1. Let f_0 and f_1 be two probability density functions. The Kullback-Leibler information number is defined as

$$K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)} = \int \frac{f_0(x)}{f_1(x)} f_0(x) dx.$$

Show that $K(f_0, f_1) \geq 0$.

- 2. Let X_1, \dots, X_n be i.i.d. random variables with mean μ and finite variance σ^2 . (a) Show $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\longrightarrow} Z$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $Z \sim N(0, \sigma^2)$. (b) Based on the result of (a), find the asymptotic distribution of \bar{X}_n^2 .
- 3. Let X_1, \dots, X_n be i.i.d. uniform $(0, \theta)$, and $X_{(1)}, \dots, X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent.
- 4. Let X_1, \dots, X_n be i.i.d. random variables with pdf

$$f(x|\theta) = \frac{1}{\sigma} \exp(-(x-\mu)/\sigma), x > \mu, \mu \in R, \sigma > 0.$$

Here $\theta = (\mu, \sigma)$. (a) Find a sufficient statistic for θ , (b) Find the method of moments estimator of θ , and (c) find the maximum likelihood estimator of θ .

- 5. Suppose that X_1, \dots, X_m , the counts in cells $1, \dots, m$, follow a multinomial distribution with a total count n and cell probabilities p_1, \dots, p_m . Find the maximum likelihood estimators of p_1, \dots, p_m .
- 6. Assume that X_1, \dots, X_n are i.i.d. exponential(λ), i.e. $f(x|\lambda) = \lambda \exp(-\lambda x), x > 0$. (a) Show the maximum likelihood estimator of λ is $\bar{X}_n = \sum_{i=1}^n X_i/n$. (b) Based on the MLE of λ , find an unbiased estimator of λ . (c) Show this unbiased estimator can not attach the Cramer-Rao Lower Bound.
- 7. Let X_1, \dots, X_n be i.i.d. exponential(λ). Find the best unbiased estimator of $P(X < x) = 1 \exp(-\lambda x)$, where x is a fixed constant.
- 8. Let X_1, \dots, X_n be i.i.d $N(\mu, \sigma^2)$. Here we assume that both μ and σ^2 are unknown. (a) Show that \bar{X}_n and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X}_n)^2$ are independent. (b) Find the best unbiased estimator of μ/σ , the signal to noise ratio.
- 9. Let X_1, \dots, X_n be i.i.d. uniform $(0, \theta)$. Find the best unbiased estimator of θ^k .