1. (20%) Explain the following designs:
a. The completely randomized design
b. The randomized complete block design
c. The balanced incomplete block design
d. The Latin square design
2. (20%) Consider a two-factor factorial design. There are a levels of factor A and b levels of factor B. There are also n replicates.
a. Write down its effects model.
b. Write down the corresponding sum of squares, $S S_{T}, S S_{A}, S S_{B}, S S_{A B}$, and $S S_{E}$.
c. Show its analysis of variance table.
3. (15%) Consider a completely randomized design for a signal factor with a treatments and n replicates. For the fixed effects model, the observation $y_{i j}$ can be written as

$$
y_{i j}=\mu+\tau_{i}+\varepsilon_{i j}, i=1, \cdots, a, j=1, \cdots, n,
$$

where $\sum_{i=1}^{a} \tau_{i}=0$ and $\varepsilon_{i j}$ are i.i.d. $N\left(0, \sigma^{2}\right)$. Show
a. $S S_{T}=S S_{\text {Treatment }}+S S_{E}$
b. $E\left(M S_{E}\right)=\sigma^{2}$
c. $E\left(M S_{\text {Treatment }}\right)=\sigma^{2}+\frac{n \sum_{i=1}^{a} \tau_{i}^{2}}{a-1}$

* $F_{0.05,2,6}=5.41, F_{0.05,6,2}=19.33, F_{0.025,2,6}=7.26, F_{0.025,6,2}=39.33, F_{0.05,3,6}=$ $4.76, F_{0.05,6,3}=8.94, F_{0.025,7,8}=4.53, F_{0.025,8,7}=4.90, t_{0.05,15}=1.753, t_{0.025,15}=$ 2.131

4. (15%) A new filtering device is installed in a chemical unit. Before its installation, a random sample yielded the following information about the percentage of impurity: $\bar{y}_{1}=12.5, S_{1}^{2}=101.17$, and $n_{1}=8$. After installation, a random sample yielded $\bar{y}_{2}=10.2, S_{2}^{2}=94.73$, and $n_{2}=9$.
a. Can you conclude that two variances are equal? Use $\alpha=0.05$.
b. Has the filtering device reduced the percentage of impurity significantly? Use $\alpha=0.05$.
5. (15%) Three different washing solutions are being compared to study their effectiveness, and only three trials can be done on any day. Because days could represent a potential source of variability, the experimenter decides to use a "randomized complete block design". Observations are taken for four days. Analyze the data from this experiment (use $\alpha=0.05$) and draw conclusions.

Solution \backslash Day	1	2	3	4
1	13	22	18	39
2	16	24	17	44
3	5	4	1	22

6. (15%) Consider the following data from a two-factorial experiment. Analyze the data (using $\alpha=0.05$) and draw the conclusion.

Factor 1 \ Factor 2	1	2	3	4
1	36	39	36	32
2	18	20	22	20
3	30	37	33	34

