1. Assume the model is

$$
y=X \beta+\varepsilon
$$

where $y=\left(y_{1}, \cdots, y_{n}\right)^{T}$ is the vector of the observations, $X=\left(\begin{array}{cccc}1 & x_{11} & \cdots & x_{1 p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n 1} & \cdots & x_{n p}\end{array}\right)$
is the design matrix, $\beta=\left(\beta_{0}, \beta_{1}, \cdots, \beta_{p}\right)^{T}$ is the vector of the unknown parameters, and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)^{T} \sim M N\left(\mathbf{0}, I_{n}\right)$. (a) Find the least-squares estimator of $\beta, \hat{\beta}$. Let the vector of fitted values be $\hat{y}=X \hat{\beta}=H y$, where $H=X\left(X^{T} X\right)^{-1} X^{T}$ is the hat matrix. (b) Show $I_{p+1}-H$ is symmetric and idempotent, and (c) $H \mathbf{1}=\mathbf{1}$ and $\mathbf{1}^{T} H=\mathbf{1}^{T}$, where $\mathbf{1}=(1, \cdots, 1)^{T}$ is a $(p+1) \times 1$ vector of ones.
2. Consider the $p \times p$ matrix $X^{T} X$ and let x be the i th row of X. Find $\left(X^{T} X-x x^{T}\right)^{-1}$.
3. Show that if $A=A^{T}$, then A is a tripotent if and only if $A=A^{-}$.
4. Let $B=\left(\begin{array}{ccc}-3 & 2 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$. (a) Find a real number t such that $B+t I_{3}$ is positive definite. Let $A=\left(\begin{array}{ccc}3 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 4\end{array}\right)$. (b) Find a positive number t_{1} such that $A+t_{1} B$ is positive definite.
5. Let an orthogonal matrix $P=\binom{P_{1}}{P_{2}}$. Show that $P_{1}^{T} P_{1}$ is idempotent.
6. IF A is a positive definite $k \times k$ matrix and B is a nonnegative $k \times k$ matrix, then (a) show

$$
\lambda_{1} \leq \frac{x^{\prime} B x}{x^{\prime} A x} \leq \lambda_{k}
$$

for each and every vector $x \neq \mathbf{0}$, where $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{k}$ are the roots of $|B-\lambda A|=0$. (b) Find vectors x_{1} and x_{2} such that $\lambda_{1}=\frac{x_{1}^{\prime} B x_{1}}{x_{1}^{\prime} A x_{1}}$ and $\frac{x_{2}^{\prime} B x_{2}}{x_{2}^{\prime} A x_{2}}=\lambda_{k}$.

