- **1.** Explain the following designs:
 - a. The completely randomized design (5 points)
 - **b.** The randomized complete block design (5 points)
 - c. The Graeco-Latin square design (5 points)
 - **d.** The two-factor factorial design (5 points)
- **2.** Consider a randomized complete block design for a signal factor. Suppose there are a treatments and b blocks.
 - **a.** Write down its effects model. (5 points)
 - **b.** Show $SS_T = SS_{Treatment} + SS_{Block} + SS_E$ (10 points)
 - **c.** $E(MS_{Treatment}) = \sigma^2 + \frac{b\sum_{i=1}^{a} \tau_i^2}{a-1}$, where τ_i is the effect of the *i*th treatment, and σ^2 is the variance of the error term. (10 points)
- 3. Consider a balanced incomplete block designs (BIBD) with a treatments and b blocks. Assume that each block contains k treatments and each treatment occurs r times in the design.
 - **a.** What does "balance" mean? (5 points)
 - **b.** Construct a BIBD with a = 4, b = 4, k = 3 and r = 3. (10 points)
 - c. Find the number of times each pair of treatments appears in the same block. (10 points)
 - **d.** Verify that the BIBD with a = 8, b = 16, r = 8 and k = 4 does not exist. (10 points)
- 4. A mechanical engineer is studying the thrust force developed by a drill press. He suspects that the drilling speed and the feed rate of the material are the most important factors. He selects four feed rates and use a high and low drill speed chosen to represent the extreme operating conditions. He obtains the following results

Drill speed \ Freed Rate	0.015	0.030	0.045	0.060
125	2.70	2.45	2.60	2.75
	2.78	2.49	2.72	2.86
200	2.83	2.85	2.86	2.94
	2.86	2.80	2.87	2.88

- **a.** Name an appropriate design for the above experiment. (5 points)
- **b.** Write down the corresponding statistical model. (5 points)
- **c.** Write down the ANOVA. (10 points)

- 5. Consider a randomized complete block design with a treatments and b blocks. Suppose the observation y_{ij} for the treatment i in block j is missing.
 - **a.** Find the estimate of the missing observation by minimizing SS_E . (10 points)
 - b. Assume we have the following data sets for RCBD. Use the iterative ap-

$\boxed{ Treatments \setminus Blocks }$	1	2	3	4	5
1	73	68	74	71	67
2	73	67		72	70
3	75	68	78	73	68
4	73	71	75		69

proach to estimate y_{23} and y_{44} after two iterations, starting with $y_{23} = 70.5$. (10 points)

6. Consider a complete randomized design for a signal factor with 4 treatments. Suppose we have the following contrasts:

$$C_{1} = 3y_{1.} - y_{2.} - y_{3.} - y_{4}$$

$$C_{2} = 2y_{2.} - y_{3.} - y_{4.}$$

$$C_{3} = y_{3.} - y_{4.}$$

- a. Show these contrasts are the orthogonal contrasts. (5 points)
- **b.** $SS_{Treatment} = SS_{C_1} + SS_{C_2} + SS_{C_3}$. (10 points)