1. Find the general solutions to

$$
\left(\begin{array}{cccc}
2 & 3 & 1 & -1 \\
5 & 8 & 0 & 1 \\
1 & 2 & -2 & 3
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
-1 \\
-13 \\
-11
\end{array}\right)
$$

2. If $z=(G-F) y+(I-F A) w$, where $G$ and $F$ are generalized inverses of $A$, show that the solution $\tilde{x}=G y+(G A-I) z$ to $A x=y$ reduces to $\tilde{x}=F y+(F A-I) w$.
3. Let $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$ be $N(\mu, V)$ and define $\mathbf{x}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)^{T}$, where $\mathbf{x}_{1}=$ $\left(x_{1}, \cdots, x_{k}\right)^{T}$ and $\mathbf{x}_{2}=\left(x_{k+1}, \cdots, x_{n}\right)^{T}$. Then find the marginal distribution of $\mathbf{x}_{1}$ and the conditional distribution of $\mathbf{x}_{1} \mid \mathbf{x}_{2}$.
4. Derive the moment generating function of non-central $\chi^{2}, \chi^{2}(n, \lambda)$, and then use this moment generating function to get the corresponding mean and variance.
5. When $\mathbf{x}$ is $N\left(\mu_{1}, I\right) ; \mathbf{y}$ is $N\left(\mu_{2}, I\right)$ and the correlation matrix between $\mathbf{x}$ and $\mathbf{y}$ is $R$, what are the mean and variance of $\mathbf{x}^{T} A \mathbf{y}$ ?
6. When $\mathbf{x}$ is $N(\mu, V)$, two quadratic forms, $\mathbf{x}^{T} A \mathbf{x}$ and $\mathbf{x}^{T} B \mathbf{x}$, are considered here. Show that if $B V A=\mathbf{0}$, then $\mathbf{x}^{T} A \mathbf{x}$ and $\mathbf{x}^{T} B \mathbf{x}$ are independent.
7. When $\mathbf{y}$ has mean vector $X b$ and variance-covariance matrix $V$, prove that the covariance of the b.l.u.e.'s of $p^{\prime} b$ and $q^{\prime} b$ is $p^{\prime}\left(X^{\prime} V^{-1} X\right)^{-1} q$.
8. When $\mathbf{y}$ is $N\left(X B, \sigma^{2} I\right)$, show that $S S E /(N-r)$ is an unbiased estimator of $\sigma^{2}$, and $S S E$ is independent of $S S R$. Finally write down the distribution of

$$
F(R)=\frac{S S R / r}{S S E /(N-r)}
$$

9. Consider the hypothesis $H: K^{\prime} b=m$, and assume $\mathbf{y}$ is $N\left(X b, \sigma^{2} I\right)$. Find the least-squares estimator of $b$ under this hypothesis.
10. Assume there is a sample of $n$ observations $\mathbf{y}=\left(y_{1}, \cdots, y_{n}\right)^{\prime}$, where $\mathbf{y}$ is $N\left(X b, \sigma^{2} I\right)$. Find the likelihood ratio test for $H: b=\mathbf{0}$
