1. Let A be an $m \times m$ symmetric matrix, $\lambda_{1} \geq \ldots \geq \lambda_{m}$ be its eigenvalues, P_{1}, \ldots, P_{m} be the corresponding eigenvectors. Thus we have the following equations,

$$
\begin{aligned}
A & =\lambda_{1} P_{1} P_{1}^{T}+\ldots+\lambda_{m} P_{m} P_{m}^{T} \\
I_{m} & =P_{1} P_{1}^{T}+\ldots+P_{m} P_{m}^{T}
\end{aligned}
$$

Show the following propositions:
(a) Let X be an $m \times 1$ vector.

$$
\sup _{X} \frac{X^{T} A X}{X^{T} X}=\lambda_{1} \text { and } \inf _{X} \frac{X^{T} A X}{X^{T} X}=\lambda_{m} .
$$

(b)

$$
\sup _{P_{i}^{T} X=0, i=1, \ldots, k} \frac{X^{T} A X}{X^{T} X}=\lambda_{k+1} \text { and } \inf _{P_{i}^{T} X=0, i=1, \ldots, k} \frac{X^{T} A X}{X^{T} X}=\lambda_{m}
$$

(c) Let B be an $m \times k$ matrix. Then

$$
\inf _{B} \sup _{B^{T} X=0} \frac{X^{T} A X}{X^{T} X}=\lambda_{k+1} .
$$

2. Find the inverse of A, where

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
3 & 2 & 1 & 2 & 4
\end{array}\right)
$$

3. Let

$$
B=\left(\begin{array}{ccc}
2 & 2 & 3 \\
2 & 5 & 6 \\
3 & 6 & 10
\end{array}\right)
$$

Show that $B=I_{3}+b b^{T}$, where $b^{T}=(1,2,3)$, and then find the determinant of B.
4. Let the $n \times n$ matrix A be defined by

$$
A=\left(\begin{array}{cc}
I_{n_{1}} & \mathbf{0} \\
B & I_{n_{2}}
\end{array}\right)
$$

where B is an $n_{1} \times n_{2}$ matrix and the size of the other submatrices are thus determined. Show that A^{-1} exists and find it.
5. Show that the matrix A below is positive definite.

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

6. Let A be a non-negative matrix. Show that B is positive definite for each and every a such that $0 \leq a \leq 1$, where

$$
B=a I+(1-a) A
$$

7. Let Σ be the covariance matrix of an $m \times 1$ random vector, X. Show that Σ is non-negative matrix.
8. If $A^{T}=A$ and $A^{n}=A^{n+2 m-1}$, where m and n are any positive number, show that A is symmetric idempotent.
