- 1. The observations are $X_i = Z_i + \varepsilon_i$, $i = 1, \dots, n$, where Z_i are unobservable i.i.d. exponential random variables with mean $\theta > 0$ and the error terms ε_i are i.i.d. Bernoulli with parameter p, independent of the Z_i .
 - 1. Find the method of moments estimates of θ and p. For what values of (θ, p) are these estimates consistent?
 - 2. Show there is a two-dimensional sufficient statistic for (θ, p) .
 - 3. Find Fisher Information matrix, $I(\theta, p)$.
- **2.** Let X_1, \dots, X_n be the sample from a mixture of gamma distributions:

$$f(x|\theta) = [(1-\theta)\exp(-x) + \theta x\exp(-x)], x > 0,$$

where $0 < \theta < 1$.

- 1. What is the estimate of θ given by the method of moments?
- 2. What is its asymptotic distribution?
- 3. Show how to improve this estimate by one iteration of Newton's method applied to the likelihood equation.
- 3. Each of *n* light bulbs with common exponential density for the time to failure is left on until it fails or until time *T* whichever occurs first. Thus the observations, X_1, \dots, X_n , are i.i.d. with density $(1/\theta) \exp(-x/\theta)$ on (0, T), and with $P(X_i = T) = \exp(-T/\theta)$.
 - 1. Find the MLE of θ .
 - 2. Find the asymptotic distribution of the MLE.
- 4. Consider the linear regression model with observations $Y_i = \alpha + \beta x_i + \varepsilon_i$, $i = 1, \dots, n$, where x_i are known constants, α and β are unknown parameters, and ε_i are independent normal random errors with mean 0 and known variance, σ^2 .
 - 1. Find the Fisher Information matrix, $I(\alpha, \beta)$.
 - 2. Using this Fisher Information matrix, find the Cramer-Rao lower bound for the variance of an unbiased estimate of β .

- 5. Let X_1, \dots, X_n be a sample from the Poisson distribution with density $f(x|\mu) = \exp(-\mu)\mu^x/x!$, and let Y_1, \dots, Y_n be an independent sample from the Poisson distribution with density $f(y|\theta)$, where $\mu > 0$ and $\theta > 0$ are unknown parameters.
 - 1. Find the likelihood ratio test statistic for testing $H_0: \mu = \theta^2$.
 - 2. What is its asymptotic distribution?
- 6. N balls are distributed at random into $I \times J$ cells, where cell (i, j) has probability $p_{ij} > 0$, for $i = 1, \dots, I$ and $j = 1, \dots, J$, with $\sum_i \sum_j p_{ij} = 1$. Let n_{ij} represent the number of balls that fall in cell $(i, j), \sum_i \sum_j n_{ij} = N$.
 - 1. Find the χ^2 test of the hypothesis $H : \sum_j p_{ij} = 1/I$, for $i = 1, \dots, I$. How many degrees of freedom?
 - 2. Find the χ^2 test of the hypothesis $H_0: p_{ij}$ is independent of i, i.e. $p_{1j} = p_{2j} = \cdots = p_{Ij}$ for $j = 1, \cdots, J$. How many degrees of freedom?
 - 3. χ^2 test of H_0 against $H H_0$. How many degrees of freedom?