1. Let

$$
\begin{aligned}
& P_{0}\left(x_{i}\right)=1 \\
& P_{1}\left(x_{i}\right)=\frac{x_{i}-\bar{x}}{d} \\
& P_{2}\left(x_{i}\right)=\left(\frac{x_{i}-\bar{x}}{d}\right)^{2}-\left(\frac{n^{2}-1}{12}\right)
\end{aligned}
$$

(a) Show that $P_{0}(x), P_{1}(x)$ and $P_{2}(x)$ are the orthogonal polynomial of degree

0,1 and 2 with respect to equally spaced data points, x_{1}, \cdots, x_{n}, where $\bar{x}=\sum_{i=1}^{n} x_{i} / n$ and $d=x_{i+1}-x_{i}, i=1,2, \cdots, n-1$. (10 points)
(b) Give the following data and the values of orthogonal polynomial for $n=5$:

$$
\begin{array}{cccccc}
y: & 2 & 3 & 1 & -1 & 2 \\
x: & 101 & 102 & 103 & 104 & 105 \\
& & & & & \\
& \\
P_{1}\left(x_{i}\right) & -2 & -1 & 0 & 1 & 2 \\
P_{2}\left(x_{i}\right) & 2 & -1 & -2 & -1 & 2
\end{array}
$$

Find the fitted equation of a quadratic-degree orthogonal polynomial model. (10 points)
2. For a multiple linear regression model, suppose that the true model is

$$
y=X_{p} \beta_{p}+X_{r} \beta_{r}+\varepsilon .
$$

Consider the subset model

$$
y=X_{p} \beta_{p}+\varepsilon
$$

(a) Find the biase of least-squares estimators of β_{p} from subset model. (10 points)
(b) Show that the expectation of $\hat{\sigma}^{2}$ from subset model is

$$
E\left(\hat{\sigma}^{2}\right)=\sigma^{2}+\frac{\beta_{r}^{\prime} X_{r}^{\prime}\left[I-X_{p}\left(X_{p}^{\prime} X_{p}\right)^{-1} X_{p}^{\prime}\right] X_{r} \beta_{r}}{n-p}
$$

(10 points)
3. Consider the single-factor fixed-effects analysis of variance with 3 treatments:

$$
y_{i j}=\mu \tau_{i}+\varepsilon_{i j}, i=1,2,3, j=1,2, \cdots, n .
$$

We can use two indicator variables to rewrite the model as

$$
y_{i j}=\beta_{0}+\beta_{1} x_{1 j}+\beta_{2} x_{2 j}+\varepsilon_{i j}, i=1,2,3, j=1,2, \cdots, n,
$$

where $x_{1 j}=1$ if the observation j is from treatment 1 and 0 otherwise; and $x_{2 j}=1$ if observation j is from treatment 2 and 0 otherwise.
(a) Find the least-squares estimators of $\beta_{i}, i=1,2,3$. (10 points)
(b) Show that the regression sum of squares of full model is

$$
S S\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=\sum_{i=1}^{3} \frac{y_{i}^{2}}{n},
$$

where $y_{i .}=\sum_{j=1}^{n} y_{i j}, i=1,2,3$. (10 points)
4. Let y_{i} denote n observations at points, $x_{i}, i=1,2, \cdots, n$. Suppose that y_{i} can be formed into two groups and for each group, the observations may be fitted by a simple linear regression:

$$
\begin{aligned}
& y_{i}=\beta_{01}+\beta_{11} x_{i}+\varepsilon_{i}, i=1, \cdots, n_{1} \\
& y_{i}=\beta_{02}+\beta_{12} x_{i}+\varepsilon_{i}, i=n_{1}+1, \cdots, n
\end{aligned}
$$

Use the indicator variable to one linear regression model to do standard statistical analysis for testing $H_{0}: \beta_{01}=\beta_{02}$ and $\beta_{11}=\beta_{12}$ (i.e. two regression lines are identical) and $H_{0}: \beta_{11}=\beta_{12}$ (i.e. two regression lines are parallel), and also write down the corresponding statistic for each test. (15 points)
5. Write down the purpose of each term: (15 points)
(a) Cook's D, $D_{i}\left(X^{\prime} X, p M S_{\text {Res }}\right)=\frac{\left(\hat{\beta_{(i)}}-\hat{\beta}\right)^{\prime}\left(X^{\prime} X\right)\left(\hat{\beta_{(i)}}-\hat{\beta}\right)}{p M S_{\text {Res }}}$
(b) $\operatorname{DFBETA} S_{j, i}=\frac{\hat{\beta}_{j}-\hat{\beta_{j}}(i)}{\sqrt{S_{(i)}^{2} C_{j j}}}$
(c) DFFITS $_{i}=\frac{\hat{y}_{i}-y_{(\hat{i})}}{\sqrt{S_{(i)}^{(} h_{i i}}}$
6. Suppose that the variance of the observation, σ^{2}, is functionally related to the mean, $E(y)$. Find the variance-stabilizing transformations if (a) $\sigma^{2} \propto E(y)$ and (b) $\sigma^{2} \propto E(y)^{2}$. (10 points)

