- 1. (10 points) Please write down the five major assumptions in Regression Analysis.
- 2. (35 points) Consider a no-intercept model, i.e.

$$y = \beta_1 x + \beta_2 x^2 + \varepsilon,$$

where ε is a normal distribution with mean 0 and variance σ^2 . Additionally we also assume that the errors are uncorrelated. Given *n* observations, $(y_i, x_i), i =$

1, 2, ..., n, n > 2. Let
$$Y = (y_1, \dots, y_n)'$$
 and $X = \begin{pmatrix} x_1 & x_1 \\ \vdots & \vdots \\ x_n & x_n^2 \end{pmatrix}$.

- **a.** Find the least-square estimator of $\beta = (\beta_1, \beta_2)', \hat{\beta}$.
- **b.** Show $\hat{\beta}$ is an unbiased estimator of β and find the covariance matrix of $\hat{\beta}$.
- c. Give a geometrical interpretation of this least-square estimator.
- **d.** Please write down SS_{Res} in terms of Y and X, and find the unbiased estimator of σ^2 .
- e. Find the MLE of β and compare this MLE with the least-square estimator.
- **3.** (15 points) Assume the model is

$$Y = X\beta + \varepsilon$$

where $Y = (y_1, \dots, y_n)'$ is the vector of the observations; $X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$

is the design matrix; $\beta = (\beta_1, \dots, \beta_p)'$ is the vector of the unknown parameters, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)'$ is a vector of errors with mean vector, **0**, and covariance matrix, $\sigma^2 I_n$. Let $\hat{y}_{(i)}$ be the fitted value of the *i*th response based on all observations except the *i*th one, and define

$$e_{(i)} = y_i - \hat{y_{(i)}}$$

to be the ith prediction errors. Show that

$$e_{(i)} = \frac{e_i}{1 - h_{ii}},$$

where e_i is the original *i*th residual and h_{ii} is the *i*th diagonal elements of hat matrix.

(Hits: Let $X_{(i)}$ represent the original X matrix with the *i*th row x_i withheld. $h_{ii} = x'_i (X'X)^{-1} x_i$ and $[X'_{(i)}X_{(i)}]^{-1} = (X'X)^{-1} + \frac{(X'X)^{-1} x_i x'_i (X'X)^{-1}}{1 - h_{ii}}$.)

- 4. (15 points) Consider the normal probability plot.
 - **a.** How to construct this plot?
 - **b.** What is the purpose of this plot?
 - **c.** If the observations come from a heavy-tailed distribution, then please show the corresponding normal probability plot.
- 5. (15 points) Give 32 observations, y_1, \dots, y_{32} , and assume the model is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$. Please fill the following ANOVA table up.

Source Variation	Sum of Square	Degree of Freedom	Mean Square	F_0
Regression	972.9			
Residual				
Total	1237.54			

6. (10 points) Consider the following two models where $E(\varepsilon) = \mathbf{0}$ and $\operatorname{Var}(\varepsilon) = \sigma^2 I$: Model A: $y = X_1\beta_1 + \varepsilon$ Model B: $y = X_1\beta_1 + X_2\beta_2 + \varepsilon$. Show that $R_A^2 \leq R_B^2$.