1. Suppose X_{1}, \cdots, X_{n} is a sample from $U(0, \theta)$. The maximum likelihood estimate of θ is $X_{(n)}$, the maximum of the sample. Since $X_{(n)}<\theta$ with probability 1, we might use $\frac{n+c}{n} X_{(n)}$ to be an estimator of θ for some positive number c. (a) What is the asymptotic distribution of $\frac{n+c}{n} X_{(n)}$? What value of c should be used if we measure the accuracy of the estimate by (b) squared error loss? (c) absolute error loss?
2. Let X_{1}, \cdots, X_{n} be a sample from the geometric distribution with pdf, $P(X=$ $x)=(1-\theta) \theta^{x}$ for $x=0,1, \cdots$, where $0<\theta<1$ is a success probability. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ denote the total number of successes, and $T_{n}=\sum_{i=1}^{n} I\left(X_{i}>0\right)$ denote the number of trials that had at least one success. (a) Find the joint asymptotic distribution of $\left(S_{n}, T_{n}\right)$.(b) Find the joint asymptotic distribution of $\left(U_{n}, V_{n}\right)$, where $U_{n}=S_{n} / T_{n}$ and $V_{n}=n-T_{n}$.
3. Let X_{1}, X_{2}, \cdots, be i.i.d. double exponential random variables with density,

$$
f(x)=\exp (-|x| / \tau) /(2 \tau)
$$

where τ is a positive parameter that represents the mean deviation, i.e. $\tau=$ $E|X|$. Let $\bar{X}_{n}=\sum_{i=1}^{n} X_{i} / n$ and $\bar{Y}_{n}=\sum_{i=1}^{n}\left|X_{i}\right| / n$. (a) Find the joint asymptotic distribution of \bar{X}_{n} and \bar{Y}_{n}. (b) Find the asymptotic distribution of $\left(\bar{Y}_{n}-\tau\right) / \bar{X}_{n}$.
4. Let X_{1}, X_{2}, \cdots, be i.i.d. random variables with mean 0 and variance 1. Let $Y_{i}=a_{i} X_{i}, 1 \leq a_{i} \leq 2$ for all i. Find the asymptotic distribution of \bar{Y}_{n} by the Lindeberg-Feller Theorem.
5. X_{1}, X_{2}, \cdots, be i.i.d. sequence of Bernoulli random variables with probability p of success. Then

$$
\sqrt{n}\left(\bar{X}_{n}-p\right) \xrightarrow{\mathcal{L}} N(0, p(1-p))
$$

as $n \rightarrow \infty$. Suppose we want to estimate the variance $\sigma^{2}=p(1-p)$. The maximum likelihood estimate is $\hat{\sigma}^{2}=\bar{X}_{n}\left(1-\bar{X}_{n}\right)$. (a) Find the asymptotic distribution of $\hat{\sigma}^{2}$ if $p \neq 1 / 2$. (b) Find the asymptotic distribution of $\hat{\sigma}^{2}$ if $p=1 / 2$.
6. If Y_{1}, Y_{2}, \cdots, are i.i.d random variables with mean μ and variance σ^{2}, and $X_{i}=$ $Y_{i} Y_{i+1}$, what is the asymptotic distribution of \bar{X}_{n} ?
7. (a) One measure of the homogeneity of a multinomial population with k cells and probabilities, $p=\left(p_{1}, \cdots, p_{k}\right)$, is the sum of the squares of the probabilities, $S(p)=\sum_{i=1}^{k} p_{i}^{2}$. Given a sample of size n from this population (with replacement), we may estimate $S(p)$ by $S(\hat{p})$, where $\hat{p}=\left(\hat{p}_{1}, \cdots, \hat{p}_{k}\right)$, and \hat{p}_{i} is the proportion of the observations that fall in cell i. What is the asymptotic distribution of $S(\hat{p})$? (b) Let

$$
H(p)=-\sum_{i=1}^{k} p_{i} \log p_{i}
$$

is Shannon entropy. What is the asymptotic distribution of $H(\hat{p})$?
8. Suppose X_{1}, X_{2}, \cdots, are i.i.d. unobservable (latent) random variables with an unknown distribution having finite mean μ and variance σ_{x}^{2}. The observations are $Y_{t}=\beta_{0} X_{t}+\beta_{1} X_{t+1}+\cdots+\beta_{m} X_{t+m}$ for $t=1,2, \cdots$, where the β_{i} are constants. Such a process Y_{1}, Y_{2}, \cdots, is said to be a moving average process of order m. Find the asymptotic distribution of \bar{Y}_{n}.
9. Suppose $z_{j}=j$ and $a_{j}=1 / \sqrt{j}$ for all $j=1,2, \cdots$. Find the asymptotic distribution of $S_{N}=\sum_{i=1}^{N} z_{j} a\left(R_{j}\right)$, where $\left(R_{1}, \cdots, R_{N}\right)$ is a random permutation of $(1, \cdots, N)$ with each permutation having probability $1 / n$!.

