1. Let X_1, \dots, X_n be a sample with pdf $f(x|\theta)$, and let $W(\mathbf{X}) = W(X_1, \dots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} E_{\theta} W(\mathbf{X}) = \int_{\chi} \frac{\partial}{\partial \theta} [W(\mathbf{x}) f(\mathbf{x}|\theta)] d\mathbf{x}$$

and $Var_{\theta}W(\mathbf{X}) < \infty$. Then prove

$$Var_{\theta}W(\mathbf{X}) \geq \frac{\left(\frac{d}{d\theta}E_{\theta}W(\mathbf{X})\right)^{2}}{E_{\theta}\left(\left(\frac{\partial}{\partial\theta}\log f(\mathbf{X}|\theta)\right)^{2}\right)}$$

- 2. Let X_1, \dots, X_n be a sample with pdf $f(x|\lambda) = \lambda \exp(-\lambda x), x > 0$. Here assume that we only observe Y_1, \dots, Y_n with $Y_i = I_{X_i < M}$, where M is a fixed constant. Based on Y_i , find the MLE of λ .
- 3. Suppose that Y_1, \dots, Y_n satisfy

$$Y_i = \beta x_i + \varepsilon_i, i = 1, \cdots, n$$

where x_1, \dots, x_n are fixed constants, and $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d. $N(0, \sigma^2)$ with unknown σ^2 . (1) Find the MLE of β , $\hat{\beta}$, and show it is an unbiased estimator of β . (2) Let $\tilde{\beta} = \sum_i Y_i / \sum_i x_i$ be another estimator of β . Show $\tilde{\beta}$ is also unbiased estimator of β . (3) Compare the variances of $\hat{\beta}$ and $\tilde{\beta}$.

- 4. Let X_1, \dots, X_n be a sample with pdf $f(x|\theta) = \exp(-(x-\theta)), x \ge \theta$. We are interested in testing $H_0: \theta \le \theta_0$ v.s. $H_1: \theta > \theta_0$. Derive the LRT for this hypothesis.
- 5. Suppose that X_1, \dots, X_n are i.i.d. with a $Beta(\mu, 1)$ pdf and Y_1, \dots, Y_m are i.i.d. with a $Beta(\theta, 1)$ pdf. Also assume that X_i are independent of Y_i . Find a LRT of $H_0: \theta = \mu$ v.s. $H_1: \theta \neq \mu$, and show this LRT is based on the following statistic,

$$T = \frac{\sum_{i} \log X_{i}}{\sum_{i} \log X_{i} + \sum_{j} \log Y_{j}}$$

6. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be a random sample from a bivariate normal distribution with unknown parameters $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho$. We are interesting in testing

$$H_0: \mu_X = \mu_Y$$
 v.s. $H_1: \mu_X \neq \mu_Y$.

(1) Show that $W_i = X_i - Y_i$ are i.i.d. $N(\mu_W, \sigma_W^2)$. (2) Derive the LRT for this hypothesis, and show this LRT is based on the statistic

$$T_W = \frac{\bar{W}}{\sqrt{\frac{1}{n}S_W^2}},$$

where $\overline{W} = \frac{1}{n} \sum_{i} W_i$ and $S_W^2 = \frac{1}{(n-1)} \sum_{i} (W_i - \overline{W})^2$. (3) Show that under H_0 , $T_W \sim$ Student's t with n-1 degree of freedom.

7. Let X_1, \dots, X_n be a random sample with pdf $f(x|p, \theta) = \frac{1}{\Gamma(p)\theta^p} x^{p-1} \exp(-x/\theta)$. Here p is assumed to be known and θ is an unknown parameter. We are interesting in testing

$$H_0: \theta \leq \theta_0$$
 v.s. $H_1: \theta > \theta_0$.

Find the UMP level α test.

8. Let X follow the binomial distribution, i.e. $B(n, \theta)$, with known n and unknown θ . Now we are interesting in testing

$$H_0: \theta \leq \theta_0$$
 v.s. $H_1: \theta > \theta_0$.

Find the UMP level α test.

9. Let X_1, \dots, X_n be a random sample from $N(\mu, \sigma^2)$ with unknown μ and σ^2 . Construct a $1 - \alpha$ lower confidence bound for μ .