- **1.** (20 %) Explain the following designs:
 - a. The completely randomized design
 - **b.** The randomized complete block design
 - c. The balanced incomplete block design
 - d. The Latin square design
- (20 %) Consider a two-factor factorial design. There are a levels of factor A and b levels of factor B. There are also n replicates.
 - a. Write down its effects model.
 - **b.** Write down the corresponding sum of squares, $SS_T, SS_A, SS_B, SS_{AB}$, and SS_E .
 - c. Show its analysis of variance table.
- **3.** (15 %) Consider a completely randomized design for a signal factor with *a* treatments and *n* replicates. For the fixed effects model, the observation y_{ij} can be written as

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}, i = 1, \cdots, a, j = 1, \cdots, n,$$

where $\sum_{i=1}^{a} \tau_i = 0$ and ε_{ij} are i.i.d. $N(0, \sigma^2)$. Show

- a. $SS_T = SS_{Treatment} + SS_E$
- **b.** $E(MS_E) = \sigma^2$

c.
$$E(MS_{Treatment}) = \sigma^2 + \frac{n\sum_{i=1}^{a}\tau_i^2}{a-1}$$

- * $F_{0.05,2,6} = 5.41, F_{0.05,6,2} = 19.33, F_{0.025,2,6} = 7.26, F_{0.025,6,2} = 39.33, F_{0.05,3,6} = 4.76, F_{0.05,6,3} = 8.94, F_{0.025,7,8} = 4.53, F_{0.025,8,7} = 4.90, t_{0.05,15} = 1.753, t_{0.025,15} = 2.131$
- 4. (15%) A new filtering device is installed in a chemical unit. Before its installation, a random sample yielded the following information about the percentage of impurity: \$\overline{y}_1\$ = 12.5, \$S_1^2\$ = 101.17, and \$n_1\$ = 8. After installation, a random sample yielded \$\overline{y}_2\$ = 10.2, \$S_2^2\$ = 94.73, and \$n_2\$ = 9.
 - **a.** Can you conclude that two variances are equal? Use $\alpha = 0.05$.
 - **b.** Has the filtering device reduced the percentage of impurity significantly? Use $\alpha = 0.05$.

5. (15 %) Three different washing solutions are being compared to study their effectiveness, and only three trials can be done on any day. Because days could represent a potential source of variability, the experimenter decides to use a "randomized complete block design". Observations are taken for four days. Analyze the data from this experiment (use $\alpha = 0.05$) and draw conclusions.

Solution \setminus Day	1	2	3	4
1	13	22	18	39
2	16	24	17	44
3	5	4	1	22

6. (15 %) Consider the following data from a two-factorial experiment. Analyze the data (using $\alpha = 0.05$) and draw the conclusion.

Factor $1 \setminus Factor 2$	1	2	3	4
1	36	39	36	32
2	18	20	22	20
3	30	37	33	34