	811.715	811.715	12.56022	0.0017316
x_{3}	1	1181.505	1181.505	18.28223	0.0002832
x_{4}	1	5303.029	5303.029	82.05737	0.0000000
x_{5}	1	115.504	115.504	1.78727	0.1943335
Residuals	23	1486.395	64.626		

a. Fill out the missing values in the following ANOVA table:

Source Variation	Sum of Square	Degree of Freedom	Mean Square	F_{0}
Regression	$?$	$?$	$?$	$?$
Residual	$?$	$?$	$?$	
Total	$?$	$?$		

b. Find $S S\left(\beta_{3}, \beta_{4} \mid \beta_{0}, \beta_{1}, \beta_{2}\right)$.
c. Which one is larger $S S\left(\beta_{3}, \beta_{4} \mid \beta_{0}, \beta_{1}, \beta_{2}\right)$ or $S S\left(\beta_{3}, \beta_{4}\right)$? Why?
6. (10 points) Write out the five major assumptions in the study of regression analysis.

